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0. Abstract. For an inverse semigroup 5, the set of all isomorphisms between
inverse subsemigroups of 5 is an inverse monoid under composition which is denoted by
2P$4(S) and called the partial automorphism monoid of 5. Kirkwood [7] and Libih [8]
determined which groups have Clifford partial automorphism monoids. Here we
investigate the structure of inverse semigroups whose partial automorphism monoids
belong to certain other important classes of inverse semigroups. First of all, we describe
(modulo so called "exceptional" groups) all inverse semigroups 5 such that 0>$l(S) is
completely semisimple. Secondly, for an inverse semigroup S, we find a convenient
description of the greatest idempotent-separating congruence on SPst(S), using a
well-known general expression for this congruence due to Howie, and describe all those
inverse semigroups whose partial automorphism monoids are fundamental.

1. Introduction. Let 5 be an inverse semigroup. For any subset X of 5, let (X)
denote the inverse subsemigroup generated by X. To express the fact that a subset W c 5
is an inverse subsemigroup of 5, we write H =s 5. It will be assumed that 0 =s S. The
semilattice of idempotents of 5 will be denoted by Es and the order of an element x e S by
o(x). A partial automorphism of 5 is any isomorphism between inverse subsemigroups of
S. The set of all partial automorphisms of 5 is denoted by 0>s4(S). Note that 0 e 9>M{S)
since 0 can be considered as an isomorphism of the empty inverse subsemigroup of S onto
itself. It is easy to see that with respect to composition 0>si(S) is an inverse semigroup;
moreover, it is an inverse subsemigroup of S{S), the symmetric inverse semigroup on the
set 5. In particular, the idempotents of 9>sd{S) are precisely the identity mappings iH for
every H =£ S. Clearly iB( = 0) is the zero and ts the identity of &s£(S). Thus 3>si(S) is an
inverse monoid with zero; it is called the partial automorphism monoid of S. The group of
units of &s$(S) is the automorphism group of 5. Since i w

o i* = iHnK for any H, K^S,
the semilattice of idempotents of ^jrf(S) is, in fact, a lattice isomorphic to the lattice of
all inverse subsemigroups of S.

In [3] the author studied conditions under which an inverse semigroup 5 is
determined by &si(S). Here we will investigate how certain natural restrictions imposed
on SPst^) reflect upon the structure of 5. It should be noted that a similar problem for
lattices of substructures of mathematical structures such as groups, rings, semigroups,
inverse semigroups, etc., was the topic of numerous publications (see, for example, [14,
Chapter I], [12, Chapter V] or [13, Chapter III]). However relatively few results on the
above-mentioned problem for partial automorphism monoids have been established (see
[4] for a brief survey). In fact, the author is aware of only one result which describes how
the structure of an inverse semigroup S is influenced by imposing a certain restriction on
&d{S): the determination by Kirkwood [7] of the structure of all groups whose partial
automorphism monoids are Clifford semigroups. Two years earlier Libih [8] described all
the groups G for which the inverse semigroup of isomorphisms between subsemigroups of
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G is Clifford. It turns out that the two classes of groups coincide (see [4, Theorem 3.3]).
Moreover, the results of Libih and Kirkwood can be easily generalized to a description of
all inverse semigroups S for which the inverse semigroups of all isomorphisms between the
[inverse] subsemigroups of 5 are Clifford [4, Corollary 3.4].

In addition to the class of Clifford semigroups, some of the other important special
classes of inverse semigroups consist of fundamental, £-unitary and completely semi-
simple ones. The main result of Section 2 (Theorem 5) provides a description of all
inverse semigroups with completely semisimple partial automorphism monoids. In Section
3 we investigate how the requirements of being fundamental or £-unitary (or a somewhat
weaker requirement than the latter), imposed on 0\s#(S), influence the structure of an
inverse semigroup 5. In our main result here (Theorem 8) we find a convenient
description of the greatest idempotent-separating congruence on @si(S), using a
well-known general expression for this congruence due to Howie, and characterize all
those inverse semigroups whose partial automorphism monoids are fundamental. The
main results of the paper were announced at the 1988 Lisbon Conference on Universal
Algebra, Lattices and Semigroups; they are stated without proofs in [4].

