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Random analytic functions with a
prescribed growth rate in the unit disk
Xiang Fang and Pham Trong Tien
Abstract. Let R f be the randomization of an analytic function over the unit disk in the complex
plane

R f (z) =
∞

∑
n=0

an Xn zn ∈ H(D),

where f (z) = ∑∞n=0 an zn ∈ H(D) and (Xn)n≥0 is a standard sequence of independent Bernoulli,
Steinhaus, or complex Gaussian random variables. In this paper, we demonstrate that prescribing a
polynomial growth rate for random analytic functions over the unit disk leads to rather satisfactory
characterizations of those f ∈ H(D) such that R f admits a given rate almost surely. In particular,
we show that the growth rate of the random functions, the growth rate of their Taylor coefficients,
and the asymptotic distribution of their zero sets can mutually, completely determine each other.
Although the problem is purely complex analytic, the key strategy in the proofs is to introduce a
class of auxiliary Banach spaces, which facilitate quantitative estimates.

1 Introduction and main results

The study of random analytic functions (RAF) has a long and rich history, with a
dominating theme being the distribution of the zero sets or, more generally, that of
a-values. In this paper, however, our primary concern lies in the metrical aspect of
RAF or, rather, how to measure the size of an RAF?

The first significant result along this line is the Littlewood theorem: let f (z) = a0 +
a1z + a2z2 + ⋅ ⋅ ⋅ ∈ H2 be an element of the Hardy space over the unit disk. Let {εn}n≥0
be a sequence of independent, identically distributed Bernoulli random variables, that
is, P(εn = 1) = P(εn = −1) = 1

2 for all n ≥ 0. Littlewood’s theorem, proven in 1930 [17],
states that

R f (z) ∶=
∞

∑
n=0

an εnzn ∈ H p

almost surely for all p ≥ 2. When f ∉ H2, for almost every choice of signs, R f has a
radial limit almost nowhere. As a consequence, according to the fundamental theory
of the Hardy spaces [5, Theorem 2.2, p. 17], R f is not in any H p almost surely. The
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2 X. Fang and P. T. Tien

same holds true for a standard Steinhaus sequence [18, 25] and a standard Gaussian
sequence [11, p. 54].

Determining when the random seriesR f represents an H∞-function almost surely
is much harder, where H∞ denotes the space of bounded analytic functions over
the unit disk D. Several partial results since the 1930s, encompassing both necessary
conditions and sufficient conditions, have been obtained by noted analysts, including
Paley, Zygmund, and Salem [24, 29]. In [2], Billard demonstrated the equivalence
between the Bernoulli case and the Steinhaus case. A remarkable characterization
was eventually achieved by Marcus and Pisier in 1978 [20] (see also [11, 21]). Their
characterization relies on the celebrated Dudley–Fernique theorem.

Despite its intrinsic interests and the active research on various aspects of random
analytic functions, such as on the distribution of zeros in canonical Gaussian analytic
functions, the study of the metrical properties of RAF has remained largely stagnant
in recent decades. An elegant exception to this is a theorem due to Cochran, Shapiro,
and Ullrich concerning the Dirichlet space [3]. In 1993, they proved that a Dirichlet
function with random signs is almost surely a Dirichlet multiplier. This result has
been further generalized by Liu in [19]. More recently, Cheng, Liu, and the first
author have proved a Littlewood-type theorem for random Bergman functions [4].
The exploration of this theme has been continued by the current authors, particularly
for Fock spaces [7].

In this paper, we address a fundamental aspect in complex analysis, namely, the
growth rate of analytic functions, for which a gap appears to exist in the literature:
while the growth rate of RAF for entire functions has been fairly well understood
since the celebrated work of Littlewood and Offord in 1948 [17], relatively less is
known about the growth rate of RAF in the unit disk, where a polynomial rate appears
to be the most natural. In the deterministic context, a closely related framework
is formulated in Section 4.3 of the monograph [8]. In the present paper, we show
that, by imposing a polynomial growth rate, a considerably satisfactory theory can
be established for random analytic functions over the unit disk. Our key finding
suggests that the following three aspects, when suitably formulated, are mutually
determinative:

• the (polynomial) growth rate;
• the growth of Taylor coefficients; and
• the asymptotic distribution of the zero sets.

This phenomenon, which we refer to as “rigidity,” stands in contrast to entire functions,
where estimates instead of rigidity are often observed.

Let H(D) denote the space of analytic functions over the unit diskD in the complex
plane.

Definition 1.1. A function f ∈ H(D) has a polynomial growth rate if there exists a
constant α > 0 such that

∣ f (z)∣ = O((1 − ∣z∣)−α) as ∣z∣ → 1.

In this case, the infimum of such constants α is called the growth rate of f.
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Random analytic functions in the unit disk 3

Let G<∞ denote the collection of analytic functions with a finite polynomial
growth rate. The motivation for our work is the common belief, often found in
folklore, that a randomized summation tends to exhibit enhanced regularity. An exem-
plary illustration of this enhancement in regularity is observed in the randomized
p-harmonic series ∑∞n=1 ± 1

n p , which converges almost surely if and only if p > 1
2 ,

indicating a 1
2 -order improvement in regularity compared to the deterministic p-

harmonic series. Then, the 1930 Littlewood theorem aligns with this perspective as
the first example involving analytic functions. Consequently, in terms of growth rates,
a natural question arises:

Question A How much growth rate improvement can one gain for the random function

R f (z) ∶=
∞

∑
n=0
±anzn ,

when compared with that of f (z) = ∑∞n=0 anzn ∈ H(D)?

We shall see that the rate of growth of R f is indeed always at most that of f, and
the amount of improvement in terms of α is at most 1

2 , which is sharp. On the other
hand, this prompts a more fundamental question:

Question B How to characterize those functions f ∈ H(D) such that the random
function R f belongs to G<∞ almost surely?

Once we address the aforementioned inquiries (see Theorem C and Theorem B
below), our investigation shifts toward examining the zero sets of the corresponding
R f . Then, the unexpected discovery, at least to us, is that the integrated counting
function NR f (r) exhibits a strong rigidity (Theorem D).

In this paper, we consider the following three types of randomization.

Definition 1.2 A random variable X is called Bernoulli if P(X = 1) = P(X = −1) = 1
2 ,

Steinhaus if it is uniformly distributed on the unit circle, and by a standard complex
Gaussian, i.e., NC(0, 1), we mean the law of U + iV , where U , V are independent,
real Gaussian variables with zero mean and Var(U) = Var(V) = 1

2 . Moreover, let
X be either Bernoulli, Steinhaus, or standard complex Gaussian, and a standard X
sequence is a sequence of independent, identically distributed X variables, denoted by
(εn)n≥0, (e2πiαn)n≥0, and (ξn)n≥0, respectively. Lastly, a standard random sequence
(Xn)n≥0 refers to either a standard Bernoulli, Steinhaus, or standard complex Gaus-
sian sequence.

In the rest of this paper, we shall always assume that (Xn)n≥0 is a standard random
sequence if not otherwise indicated, and for such a sequence, we define

R f (z) ∶=
∞

∑
n=0

an Xnzn for f (z) =
∞

∑
n=0

anzn ∈ H(D).

An expert might wonder whether the examination of the Steinhaus and Gaussian
cases can be simplified by applying Kahane’s reduction principle to the Bernoulli case
[11]. While such an approach may be applicable in certain scenarios, it falls short of
attaining the desired level of rigidity, as illustrated, say, by Proposition 2.9.
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4 X. Fang and P. T. Tien

Let X ⊂ H(D) be any subspace of analytic functions over D. We introduce another
(deterministic) subspace X∗ ⊂ H(D), which we call the random symbol space of X, by

X∗ ∶= { f ∈ H(D) ∶ P(R f ∈ X) = 1}.
Clearly, X∗ depends on, a priori, the choice of (Xn)n≥0.

As a preparatory step, we show that there exists a well-defined notion of growth
rate for random analytic functions.

Lemma A (Existence) For any f ∈ H(D), the following statements hold:
(a) P(R f has a polynomial growth rate) ∈ {0, 1}.
(b) R f has a polynomial growth rate almost surely if and only if f has a polynomial

growth rate.
(c) If R f has a polynomial growth rate almost surely, then there exists a constant α ∈
[0,∞) such that the growth rate of R f is almost surely equal to α.

An immediate consequence is that

(G<∞)∗ = ⊔
α≥0
(Gα)∗ ,

where ⊔ represents the disjoint union, and Gα denotes the collection of analytic
functions with precisely a growth rate α.

Next, we show that a concise characterization of (Gα)∗, in terms of Taylor coeffi-
cients, can be obtained. For this, we need:

Definition 1.3 A sequence of complex numbers (an)n≥0 has a polynomial growth rate
if there exists some constant α > 0 such that

∣an ∣ = O(nα) as n →∞.

The infimum of such constants α is called the growth rate of (an)n≥0.

Theorem B (Characterization) Let α ∈ [0,∞) and f (z) = ∑∞n=0 anzn ∈ H(D). Then
the random function R f has a growth rate α almost surely if and only if the growth rate
of the sequence (∑n

k=0 ∣ak ∣2)
1
2 is also α.

Interestingly, our proof of the above theorem relies heavily on Banach space
techniques. For Question A, we show next that the rate ofR f does improve, compared
with that of f, and the amount of improvement is at most 1

2 .

Theorem C (Regularity) Let α ∈ [0,∞).
(a) If f ∈ H(D) has a growth rate α, then the growth rate of R f belongs to
[max{α − 1

2 , 0}, α] almost surely.
(b) For each α′ ∈ [max{α − 1

2 , 0}, α], there is a function f ∈ H(D) with growth rate α
such that R f has growth rate α′ almost surely.

The above result is one of the two Littlewood-type theorems which we shall prove
in Section 3. The other one is Theorem 3.1.

We now proceed to the second characterization of (Gα)∗. In Section 4, we study
the zero sets of R f , which, in general, has an extensive literature, and an in-depth
analysis when f ∈ (Gα)∗ might be better conducted in a separate work. In this paper,
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Random analytic functions in the unit disk 5

our focus is on the asymptotic behaviors of the counting function nR f (r) and the
integrated counting function NR f (r) for f ∈ H(D). Here, n f (r) denotes the number
of zeros, accounting for multiplicity, of f within the disk ∣z∣ < r. We also define

N f (r) ∶= ∫
r

0

n f (t)
t

dt if f (0) ≠ 0 or N f (r) ∶= ∫
r

1
2

n f (t)
t

dt if f (0) = 0.

Our second characterization of (Gα)∗ is the following:

Theorem D (Rigidity) Let α ∈ [0,∞) and f ∈ H(D). Then the following statements
are equivalent:

(i) The function f belongs to (Gα)∗.

(ii) lim sup
r→1

NR f (r)
log 1

1−r
= α almost surely.

(iii) lim sup
r→1

E(NR f (r))
log 1

1−r
= α.

In summary, we establish that three aspects of R f are equivalent in a certain sense:
the growth of the random function, the growth of its Taylor coefficients, and the
distribution of its zero set.

As for the proof of Theorem D, when the random function R f is induced by a
standard complex Gaussian sequence, one has the advantage of utilizing the Edelman–
Kostlan formula, from which good knowledge on the expected number of zeros of
R f , i.e., on E(nR f (r)), follows quickly. This allows us to draw several conclusions on
the asymptotic behavior of E(nR f (r)). This is, however, far from being enough for
our purpose. Three other ingredients play important roles in the proof: the estimates
obtained by the methods of [4], the new Banach space Hψ with ψ(x) = xα log(x), and
an estimate of [22].

1.1 Blaschke condition

Lastly, we examine various convergence exponents related to the Blaschke condition,
which is perhaps the most important geometric condition for zero sets in the unit disk
[5, Section 2.2], and is, however, never satisfied for any f ∈ (Gα)∗ when α > 0, as an
immediate consequence of Corollary 4.3 or [22, Theorem 1.3]; that is,

∞

∑
n=1
(1 − ∣zn ∣) = ∞ almost surely.

This prompts us to take a closer look at the Blaschke-type conditions, and we introduce
four notions of convergence exponent in Section 4.2. Then, as an application of
Corollary 4.3, we show that they are indeed the same and equal to one (almost surely)
for any α > 0 (Corollary 4.4).

1.2 Methodology

Most literature on the growth rate of random analytic functions is for entire functions,
and relatively less is known over the unit disk. Moreover, techniques in the literature
are usually complex analytic, and the conclusions are often approximate. To obtain
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6 X. Fang and P. T. Tien

sharp results such as the rigidity in Theorem D, in this paper, we devise a rather
different route of proof featuring a functional analysis approach. The key strategy in
our arguments is to introduce an auxiliary class of Banach spaces of analytic functions,
which allows us to obtain some quantitative estimates such as those by the methods
in [4]. This Banach space approach also allows us to make effective use of entropy
integrals, for which we obtain new estimates which are of independent interests.

The rest of this paper is organized as follows. Section 2 is devoted to Question B. To
answer this question, we begin by introducing the Banach spaces Hψ and analyzing
their symbol spaces (Hψ)∗. Section 3 studies the regularity improvement under ran-
domization, thereby proving Theorem C and answering Question A in particular. The
proof of Theorem D is presented in Section 4.1. Section 4.2 defines four convergence
exponents related to the classical Blaschke condition, and they are shown to be the
same and equal to one when α > 0. Finally, the sharpness of various estimates is
discussed in Section 4.3.

1.3 Notations

The abbreviation “a.s.” stands for “almost surely.” We assume that all random variables
are defined on a probability space (Ω,F,P) with expectation denoted by E(⋅).
Moreover, A ≲ B (or, A ≳ B) means that there exists a positive constant C dependent
only on the indexes α, β ⋅ ⋅ ⋅ such that A ≤ CB (or, respectively, A ≥ B

C ), and A ≃ B
means that both A ≲ B and A ≳ B hold. Lastly, m(⋅) denotes the Lebesgue measure.

2 The random symbol space (Gα)∗

In this section, we aim to characterize the random symbol space (Gα)∗ using Taylor
coefficients. To achieve this, we introduce a family of Banach spaces denoted as Hψ
and study their symbol spaces (Hψ)∗. Although a complete characterization of (Hψ)∗
remains elusive, we are able to obtain a sufficient condition (Proposition 2.4) and a
necessary condition (Proposition 2.5), which are sufficiently close to allow us to derive
a precise characterization of (Gα)∗ and, consequently, (G≤α)∗, where G≤α denotes
the set of analytic functions with a growth rate at most α.

Following [1], by a doubling weight, we mean an increasing function ψ ∶ [1,∞) →
[0,∞) such that ψ(2x) = O(ψ(x)) as x →∞. For each doubling weight ψ, we
introduce a Banach space by

Hψ ∶= { f ∈ H(D) ∶ ∥ f ∥Hψ ∶= sup
z∈D

∣ f (z)∣
ψ(1/(1 − ∣z∣)) < ∞} .

For the standard weight ψα(x) ∶= xα with α > 0, we shall write Hα instead of Hψα .
Another weight of importance to us (in the proof of Theorem D) is ψ(x) = xα log x.
Such spaces Hψ were first studied by Shields and Williams [31, 32] in a different setting.

Our first set of techniques build on arguments in [4]. It is worth mentioning that
in [4], the authors considered standard real Gaussian variables. Nevertheless, every
outcome in that study can be extended to complex Gaussian variables by treating
the real and imaginary components separately. The following result, which extends
Theorem 8 in [4], will be of repeated use.
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Proposition 2.1 Let ψ be a doubling weight and f ∈ H(D). Then the following state-
ments are equivalent:

(i) R f ∈ Hψ a.s.
(ii) E(∥R f ∥s

Hψ
) < ∞ for some s > 0.