2. Restricting the ideal structure of 0>d{S). Green's relations on a semigroup
provide one of the most important tools for clarifying its structure. A useful description of
Green's relations on any inverse subsemigroup of the symmetric inverse semigroup on a
set was given by Munn [10]. Since 2P$i(S)^y(S) for an inverse semigroup S, we can
apply Munn's result to

RESULT 1 (a corollary to Munn [10, Lemma 1.2]). Let S be an inverse semigroup and
let a, P e 9>si(S). Then

(i) (a, P)e$iff ran a = ran /3;
(ii) (or, P)e®.iff dom a- = dom ]8;
(iii) (a, P) e 3s iff there exists y e 0\s#(S) such that dom a = dom y and ran y = ran P;
(iv) (a, ft) e / iff there exist y, 6 e ?fsl(S) such that dom a = dom y, ran y =£ ran /?,

dom P = dom 6, and ran <5 «s ran a. In particular, 0\s#(S) is 0-simple iff for all nonempty
a, P e 2Ps$(S), there exists y e &sA(S) such that dom a = dom y and ran y =£ ran /3.

An immediate consequence of Result l(iv) is the following.

COROLLARY 2. Let S be an inverse semigroup. Then the following conditions are
equivalent:

(i) g>s£{S) is 0-simple;
(ii) @M(S) is 0-bisimple;

(iii) &si{S) is completely 0-simple;
(iv) S is trivial (i.e. \S\ = 1).
Thus, if 5 is an inverse semigroup, the condition that ^^(S) be 0-simple is so strong

that it causes S to shrink to a singleton. More interesting results can be obtained if the
restrictions imposed on the ideal structure of !?\s#(S) are not so severe.

Let U be an inverse semigroup. It is well known that any principal factor of U is either
0-simple or simple. If each of the principal factors of U is either completely 0-simple or
completely simple, then U is said to be completely semisimple [2, §6.6]. It is also well
known (see, for example, [5, Result 6]) that U is completely semisimple iff no two distinct
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2)-related idempotents of U are comparable (with respect to the natural partial order).
Using this fact and Result l(iii), we obtain the following

LEMMA 3. Let S be an inverse semigroup. Then 0>.s#(S) is completely semisimple iff
for any pair of isomorphic inverse subsemigroups of S, neither of the two is properly
contained in the other.

Proof. As noted above, SPs£(S) is not completely semisimple iff there exist two
distinct comparable 2)-related idempotents of tykiS), that is, iff there exist Af, TV «£ S
such that

iM c iN and (iM) iN) e 2. (1)

By Result l(iii), (1) holds iff MaN and there exists an isomorphism of M( = dom iM)
onto N( = ran iN). The proof is complete.

REMARK. Since the subject of this paper is the study of partial automorphism
monoids of inverse semigroups, we formulated and proved Lemma 3 for an inverse
semigroup 5. However a much more general result is valid. Let (5,21) be any
mathematical structure in the sense of Bourbaki (that is, 5 is a set endowed with a certain
structure of the species X of structures; for a comprehensive discussion of these and
related notions including that of an isomorphism between two sets endowed with the
structures of the species 2 see [1, pp. 262-266 and 383-385]). Subsets of S, distinguished
by a certain property x = x(S) are called the x-subsets of 5. If the intersection of any two
r-subsets of 5 is again a r-subset, then with respect to composition the set of all
isomorphisms between T-subsets of 5 is an inverse semigroup which is denoted by SPslz(S)
and called the partial x-automorphism semigroup of S (see [4]). The above-mentioned
more general result is obtained from Lemma 3 by replacing the words "an inverse
semigroup" and "inverse subsemigroups" by "a mathematical structure" and "r-subsets",
respectively, and the notation "0>.stf(S)" by "0\s#T(S)". This result is established by
virtually the same proof as in Lemma 3.

LEMMA 4. A semilattice is finite iff it has no pair of isomorphic subsemilattices one of
which is properly contained in the other.

Proof. The 'only if part is obvious. To prove the 'if part, take an arbitrary infinite
semilattice E. There are two possibilities.

Case 1. Either ACC or DCC does not hold in E.