(iii) E(∥R f ∥s
Hψ
) < ∞ for any s > 0.

Moreover, the quantities (E(∥R f ∥s
Hψ
))

1
s are equivalent for all s > 0 with some constant

depending only on s.

To prove Proposition 2.1, we need an auxiliary lemma which extends [4, Lemma
10]. Here and in what follows, for an analytic function f (z) = ∑∞n=0 anzn , let sn f (z) ∶=
∑n

k=0 ak zk denote its nth Taylor polynomial.

Lemma 2.2 Let ψ be a doubling weight and (Xn)n≥0 be a sequence of independent
and symmetric random variables. If a random function R f (z) ∶= ∑∞n=0 an Xnzn belongs
to the space Hψ a.s., then its Taylor series (snR f )n≥0 is a.s. bounded in Hψ , i.e.,
supn≥0 ∥snR f ∥Hψ < ∞ a.s.

Proof Since the arguments are similar to those of the proof of [4, Lemma 10], here we
only outline the key points and indicate the differences. We fix an increasing sequence
of positive numbers rm → 1 as m →∞. Then, for each m ≥ 1, the function R frm(z) ∶=
∑∞n=0 rn

m an Xnzn belongs to Hψ a.s.; moreover, it is not difficult to see that ∥R frm∥Hψ →
∥R f ∥Hψ as m →∞ and the Taylor polynomials (snR frm)n≥0 ofR frm converge toR frm

in Hψ . From this and the A-bounded Marcinkiewicz–Zygmund–Kahane theorem [16,
Theorem II.4], we conclude that the Taylor series (snR f )n≥0 is a.s. bounded in Hψ . ∎

The Proof of Proposition 2.1 Again, the proof relies on arguments in [4], to
which the reader is suggested to consult for more details since only key points
are outlined here. (iii)  ⇒ (ii)  ⇒ (i) is trivial, and (ii)  ⇒ (iii) follows from
[4, Lemma 11]. It remains to prove (i)  ⇒ (ii). If R f ∈ Hψ a.s., then, by Lemma
2.2, the Taylor series (snR f )n≥0 is a.s. bounded in Hψ , i.e., P(M < ∞) = 1, where
M ∶= supn≥0 ∥snR f ∥Hψ . Thus, by [4, Lemma 9], for a small enough constant λ > 0,
one has E (exp (λ∥R f ∥Hψ)) ≤ E(exp(λM)) < ∞, from which and Jensen’s inequality
(ii) follows. Moreover, [4, Lemma 11] implies that the quantities (E(∥R f ∥s

Hψ
)) 1

s are
equivalent for all s > 0 by a constant depending only on s. ∎

The next set of techniques we shall need are estimates for Dudley–Fernique-type
entropy integrals, which deserves perhaps more attention in complex analysis and for
which we derive new estimates of independent interests. Recall that the nondecreasing
rearrangement of a nonnegative function ρ ∶ [0, 1] → R

+ is defined as ρ(s) ∶= sup{y ∶
m({t ∶ ρ(t) < y}) < s}. For a sequence of complex numbers (an)n≥0, as in [21, p. 8],
one defines invariant pseudometrics ρ(t + s, s) ∶= ρ(t) on the unit circle T by

ρ(t) ∶= (
∞

∑
n=0
∣an ∣2∣e2πnti − 1∣2)

1
2

and ρn(t) ∶= (
n
∑
k=0
∣ak ∣2∣e2πkti − 1∣2)

1
2

.
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8 X. Fang and P. T. Tien

Lemma 2.3 Let (an)n≥0 be a sequence of complex numbers. Then the following holds
for every n ≥ 2:

(
n
∑
k=1
∣ak ∣2)

1
2

≲ ∫
1

0

ρn(t)
t
√

log e/t
dt ≲

√
log n (

n
∑
k=1
∣ak ∣2)

1
2

.

Proof Firstly, we observe that sup
1≤k≤n

∣ak ∣ ≲ ∫
1

0

ρn(t)
t
√

log e/t
dt. By a result of Marcus

and Pisier for ρn [21, Theorem 1.2, p. 126],

∫
1

0

ρn(t)
t
√

log e/t
dt ≥ ρn (

1
2
)∫

1

1
2

dt
t
√

log e/t
≳ ρn (

1
2
)

≳ (
n
∑
k=3
(a∗k)2)

1
2

= (
n
∑
k=1
∣ak ∣2 − (a∗1 )2 − (a∗2 )2)

1
2

,

here and throughout the paper, (a∗k)k≥1 denotes the nonincreasing rearrangement of
the sequence (∣ak ∣)k≥1 if existing. Consequently,

(
n
∑
k=1
∣ak ∣2)

1
2

≲ ∫
1

0

ρn(t)
t
√

log e/t
dt + sup

1≤k≤n
∣ak ∣ ≲ ∫

1

0

ρn(t)
t
√

log e/t
dt.

Then, by a result of Jain and Marcus [9, Corollary 2.5],

∫
1

0

ρn(t)
t
√

log e/t
dt ≤ (∫

1/n

0
+∫

1

1/n
) ρn(t)

t
√

log e/t
dt

≤ 2π∫
1/n

0
(

n
∑
k=1

k2∣ak ∣2)
1
2 1√

log e/t
dt + 4

√
log n (

n
∑
k=1
∣ak ∣2)

1
2

,

which is dominated by
√

log n (∑n
k=1 ∣ak ∣2)

1
2 . The proof of Lemma 2.3 is complete

now. ∎

Proposition 2.4 Let ψ be a doubling weight and f (z) = ∑∞n=0 anzn ∈ H(D). If

∫
1

0

ρn(t)
t
√

log e/t
dt = O

⎛
⎝

ψ(n)√
log n

⎞
⎠

,

then f ∈ (Hψ)∗.

Proof By [10, Proposition 2], we get

∥ sup
0≤θ<2π

∣
n
∑
k=0

ak e ikθ Xk∣∥
ψ2

≤ C
⎛
⎝
(

n
∑
k=0
∣ak ∣2)

1
2

+ ∫
1

0

ρn(t)
t
√

log e/t
dt
⎞
⎠

,

where, for a random variable x,

∥x∥ψ2 ∶= inf {c > 0 ∶ E(exp( ∣x∣
2

c2 )) ≤ 2}
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Random analytic functions in the unit disk 9

is the Orlicz norm of x (see [12, 28]). Indeed, [10, Proposition 2] treats only the
Bernoulli case, but the case of the Steinhaus sequence is essentially the same and the
case of the Gaussian sequence is even simpler. Using this, together with the following
form of Markov’s inequality

P (∣x∣ > ∥x∥ψ2

√
t) ≤ 2e−t for every t > 0,

we get, except on an event with probability at most 2
n2 ,

sup
0≤θ<2π

∣
n
∑
k=0

ak e ikθ Xk∣ ≤ C
√

log n2 ⎛
⎝
(

n
∑
k=0
∣ak ∣2)

1
2

+ ∫
1

0

ρn(t)
t
√

log e/t
dt
⎞
⎠

,

which, by the assumption and Lemma 2.3, implies that

sup
0≤θ<2π

∣
n
∑
k=0

ak e ikθ Xk∣ ≤ C1ψ(n),

for every n ∈ N and for some C1 > 0. Thus, for every m ∈ N, we obtain

sup
z∈D

∣R f (z)∣
ψ(1/(1 − ∣z∣))