Suppose that E does not satisfy ACC [DCC]. Then E contains an infinite ascending
[descending] chain e o < e 1 < e 2 < . . . [eo>ei >e2 > . . . ] . Let H= {e0, ex, e2,. • } and
K = H\{e0}. Then H and K are subsemilattices of E, KcH and the mapping en>-»en_i,
n e N, is an isomorphism of K onto H.

Case 2. E satisfies both ACC and DCC.

As usual, for x e E, set [x) = {z e E: z s= x}. Recall that y e [x) is an atom of [x) if y
covers x, that is, for no z e E, y > z > x.

Since £ is a semilattice satisfying DCC, it contains a zero element 0, and for any
nonmaximal x eE, the set of atoms of [x) is nonempty. Construct by induction the
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following sequence of elements of E. Set a0 = 0. Note that [a0) coincides with E and
hence is infinite. Suppose that for n ^ 0, we have already selected the elements
a0, . . . , an e E such that [an) is infinite. If [an) has only finitely many atoms, we can
choose one of them, b, say, such that [b) is infinite, and set an+1 = b; otherwise an+x = an.
It is clear that a^a^-^a^. . . . Since E satisfies ACC, there exists m3=0 such that
ao<. . . <am =am+i = . . . . By construction, the set A of atoms of [am) is infinite. Let
H = A U {am}. Choose any a e A and set K = H\{a}, so that KczH. It is clear that H and
K are subsemilattices of E. They both are primitive semilattices of the same cardinality
and hence are isomorphic.

Thus, in each of the two possible cases, E has a pair of isomorphic subsemilattices
one of which is properly contained in the other. This completes the proof.

For convenience of reference we distinguish a class of groups in which no subgroup is
isomorphic to a proper subgroup of itself and call such groups exceptional. It is clear that
every subgroup of an exceptional group is itself exceptional and that the class of
exceptional groups is properly contained in the class of all periodic groups. Examples of
exceptional groups include, of course, all finite groups, quasicyclic groups, direct sums
of quasicyclic groups, infinite nonabelian groups all of whose subgroups are finite [11],
etc. However the author is not aware of any complete description of exceptional groups,
nor of any publications in which these groups were distinguished and studied as a class. It
might be of interest to note that exceptional groups form a proper subclass of the class of
cohopfian groups (a group is called cohopfian [9, §V. 10] if it is not isomorphic to any of
its proper subgroups). It is clear that a group is exceptional precisely when each of its
subgroups is cohopfian.

The main result of this section is the following.

THEOREM 5. Let S be an inverse semigroup. Then $Ps£(S) is completely semisimple iff
Es is finite and all (maximal) subgroups of S are exceptional.

Proof. Suppose that 9>sd(S) is completely semisimple. By Lemma 3, 5 has no pair of
isomorphic inverse subsemigroups one of which is properly contained in the other. Then,
in particular, each (maximal) subgroup of 5 is exceptional and, according to Lemma 4, Es

is finite.
Conversely, let Es be finite and let every (maximal) subgroup of 5 be exceptional.

Suppose that §>si(S) is not completely semisimple. Then, by Lemma 3, there exist M,
N^S such that NaM and M = N. Note that EM is finite, ENcEM and ENsEM. It
follows that EN = EM. Let a be an isomorphism of M onto N. Since EM is finite and CC\EM

is an automorphism of EM, there exists k 5= 1 such that (a\EJk = IEM. Set P = Mak and
P = »*. Then P is a proper inverse subsemigroup of M and /S an isomorphism of M onto P
such that eft = e for every e e EM ( = EP).

To distinguish the Green's relations on M from those on P, we use the superscripts
M and P, respectively. Take any a e M\P and set b = a/3. Then for some e,feEM,
e®Ma£Mf and hence ep®papgpfp, that is, e®pb<epf. It follows that Hp

bcH^ = H^.
Note that H^P = HP

P for any xeM. Since e/3 = e, we conclude that /3 | H? is an
isomorphism of H^ onto HP( c H1?)- However, Hi is an exceptional group. Therefore,
H? = HP. Since e9lpb, there exists seP such that es = b. For any x eHp, set xy = xs. By
Green's lemma, y is a bijection of HP onto Hp and, at the same time, a bijection of
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onto //£*. Thus H£ = H%; a contradiction. Therefore Sfsi(S) is completely
semisimple.