= sup
0<r<1

1
ψ(1/(1 − r)) sup

0≤θ<2π
∣a0 X0 +

∞

∑
n=1
(

n
∑
k=0

ak e ikθ Xk −
n−1
∑
k=0

ak e ikθ Xk) rn∣

= sup
0<r<1

1 − r
ψ(1/(1 − r)) sup

0≤θ<2π
∣
∞

∑
n=0
(

n
∑
k=0

ak e ikθ Xk) rn∣

≤ 1
ψ(1)

m−1
∑
n=0
(

n
∑
k=0
∣ak ∣∣Xk ∣) + sup

0<r<1

1 − r
ψ(1/(1 − r))

∞

∑
n=m

sup
0≤θ<2π

∣
n
∑
k=0

ak e ikθ Xk∣ rn

≤ 1
ψ(1)

m−1
∑
n=0
(

n
∑
k=0
∣ak ∣∣Xk ∣) + C1 sup

0<r<1

1 − r
ψ(1/(1 − r))

∞

∑
n=m

ψ(n)rn < ∞

on an event with probability at least

1 −
∞

∑
n=m

2
n2 ,

where the last inequality above follows from arguments as in [32, Lemma 1] and [1,
Lemma 2.1]. The proof is complete now. ∎

Proposition 2.5 Let ψ be a doubling weight and f (z) = ∑∞n=0 anzn ∈ H(D). If f ∈
(Hψ)∗, then

(
n
∑
k=0
∣ak ∣2)

1
2

= O(ψ(n)) and ∫
1

0

ρn(t)
t
√

log e/t
dt = O(ψ(n)).

Proof By Lemma 2.2, the Taylor series (snR f )n≥0 of R f is a.s. bounded in Hψ . As
in the proof of Proposition 2.1, by [4, Lemma 9] and Jensen’s inequality, for a small
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10 X. Fang and P. T. Tien

enough constant λ > 0, we get

E(exp(λ sup
n≥0
∥snR f ∥Hψ)) < ∞, hence, E(sup

n≥0
∥snR f ∥Hψ) < ∞.

For each n ∈ N, using [21, Theorem 1.4, p. 11], we get

(
n
∑
k=0
∣ak ∣2)

1
2

+ ∫
1

0

ρn(t)
t
√

log e/t
dt ≲ E( sup

0≤θ<2π
∣

n
∑
k=0

ak e ikθ Xk∣) .

Moreover, step by step using the contraction principle [15, Theorem IV.3, p. 136] and
the fact that e (1 − 1

n+1)
k ≥ 1 for every k ≤ n, we get

1
ψ(n + 1)E( sup

0≤θ<2π
∣

n
∑
k=0

ak e ikθ Xk∣)

≤ 2eE( 1
ψ(n + 1) sup

0≤θ<2π
∣

n
∑
k=0

ak e ikθ (1 − 1
n + 1

)
k

Xk∣)

≤ 2eE( sup
0<r<1

1
ψ(1/(1 − r)) sup

0≤θ<2π
∣

n
∑
k=0

ak e ikθ rk Xk∣)

≤ 2eE(sup
n
∥snR f ∥Hψ) < ∞.

From this and the doubling assumption, it follows that

(
n
∑
k=0
∣ak ∣2)

1
2

= O(ψ(n)) and ∫
1

0

ρn(t)
t
√

log e/t
dt = O(ψ(n)).

∎

From Lemma 2.3 and Propositions 2.4 and 2.5, we conclude the following for the
space (Hα)∗.

Corollary 2.6 Let α > 0 and f (z) = ∑∞n=0 anzn ∈ H(D).

(a) If (∑n
k=0 ∣ak ∣2)

1
2 = O ( nα

log n ), then f ∈ (Hα)∗.
(b) If f ∈ (Hα)∗, then

(
n
∑
k=0
∣ak ∣2)

1
2

= O (nα) and ∫
1

0

ρn(t)
t
√

log e/t
dt = O (nα) .

Now we are ready to prove Lemma A and Theorem B. First, for any α > 0 and f ∈
H(D), by [4, Lemma 4], one has

P(R f ∈ Hα) ∈ {0, 1}.(2.1)

The proofs of Lemma A and Theorem B follow from scrutinizing the following
decomposition, with the aid of Corollary 2.6:

G<∞ = ⊔
α≥0

Gα = ⋃
α>0

Hα , G0 = ⋂
α>0

Hα ,(2.2)
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and

Gα = ⋂
β>α

Hβ/ ⋃
γ<α

Hγ , G≤α = ⋂
β>α

Hβ = ⊔
γ≤α

Gγ .(2.3)

In details, for Lemma A, we first observe that P(R f ∈ G<∞) ∈ {0, 1} follows from
(2.1) and (2.2). Now, letting f (z) = ∑∞n=0 anzn ∈ H(D), it is an exercise that f has a
polynomial growth rate if and only if so does the sequence of its Taylor coefficients
(an)n≥0. Indeed, the direct implication follows from Cauchy’s inequality for the Taylor
coefficients, while the other direction follows from [1, Theorem 1.10(a)] and the fact
that the sequence∑n

k=0 ∣ak ∣ has a polynomial growth rate whenever so does (an)n≥0.
If f ∈ (G<∞)∗, then f ∈ (Hα)∗ for some α. This, together with Corollary 2.6,

implies that ∣an ∣ = O(nα). Conversely, if ∣an ∣ = O(nα) for some α > 0, then, again by
Corollary 2.6(a), f ∈ (Hβ)∗ for β > α + 1

2 , hence f ∈ (G<∞)∗. Lastly, P(R f ∈ G<∞) =
1 implies that, for some α1 ≥ 0, P(R f ∈ Hα) = 1 for all α ≥ α1. We denote by α0 the
infimum of all such constants α1. Then one checks that, by (2.3), f ∈ (Gα0)∗. This
yields Lemma A.

As for Theorem B, we will verify the following claim: Let α ∈ [0,∞) and f (z) =
∑∞n=0 anzn ∈ H(D). Then f ∈ (Gα)∗ (or, f ∈ (G≤α)∗) if and only if the sequence
(∑n

k=0 ∣ak ∣2)
1
2 has the growth rate α (or, respectively, a growth rate at most α). It

suffices to consider α > 0. The case α = 0 is similar and indeed simpler. Let An ∶=
(∑n

k=0 ∣ak ∣2)
1
2 . By (2.1) and (2.3), together with Corollary 2.6, f ∈ (Gα)∗ if and only

if An = O(nβ) and An ≠ O(nγ) for all β > α and γ < α, i.e., (An)n≥0 has the growth
rate α. Similarly, using (2.3) and Corollary 2.6, we can check that f ∈ (G≤α)∗ if and
only if An = O(nβ) for all β > α, i.e., (An)n≥0 has a growth rate at most α.

We end this section with two classes of examples of general interests: lacunary
series and those with monotone coefficients. A side result is that the random symbol
space (Hψ)∗ induced by a general normal weight ψ does depend on the choice of
the randomization sequence (Xn)n≥0. This stands in contrast with (H∞)∗, which
is the same for any standard random sequence [11, Theorem 7, p. 231]. Later, we
shall use these examples to illustrate the sharpness of Theorem C, Theorem D, and
Corollary 4.3.

We say that a sequence (bk)k≥1 has a polynomial growth rate with respect to a
sequence (nk)k≥1 if there exists a number α > 0 such that ∣bk ∣ = O(nα

k ) as k →∞. In
this case, the infimum of such constants α is called the growth rate of (bk)k≥1 with
respect to (nk)k≥1.

Proposition 2.7 Let α ∈ [0,∞) and f (z) = ∑∞k=1 bk znk ∈ H(D) with a Hadamard
lacunary sequence (nk)k≥1, i.e., inf k≥1 nk+1/nk > 1. Then f ∈ (Gα)∗ (or, f ∈ (G≤α)∗)
if and only if (bk)k≥1 has the growth rate α (or, respectively, a growth rate at most α)
with respect to (nk)k≥1.

The proof is a straightforward application of Theorem B.
Recall that, according to [31, p. 291] and [35, p. 152], an increasing continuous

function ψ ∶ [1,∞) → [1,∞) is called a normal weight if there are constants 0 < α < β
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12 X. Fang and P. T. Tien

and x0 > 0 such that

ψ(x)
xα is increasing on (x0 ,∞) and xα = o(ψ(x)), x →∞;

ψ(x)
xβ is decreasing on (x0 ,∞) and ψ(x) = o(xβ), x →∞.

By [32, Remark 1], normal weights are doubling ones.

Lemma 2.8 Let (Xk)k≥1 be a standard complex Gaussian sequence and (ck)k≥1 a
sequence of positive numbers. Then ∣Xk ∣ = O(ck) a.s. if and only if there is a constant
a > 0 such that∑∞k=1 exp (−ac2

k) < ∞.

Proof For each n, k ∈ N, let us consider the following events:

En ,k ∶= {∣Xk ∣ < nck} , En = lim inf
k→∞

En ,k ,

and

E = {lim sup
k→∞

c−1
k ∣Xk ∣ < ∞} .

It is clear that

En ⊂ En+1 and E = ⋃
n≥1

En .

In addition, since {En ,k , k ≥ 1} are independent, by an application of the (second)
Borel–Cantelli lemma, we get

P(Ec
n) = P(lim sup

k→∞
Ec

n ,k) = 0 if and only if ∑
k≥1

P(Ec
n ,k) < ∞,

where

P(Ec
n ,k) =

1
π ∫∣z∣≥nck

e−∣z∣
2
dA(z) = e−n2 c2

k .

From this, the conclusion follows when n is large enough. ∎

Proposition 2.9 Let ψ be a normal weight, and f (z) = ∑∞k=1 bk znk ∈ H(D) with a
Hadamard lacunary sequence (nk)k≥1.
(a) If (Xk)k≥1 is a standard Bernoulli or Steinhaus sequence, then f ∈ (Hψ)∗ if and

only if ∣bk ∣ = O(ψ(nk)).
(b) If (Xk)k≥1 is a standard complex Gaussian sequence, then f ∈ (Hψ)∗ if and only if

there is a constant a > 0 such that
∞

∑
k=1

exp (−a∣∣bk ∣−2∣ψ2(nk)) < ∞.(2.4)

Proof By [35, Theorem 2.3], R f (z) = ∑∞k=1 bk Xk znk ∈ Hψ a.s. if and only if ∣bk Xk ∣ =
O(ψ(nk)) a.s., which immediately implies the assertion in Part (a) and together with
Lemma 2.8 yields the Part (b). ∎
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Proposition 2.10 Let α ∈ [0,∞) and f (z) = ∑∞n=0 anzn ∈ H(D) with a monotone
sequence (∣an ∣)n≥0. Then f ∈ (Gα)∗ (or, f ∈ (G≤α)∗) if and only if (an

√
n)n≥0 has the

growth rate α (or, respectively, a growth rate at most α).

The proof follows from Theorem B, together with some elementary manipulation
of coefficients, hence skipped.

3 Littlewood-type theorems

In this section, we present further applications of Corollary 2.6. Namely, we prove
two Littlewood-type theorems that address the improvement of regularity through
randomization, with the first one (Theorem C) for Gα and the second one (Theorem
3.1) for Hα .

Proof of Theorem C (a) By Lemma A, we assume that f has a growth rate α and
R f a growth rate α0 almost surely. By (2.3) and [1, Theorem 1.8(a)], (∑n

k=0 ∣ak ∣2)
1
2 =

O(nβ), which, together with Corollary 2.6(a), implies that R f ∈ Hβ a.s. for every β >
α, hence, α0 ≤ α. To show α0 ≥max{α − 1

2 , 0}, it suffices to assume α > 1
2 . For every

γ > α0,R f ∈ Hγ a.s., and hence, by Corollary 2.6(b), (∑n
k=0 ∣ak ∣2)

1
2 = O(nγ), which by

the Cauchy–Schwarz inequality implies that∑n
k=0 ∣ak ∣ = O(nγ+ 1

2 ). This, together with
[1, Theorem 1.10(a)], implies that the function g(z) ∶= ∑∞n=0 ∣an ∣zn belongs to Hγ+1/2.
Thus, f ∈ Hγ+1/2, and hence the growth rate α of f is no greater than α0 + 1

2 .
(b) For each α′ ∈ [max{α − 1

2 , 0}, α], we take a sequence (nk)k≥1 as follows:

n0 ∶= 0, n1 ∈ N, nk ∶= [xk] with xk − x
1
2−α+α′

k = nk−1 for k ≥ 2.

We define f (z) ∶= ∑∞k=1 bk znk with bk ∶= nα
k − nα

k−1 . By [1, Theorem 1.10(a)], f has a

growth rate α. Moreover, one checks that (∑k
j=1 b2

j)
1
2 ≃ nα′

k . Now, an application of
Theorem B completes the proof. ∎

In view of Theorem C, for simplicity, we denote α∗ ∶=max{α − 1
2 , 0}. Then,

Gα ⊂ ⊔
α∗≤β≤α

(Gβ)∗ and Gα ∩ (Gβ)∗ ≠ ∅ for every β ∈ [α∗ , α].

This implies that Gα ∩ (Gβ)∗ ≠ ∅ if and only if β ∈ [α∗ , α].
Naturally, one may wonder what happens in terms of G≤α , and we claim

G≤α1 ⊂ (G≤α2)∗ if and only if α1 ≤ α2 .

Indeed, if α1 ≤ α2, then the conclusion follows readily from (2.3), Corollary 2.6(a),
and [1, Theorem 1.8(a)]. For α1 > α2, we take a Hadamard lacunary function f0(z) ∶=
∑∞k=1 bk znk with a growth rate α1. By [35, Theorem 2.3], (bk)k≥1 has the growth rate
α1 with respect to (nk)k≥1. By Proposition 2.7, R f0 has the growth rate α1 a.s.; in
particular, f ∉ (G≤α2)∗.

On the other hand, the consideration of Hα yields an interesting comparison;
indeed, it exhibits a loss of regularity.

Theorem 3.1 Let α1 , α2 ∈ (0,∞). Then Hα1 ⊂ (Hα2)∗ if and only if α1 < α2.
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Proof If α1 < α2, then the conclusion follows from Corollary 2.6(a) and [1, Theorem
1.8(a)]. For α1 > α2, the Hadamard lacunary function f0(z) ∶= ∑∞k=1 nα1

k znk ∈ Hα1 and
f0 ∉ (Hα2)∗, by [35, Theorem 2.3] and Proposition 2.9, respectively. The main case
is when α1 = α2 = α, for which we construct a function f0 ∈ Hα , but f0 ∉ (Hα)∗. By
[26, Theorem 1], there exists a sequence (αn)n≥1 in {−1, 1} such that the polynomials
Pn(z) ∶= ∑n

j=1 α jz j satisfy

sup
z∈D
∣Pn(z)∣ ≤ 5

√
n.

Let f0(z) ∶= ∑∞n=1 αn nα− 1
2 zn and P0(z) ∶= 0. For any n ≥ 1, one has

sup
z∈D
∣sn f0(z)∣ = sup

z∈D
∣

n
∑
k=1

kα− 1
2 (Pk(z) − Pk−1(z))∣

≤ sup
z∈D
(

n−1
∑
k=1
∣Pk(z) (kα− 1

2 − (k + 1)α− 1
2 )∣ + nα− 1

2 ∣Pn(z)∣) ≲ nα ,

which, by [1, Theorem 1.4], implies that f0 ∈ Hα . Now, for this function, using [21,
Theorem 1.2, p. 126], we have

∫
1

0

ρ2n(t)
t
√

log e/t
dt ≥ ρ2n (

1
n
)∫

1

1
n

dt
t
√

log e/t
≳ ρ2n (

1
n
)
√

log n

≳ (
2n
∑

k=n+1
(a∗k)2)

1
2 √

log n ≳ nα√log n,

where (a∗k)2n
k=1 is the nonincreasing rearrangement of the sequence (kα− 1

2 )
2n

k=1
. This,

together with Corollary 2.6(b), implies that f0 ∉ (Hα)∗. ∎

We end this section by constructing examples of analytic functions f such that f
has a growth rate α and the rate of R f is α or α − 1

2 almost surely.