Recall that an inverse semigroup is said to be combinatorial if all its subgroups are
trivial. An immediate consequence of Theorem 5 is the following.

COROLLARY 6. Let S be an inverse semigroup. If all subgroups of S are finite (in
particular, if S is combinatorial), then 3Ps4(S) is completely semisimple iff S is finite.

3. The greatest idempotent-separating congruence and the fundamentally of
^si(S). Let U be an inverse semigroup. A nonempty subset A of U is called closed if A
contains every element u e U such that u 2= a for some a eA, and U is said to be E-unitary
(also proper or reduced) if Ev is a closed subset of U (see, for example, [6, pp. 139 and
181-182]). It is obvious that an inverse semigroup with zero is £-unitary iff it is a
semilattice. Now let 5 be an inverse semigroup such that a2= a for every are 0>M(S). It
follows immediately that no two distinct inverse subsemigroups of S are isomorphic.
Therefore S is a periodic group. Moreover, for every H ^ S, iH is the only automorphism
of H. It follows that 5 is a cyclic group of order =£2 (cf. the argument used below in the
proof of Proposition 7; see also [8, pp. 26-27]). Thus for an inverse semigroup 5, 8Psi(S)
is E-unitary iff 0*$i(S) is a semilattice iff S is a cyclic group of order =£2. One might hope
that the situation will become less trivial if the requirement that Sfsi(S) be E-unitary
(i.e., that Eg,^) be closed) is replaced by a less restrictive one that £gi,^(S)\{0} be a
closed subset of &si(S). It turns out, however, that even this assumption severely limits
the structure of S.

PROPOSITION 7. Let S be an inverse semigroup. Then E^^^ty} is a closed subset of
iff S is a Clifford semigroup with at most two idempotents in which each maximal

subgroup is a cyclic group of order =£ 2.

Proof. Let £g>rf(5)\{0} be a closed subset of &s£(S). Suppose that |£S| > 3. Then we
can choose three distinct idempotents e, f and g in S such that e<f and e < g. Set ea = e
and fa = g. Then a, being an isomorphism of {e, / } onto {e, g}, belongs to SPsi(S),
i{e) a a and a2^ a; a contradiction. Hence Es is a chain of cardinality =£2 and, by [2,
Theorem 7.5], 5 is a Clifford semigroup. Let e eEs and He be the group component of 5
corresponding to e (that is, the $f-class of 5 containing e). Take any x eHe and assume
that o(x)>2. Then (x), the cyclic subgroup of He generated by x, has a nontrivial
automorphism a defined by xa = x~\ Thus i{e) c a =£ a2; a contradiction. It follows that
o(x) «£ 2. Suppose that He contains a pair of distinct elements, y and z, say, each of order
2. Set e/3 = e and y/3 = z. Then /3 is an isomorphism of {e, y} onto {e, z) and thus belongs
to $Pst(S), i{e) a f} and /32 ¥= /3; a contradiction. Hence He is a cyclic group of order « 2.

The converse is easily established by considering a Clifford semigroup S with exactly
two idempotents and each maximal subgroup being a cyclic group of order 2 and verifying
that no ae ^si(S)\Eg>^S) is such that for some x e dom a, i^ = a \ (x). We omit the
details.

Let U be an inverse semigroup. A congruence p on U is called idempotent-separating
if for any e, f e EUt e pf implies e=f, and U is said to be fundamental if ty is the only
idempotent-separating congruence on U [6, pp. 140-141]. In general, there exists a
greatest idempotent-separating congruence n on U given by the formula [6, Theorem
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V.3.2]:
H = {(a, b)eUxU:{VeeEu)a~lea = b~leb}, (2)

so that U is fundamental iff /x = iy. This characterization of fundamental inverse
semigroups and formula (2) will be applied to the case when U = &sd{S) for some inverse
semigroup 5. Let A be any subset of S, x e 5 and a e 8Ps4(S). In accordance with [6] (see
formulae (4.8) and (4.9) on p. 15 and the definition of a partial mapping on p. 16) we
have A a = (A fl dom a) a and xoc = {x}a. As usual, if x e dom a, we can identify xa with
the unique element of {x}a (see [6, p. 16, a remark following (4.15)]). Since for all
ffeW(5) and H^S, a~1°iH°a= iHa (recall that 0a = 0 and r0 = 0), formula (2)
implies that for any a, f} e 9>sd{S),

(a,P)eti&(VH^S)Htx = Hp (3)
and, in particular,

(a,P)end>(VeeEs)ea = ep. (4)

If an element x e S does not belong to a subgroup of S, we say that A: is a nongroup
element. It is obvious that x e S is a nongroup element iff (x) is not a group.