Proposition 3.2 Let (nk)k≥1 be a sequence such that log k = o(log nk). Then, for every
function f (z) = ∑∞k=1 bk znk with a growth rate α, its randomization R f has also the
growth rate α almost surely.

Proof By Lemma A and Theorem C, the almost surely growth rate α0 of R f is at
most α. By contradiction, we assume that α0 < α. Then, by Corollary 2.6(b), there
exists γ ∈ (α0 , α) such that (∑k

j=1 ∣b j ∣2)
1
2 = O(nγ

k). Then by our hypothesis and the
Cauchy–Schwarz inequality, we get ∑k

j=1 ∣b j ∣ = O(nγ′
k ) for every γ′ ∈ (γ, α). Thus, by

[1, Theorem 1.10(a)], the function g(z) ∶= ∑∞k=1 ∣bk ∣znk ∈ Hγ′ , which implies that f ∈
Hγ′ . This contradiction completes the proof. ∎

Proposition 3.3 Let α ≥ 1
2 . For every function f (z) = ∑∞n=0 anzn with a growth rate

α, where (an)n≥0 is a monotone sequence of real numbers, its randomization R f has
the growth rate α − 1

2 almost surely.

Proof Without loss of generality, we suppose that an ≥ 0 for all n. As above, by
contradiction, we assume that R f has a growth rate α0 a.s. with α0 > α − 1

2 . Then,
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Random analytic functions in the unit disk 15

by Proposition 2.10, an ≠ O(nγ− 1
2 ) for every γ ∈ (α − 1

2 , α0). On the other hand, f ∈
Hγ+ 1

2
for any γ ∈ (α − 1

2 , α0), which, by [1, Theorem 1.10(a)], implies that ∑n
k=0 ak =

O (nγ+ 1
2 ) . Now, using the monotonicity of (an)n≥0, we get an = O (nγ− 1

2 ), which is
a contradiction. ∎

From the above two propositions, we immediately get the following concrete
examples.

Example 3.1 Let (nk)k≥1 be a Hadamard lacunary sequence. For every function
f (z) = ∑∞k=1 bk znk with a growth rate α, its randomization R f also has the growth
rate α almost surely.

Example 3.2 For every α ≥ 1
2 , the function f (z) = 1

(1−z)α has the growth rate α, but
its randomization R f has the growth rate α − 1

2 almost surely.

Remark 3.3 The function f0 constructed in the proof of Theorem 3.1 satisfies f0 ∈
Hα and f0 ∉ (Hα)∗. Thus, the growth rate of f0 is no greater than α and the growth
rate of R f0 is a.s. no less than α. Therefore, by Theorem C, the growth rate of f0 is α
and R f0 has the growth rate α almost surely. From this, we can draw the following
conclusions:
• The condition log k = o(log nk) is sufficient for analytic functions f (z) =
∑∞k=1 bk znk to preserve its growth rate α under randomization, but it is not a
necessary condition.

• The monotone property of the sequence (an)n≥0 ⊂ R is essential in Proposition 3.3.

4 Zero sets

This section concerns the second main topic in the present paper, namely, the zero
sets of R f when f ∈ (Gα)∗. The rigidity of NR f (r) (Theorem D) is proved in Section
4.1. Then, in Section 4.2, we explore to what extent the rigidity fails for nR f (r), and, as
an application of the estimates we obtain, we introduce four Blaschke-type exponents
and show that they are always the same and equal to one when α > 0. The bulk of
Section 4.3 is devoted to the analysis of an example (Example 4.3) in order to illustrate
the sharpness of various estimates in this section.

4.1 Proof of Theorem D

Together with Lemma A and Theorem B, the proof follows from the following two
lemmas, which are of independent interests.

Lemma 4.1 Let α > 0 and f (z) = ∑∞n=0 anzn ∈ H(D) such that

(
n
∑
k=0
∣ak ∣2)

1
2

= O(nα).

Then the following estimates hold:

(a) lim sup
r→1

NR f (r)
log 1

1−r
≤ α a.s. and lim sup

r→1

E(NR f (r))
log 1

1−r
≤ α.
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(b) lim sup
r→1

nR f (r)
1

1−r log 1
1−r
≤ α a.s. and lim sup

r→1

E(nR f (r))
1

1−r log 1
1−r
≤ α.

Lemma 4.2 Let α > 0 and f (z) = ∑∞n=0 anzn ∈ H(D) such that

(
n
∑
k=0
∣ak ∣2)

1
2

≠ O(nα).

Then the following estimates hold:

(a) lim sup
r→1

NR f (r)
log 1

1−r
≥ α a.s. and lim sup

r→1

E(NR f (r))
log 1

1−r
≥ α.

(b) lim sup
r→1

nR f (r)
1

1−r
≥ α a.s. and lim sup

r→1

E(nR f (r))
1

1−r
≥ α.

Proof of Lemma 4.1 We may assume ∣a0∣ = 1 since only a little modification is needed
to take care of the general case. By Corollary 2.6(a), R f ∈ Hψ a.s. with

ψ(x) ∶= xα log x ,

hence ∥R f ∥Hψ < +∞ a.s. Jensen’s formula yields that almost surely for every r ∈ (0, 1),

NR f (r) ≤ log ∥R f ∥Hψ + log ψ ( 1
1 − r
) − log ∣X0∣ < ∞.(4.1)

In addition, by Jensen’s inequality, for every r ∈ (0, 1),

E(NR f (r)) ≤ logE(∥R f ∥Hψ) + log ψ ( 1
1 − r
) −E(log ∣X0∣).(4.2)

Now an application of Proposition 2.1 yields Part (a).
For Part (b), by (4.1), for each λ ∈ (0, 1) and r ∈ (0, 1), we have

nR f (r) log 1 − λ(1 − r)
r

≤ ∫
1−λ(1−r)

r

nR f (t)
t

dt

≤ log ∥R f ∥Hψ + log ψ ( 1
λ(1 − r)) − log ∣X0∣ a.s.,

which yields the first half of Part (b) by arguments similar to the above. The case of
E(nR f (r)) follows in an analogous manner. ∎

Here and in what follows, for an analytic function f (z) = ∑∞n=0 anzn , let

σ 2
f (r) ∶= E(∣R f (z)∣2) = ∑

n≥0
∣an ∣2r2n .

Proof of Lemma 4.2 We still assume ∣a0∣ = 1. Jensen’s formula yields that

E(NR f (r)) = log σ f (r) +E(
1

2π ∫
2π

0
log ∣R̂ f r(θ)∣dθ) −E(log ∣X0∣),(4.3)

where

R̂ f r(θ) ∶=
R f (re iθ)

σ f (r)
= ∑

n≥0
ân(r)Xn e inθ with ân(r) ∶=

∣an ∣rn

σ f (r)
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is a random Fourier series satisfying the condition∑n≥0 ∣ân(r)∣2 = 1. By [22, Corollary
1.2] for the Bernoulli case, [27, 33, 34] for the Steinhaus case, and a basic fact for the
Gaussian case (see also [23, Section 1.1]), there exists a constant C > 0 such that

E( 1
2π ∫

2π

0
∣log ∣R̂ f r(θ)∣∣ dθ) ≤ C for all r ∈ (0, 1).(4.4)

On the other hand, from the assumption and [1, Theorem 1.10(a)], it follows that
the function g(z) ∶= ∑∞n=0 ∣an ∣2z2n does not belong to the space H2α , which implies
that lim supr→1

log σ f (r)
log 1

1−r
≥ α, hence lim supr→1

E(NR f (r))
log 1

1−r
≥ α, and, by L’Hôpital’s rule,

lim supr→1
E(nR f (r))

1
1−r

≥ α. Next, we take a sequence rn ↑ 1 such that

lim sup
n→∞

log σ f (rn)
log 1

1−rn

≥ α and n2 = o (log 1
1 − rn

) .

For each n ∈ N, by (4.4),

P( 1
2π ∫

2π

0
∣log ∣R̂ f rn

(θ)∣∣ dθ > n2) ≤ C
n2 .

Now, an application of the Borel–Cantelli lemma yields that, for almost every standard
random sequence (Xn)n≥0, there is a number n0 ∈ N such that, for every n ≥ n0,

1
2π ∫

2π

0
∣log ∣R̂ f rn

(θ)∣∣ dθ ≤ n2 ,

which, together with Jensen’s formula, implies that

NR f (rn) ≥ log σ f (rn) −
1

2π ∫
2π

0
∣log ∣R̂ f rn

(θ)∣∣ dθ − log ∣X0∣

≥ log σ f (rn) − n2 − log ∣X0∣.

Thus, the proof is complete by our choice of rn , and by L’Hôpital’s rule again. ∎

4.2 Blaschke-type exponents

Expectedly, the rigidity phenomenon fails for nR f (r), and in this subsection, we first
explore the extent to which it fails. The following result follows from Theorem B and
Lemmas 4.1 and 4.2.

Corollary 4.3 Let α ∈ [0,∞) and f ∈ (Gα)∗. Then the following estimates hold:

(a) lim sup
r→1

nR f (r)
1

1−r log 1
1−r
≤ α a.s. and lim sup

r→1

E(nR f (r))
1

1−r log 1
1−r
≤ α.

(b) lim sup
r→1

nR f (r)
1

1−r
≥ α a.s. and lim sup

r→1

E(nR f (r))
1

1−r
≥ α.

The above estimates turn out to be quite sharp, and this is addressed in Section 4.3.
For now, as an application of these estimates, we recall the Blaschke condition, which is
perhaps the best known geometric condition for zero sets (zn)n≥1 of analytic functions
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18 X. Fang and P. T. Tien

in the unit disk:
∞

∑
n=1
(1 − ∣zn ∣) < ∞.

By Corollary 4.3, as well as [22, Theorem 1.3], however, this condition always fails
to hold for the zero sets of R f for any f ∈ (Gα)∗ whenever α > 0. A finer look
at Blaschke-type conditions is hence in need. For this purpose, we introduce the
following four exponents, which are clearly reminiscent of the convergent exponents
of zero sets of entire functions (see, e.g., [14, p. 17]).

Definition 4.1 Given a sequence (zn)n≥1 ⊂ D, its Blaschke exponent and polynomial
order are defined as

λ ∶= λ((zn)n≥1) ∶= inf {γ > 0 ∶
∞

∑
n=1
(1 − ∣zn ∣)γ < ∞}

and, respectively,

ρ ∶= ρ((zn)n≥1) ∶= lim sup
r→1

log n(r)
log 1

1−r
,

where n(r) is the counting function of (zn)n≥1 with multiplicity.

For simplicity, we shall write λ( f ) and ρ( f ) instead of λ((zn)n≥1) and ρ((zn)n≥1),
respectively, if (zn)n≥1 is the zero sequence of f ∈ H(D).

Definition 4.2 Given a random sequence (zn)n≥1 ⊂ D, its expected Blaschke exponent
and expected polynomial order are defined as

λE ∶= λE((zn)n≥1) ∶= inf {γ > 0 ∶ E(
∞

∑
n=1
(1 − ∣zn ∣)γ) < ∞} ,

and, respectively,

ρE ∶= ρE((zn)n≥1) ∶= lim sup
r→1

logE(n(r))
log 1

1−r
.

We shall use the notations λE(R f ) and ρE(R f ) whose meaning is clear.

Corollary 4.4 For any f ∈ (Gα)∗ with α > 0, one has

λ(R f ) = ρ(R f ) = 1 a.s. and λE(R f ) = ρE(R f ) = 1.

This corollary follows from Corollary 4.3 and the following elementary properties
of the four introduced exponent.

Lemma 4.5 The following statements hold:
(a) For every sequence (zn)n≥1 ⊂ D, its Blaschke exponent λ and polynomial order ρ

are equal.
(b) For every random sequence (zn)n≥1 ⊂ D, its expected Blaschke exponent λE and

polynomial order ρE are equal.
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The proof of this lemma is similar to certain familiar arguments on the convergent
exponents of zero sets for entire functions in [13, 14]. For the reader’s convenience, we
outline two key points below:
• Using the argument in [14, Lemma 1, p. 17], we prove that the series∑∞n=1(1 − ∣zn ∣)γ

converges (or, the expectationE(∑∞n=1(1 − ∣zn ∣)γ) is finite) if and only if the integral
∫

1
0 (1 − t)γ−1n(t)dt (or, respectively, ∫

1
0 (1 − t)γ−1

E(n(t))dt) converges.
• Following this and the argument in [14, Lemma 2, p. 18], we get λ((zn)n≥1) =

ρ((zn)n≥1) and λE((zn)n≥1) = ρE((zn)n≥1).

4.3 Sharpness

In this last subsection, we explore the possibility of replacing the limsup in Theorem D
by a limit. This is possible when σ f (r) is of regular growth. Indeed, by taking a
sequence rn ∶= 1 − e−n3

and repeating the arguments in the proof of Lemma 4.2, one
gets the following:

Corollary 4.6 Let α ∈ [0,∞) and f (z) = ∑∞n=0 anzn ∈ (Gα)∗ such that

lim
r→1

log σ f (r)
log 1

1−r
= α.

Then

lim
r→1

NR f (r)
log 1

1−r
= α a.s. and lim

r→1

E(NR f (r))
log 1

1−r
= α.

Next, we construct an example to show how badly the conclusion of Corollary
4.6 fails when σ f (r) is of irregular growth. Incidentally, this example establishes the
sharpness of the upper estimates in Corollary 4.3.

Example 4.3 For any α > 0, there exists a function f ∈ (Gα)∗ such that

(a) lim sup
r→1

nR f (r)
1

1−r log 1
1−r
= α a.s. and lim sup

r→1

E(nR f (r))
1

1−r log 1
1−r
= α;

(b) lim inf
r→1

nR f (r)
1

1−r log 1
1−r
= 0 a.s. and lim inf

r→1

E(nR f (r))
1

1−r log 1
1−r
= 0;

(c) lim inf
r→1

NR f (r)
log 1

1−r
= 0 a.s. and lim inf

r→1

E(NR f (r))
log 1

1−r
= 0.

Proof We take an increasing sequence of integers (mk)k≥1 with m1 = 3 and

mk+1 > (mk2mk)1+ 1
α ,(4.5)

and hence

mk+1 > (k + 1) 4
α mk2mk .(4.6)

Put

nk ∶= mk2mk , ak ∶=
nα

k
k2 , and f (z) ∶=

∞

∑
k=1

ak znk .
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Then, by Proposition 2.7, f ∈ (Gα)∗.
(a) Put rk ∶= 2−α2−mk . Then, letting k →∞, we get

1
1 − rk

log 1
1 − rk

∼ mk2mk

α
.(4.7)

Let Ak be the event that

∣ak Xk (rk e iθ)nk ∣ >
@@@@@@@@@@@@
∑
j≠k

a j X j (rk e iθ)n j
@@@@@@@@@@@@

for every θ ∈ [0, 2π].