We can now prove the main result of this section.

THEOREM 8. Let S be an inverse semigroup. Then
(i) for any a, fie @s&{S), (a, ft)e/x iff xa = xfi for each nongroup element x of S

and Ga = Gj8 for every subgroup G of S;
(ii) SPs&iS) is fundamental iff each {maximal) subgroup of S is of exponent «£2; in

particular, 9>s4{S) is fundamental if S is combinatorial.

Proof, (i) Let a, P e 9M{S). Suppose that {a, j8) e p. Then (3) implies that for
every subgroup G of 5, Ga = G/3. Take an arbitrary nongroup element x of 5. If
x $ dom a U dom /S, then xa = 0 = xfi. Now let x e dom a U dom /3. Without loss of
generality we may assume that x e dom a, so that (x) c dom a. Formula (3) implies that
(ocar) = (jc)a= (x))S. Then for some y e (x), xa = yfi, and therefore {xx~l)a = {yy~l)fi
and (x~lx)a = {y~ly)fi. However by (4) we have {xx~l)a = {xx~x)P and (jc~1jc)a =
{x~xx)fl. It follows that xx"1 = j ' ) '"1 and x~1x=>'"1>', that is, xdKy. Since (x) is not a
group, from the structure of monogenic inverse semigroups it follows that either (x) is
the bicyclic semigroup, or {x, x"1, xx"1, x~lx} is a S-class in (x). In both cases the
3)-class D(

x
x) is #?-trivial (i.e., each Sif-dass contained in D{

x
x) is a singleton). Since

y e (x) and _y5Kc, we have x =_y, so that xa = XJ8.
Conversely, assume that for any subgroup G of 5 and any nongroup element x eS,

we have Ga = G/3 and xa = x/3. Let / / be an arbitrary inverse subsemigroup of 5.
Suppose that a e Ha. Hence a - ha for some heH. If h is a nongroup element, then by
our assumption ha = hf}, so that aeHfi. Otherwise (h) is a cyclic subgroup of
HHdoma. Again by the assumption (h)a=(h)p. Hence for some integer n,
ha = (/in)j8 e tf/3, that is, a e Hfi. Therefore Ha c Hfi, and similarly /f/3 c / /a . Thus
/ / a = H/3 and, according to (3), {a, /3) e JI.

(ii) Suppose that every subgroup of S is of exponent =£2. Let a, /3 e 0*.stf(S) be such
that (a, /3) e ju. Take any x e 5. If x is an idempotent or a nongroup element, then
xa = xP according to (4) or to (i), respectively. Now suppose that x ^ x 2 and (x) is a
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group. By our assumption o(x) = 2, so that (x) = {e, x) for some e e Es. According to
(i), {e, x}a= {e, x}fi. Suppose, first, that xedoma. Then {e, x}^doma and
|{e, x}a\ = |{ear, xa}| = 2. Hence {e, x}cdom/S and xfi = xa. Now assume that x$
dom a. Then |{e,x}a-|«l. It follows that x£dom/S and xa = Q = xfi. Thus ar = /3 and
therefore SPsi(S) is fundamental.

Conversely, suppose that 5 contains an element a such that (a) is a group and
o(a)>2, i.e. a^a~l. Let a=i^ay and let /3 be an automorphism of (a) defined by
afi = a~\ Then a, /3 e 9>si{S), dom a = dom j8 = (a) and ran a- = ran/3 = (a).
Moreover, for any subgroup G of 5, Gar = (G (~l <a»a- = G D (a) = (G n (a))/3 = G0,
and for any nongroup element jce5, xa = 0 = JC/3. Hence, according to (i), (or, /S) G /U.
However aai^afi, that is, <*=£/3. Therefore ^»^(5) is not fundamental.
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