By Rouché’s theorem, nR f (rk) = nk on Ak . Hence, E(nR f (rk)) ≥ nkP(Ak) for each
k ∈ N. We claim that P(Ak) → 1 as k →∞. This, together with (4.7), implies

lim sup
k→∞

E(nR f (rk))
1

1−rk
log 1

1−rk

≥ lim sup
k→∞

nkP(Ak)
1

1−rk
log 1

1−rk

= α,

which, in turn, implies the assertion for E(nR f (r)). On the other hand, putting A ∶=
lim supk→∞ Ak , we get P(A) = 1. For each standard random sequence (Xk)k≥1 on A,
there is a subsequence (k j) j≥1 of integer numbers such that (Xk)k≥1 ∈ Ak j for every
j ∈ N. Then

lim sup
j→∞

nR f (rk j)
1

1−rk j
log 1

1−rk j

= lim sup
j→∞

nk j

1
1−rk j

log 1
1−rk j

= α,

which implies the assertion for nR f (r).
It remains to prove the claim. For sufficiently large k, by (4.6), we get

ak rnk
k =

mα
k

k2 and ∑
j≠k

j2a jr
n j

k ≤ (k − 1)nα
k−1 +∑

j>k
mα

j (2α(1−2m j−mk ))
m j

,

which is at most (k − 1)nα
k−1 + 1. It follows that

∑ j≠k j2a jr
n j

k
ak rnk

k
< 2

k
(4.8)

for sufficiently large k. Next, we assume that (Xk)k≥1 is a standard complex Gaussian
sequence since the other two cases are easier. For each k ≥ 1 and j ≠ k, put

X̃k ∶= ak Xk (rk e iθ)nk and X̃k , j ∶= 2 j2a j X j (rk e iθ)n j .

Here, X̃k and X̃k , j are independent complex Gaussian random variables with zero
mean and variances

σk = ak rnk
k and, respectively, σk , j = 2 j2a jr

n j

k .

Letting Ak , j be the event that ∣X̃k ∣ > ∣X̃k , j∣, we get

⋂
j≠k

Ak , j ⊂ Ak , and hence, 1 − P(Ak) ≤ ∑
j≠k
(1 − P(Ak , j)).
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Moreover, for each j ≠ k,

1 − P(Ak , j) = 1 − 2
π ∫

+∞

σk , j
σk

dt
1 + t2 =

2
π

arctan
σk , j

σk
≤

2σk , j

πσk
,

which together with (4.8) implies that

1 − P(Ak) ≤
2
π
∑ j≠k σk , j

σk
→ 0 as k →∞.

(b) For every α′ < α, we put r′k ∶= 2−α′2−mk . As above, we have

1
1 − r′k

log 1
1 − r′k

∼ mk2mk

α′
.

Let A′k be the event that

∣ak Xk (r′k e iθ)nk ∣ >
@@@@@@@@@@@@
∑
j≠k

a j X j (r′k e iθ)n j
@@@@@@@@@@@@

for every θ ∈ [0, 2π].

Again, Rouché’s theorem yields that nR f (r′k) = nk on A′k for each k ∈ N and for
sufficiently large k,

∑ j≠k j2a j(r′k)n j

ak(r′k)nk
< 2

k
.(4.9)

Using arguments similar as above, we see that P(A′k) → 1.
Now, we consider the limit for nR f (r). Putting A[α′] = lim supk→∞ A′k , we get

P(A[α′]) = 1 and

lim inf
r→1

nR f (r)
1

1−r log 1
1−r
≤ α′ on A[α′] .

Then, putting A[0] ∶= lim supm→∞ A[1/m], we get P(A[0]) = 1 and

lim inf
r→1

nR f (r)
1

1−r log 1
1−r
= 0 on A[0] .

To treat E(nR f (r)), we separate into two cases. If (Xk)k≥1 is either a standard
Bernoulli or Steinhaus sequence, then the event A′k is the whole space Ω, hence,
nR f (r′k) = nk on Ω and E(nR f (r′k)) = nk , which implies that

lim inf
r→1

E(nR f (r))
1

1−r log 1
1−r
≤ lim sup

k→∞

E(nR f (r′k))
1

1−r′k
log 1

1−r′k

= α′ .

Now we assume that (Xk)k≥1 is a standard complex Gaussian sequence. In this case,
we may use the Kac formula as in [6, Theorem 8.2] to get

E(nR f (r)) = r d
dr

log σ f (r) =
∑∞k=1 nk a2

k r2nk

∑∞k=1 a2
k r2nk

.
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Similarly as above, for sufficiently large k,

∑
j≠k

n j a2
j (r′k)2n j ≤ n2α+1

k−1 + 1.

Thus,

E(nR f (r′k)) ≤ nk +
k4(n2α+1

k−1 + 1)
m2α

k
.

From this and (4.5), it follows that

lim inf
r→1

E(nR f (r))
1

1−r log 1
1−r
≤ lim sup

k→∞

E(nR f (r′k))
1

1−r′k
log 1

1−r′k

≤ α′ .

(c) For sufficiently large k, by (4.9),

log σ f (r′k) ≤ α log mk + (α − α′)mk log 2.

Repeating the arguments in the proof of Lemma 4.2 for the sequence (r′k)k≥1 instead
of (rn)n≥1, we get

lim inf
r→1

E(NR f (r))
log 1

1−r
≤ lim sup

k→∞

log σ f (r′k) + C −E(log ∣X0∣)
log 1

1−r′k

≤ α − α′

and

lim inf
r→1

NR f (r)
log 1

1−r
≤ lim sup

k→∞

log σ f (r′k) + k2 − log ∣X0∣
log 1

1−r′k

≤ α − α′ a.s.

This completes the proof since α′ < α is arbitrary. ∎

Now, to illustrate the sharpness of the lower bounds in Corollary 4.3, we construct
an example in the case of a standard complex Gaussian sequence. We do not know
whether this sharpness persists for the Bernoulli and Steinhaus cases.

Example 4.4 Let α > 0 and (Xn)n≥0 be a standard complex Gaussian sequence.
There exists a function f in (Gα)∗ such that limr→1

E(nR f (r))
1

1−r
= α. Indeed, we consider

f (z) ∶= ∑∞n=0 anzn with

an ∶=
C
DDE Γ(n + 2α)

Γ(2α)Γ(n + 1) .

Then ∑n
k=0 a2

k ≃ n2α , hence f ∈ (Gα)∗ by Theorem B. In this case, σ 2
f (r) = 1

(1−r2)2α .
By the Kac formula as improved by Edelman and Kostlan in [6, Theorem 8.2],
E(nR f (r)) = r d

dr log σ f (r) = 2αr2

1−r2 , from which the desired conclusion follows.

We end this paper with two remarks on the zero sets of R f when f ∈ (Hα)∗ and
that of f when f ∈ Hα .

Downloaded from https://www.cambridge.org/core. 23 Sep 2024 at 02:13:49, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Random analytic functions in the unit disk 23

Remark 4.5 By Lemma 4.1 and Corollary 2.6, it follows that

lim sup
r→1

nR f (r)
1

1−r log 1
1−r
≤ α a.s. and lim sup

r→1

E(nR f (r))
1

1−r log 1
1−r
≤ α

for every f ∈ (Hα)∗ with α > 0. Moreover, by Proposition 2.9, the function f con-
structed in Example 4.3 belongs to (Hα)∗.

Remark 4.6 For every function f ∈ Hα , (∑n
k=0 ∣ak ∣2)

1
2 = O(nα) by [1, Theorem

1.8(a)], which, together with the arguments in the proof of Lemma 4.1, implies that

lim sup
r→1

n f (r)
1

1−r log 1
1−r
≤ α.

For the function f constructed in Example 4.3, we have

f ∈ Hα and lim sup
r→1

n f (r)
1

1−r log 1
1−r
= α.

This improves results of Shapiro and Shields in [30, Theorems 5 and 6].
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