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Abstract

The main results of the paper give necessary and sufficient conditions as well as sufficient
conditions that continuous bijections of a manifold onto itself be homeomorphisms. Such
conditions include the embedding of manifolds, preserving ends, preserving closed half-rays and
restrictions on boundary components. A number of counterexamples are given to likely conjec-
tures.

A topological space is reversible if each bijection of X is a homeomor-
phism. This concept is looked at for connected metric manifolds. Numerous
examples are given along with sufficient conditions as well as necessary and
sufficient conditions that a manifold be reversible.

Very shortly after defining ‘““homeomorphism” one provides an example of
a continuous bijection that is not a homeomorphism. The map f:[0,1)— S'
given by f(t) = (cos 27t, sin 27t) is often used. (Notice that f is a map from one
manifold to another.) The student has known since his first cdlculus course that
any continuous bijection of an interval to itself has a continuous inverse (is a
homeomorphism). Later in the topology course he learns that a continuous
bijection on any compact Hausdorff space is necessarily a homeomorphism
and, perhaps, he hears of Brouwer’s theorem on invariance of domain which
implies the same statement for a manifold without boundary. Is every
continuous bijection of a manifold to itself a homeomorphism? If not, what
conditions on the manifold ensure an affirmative answer?

Let M be a finite-dimensional, connected, separable metric manifold. Its
interior and boundary will be denoted by Int M and Bd M, respectively. We
denote by E(M) the set of all continuous bijections of M to itself and by H(M)
the set of all homeomorphisms of M onto itself. If E(M) = H(M), we say that
M is reversible and, if E(M)— H(M)#J, we say M is non-reversible.
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258 P. H. Doyle and J. G. Hocking 2]

Rajagopalan and Wilansky (1966) define a space (x, 1) to be “reversible” if it
has no strictly stronger (weaker) topology 7’ such that (x,7) and (x,7’) are
homeomorphic. Their first lemma shows that “reversible” is equivalent to the
condition that every continuous bijection of X to itself is a homeomorphism.

As was remarked above, compact manifolds and manifolds without
boundary are reversible. Each of the four different 1-dimensional manifolds,
S', [0,1], [0, 1), and (0, 1) is also reversible but for higher dimensions the first
question above must be answered negatively.

THEOREM 1. For each n =2 there exist non-reversible n-manifolds.

Proor. For n =2 let M be the union of the following sets in R*:
) {(x,y):y=0}
2) {(x,¥):3k—1=x=3k,0=y=2},keZ
3) {,y):3k=x<3k+1,1=y=2},keZ
4) {(x,y):3k+1=x=3k+3,1=y=2},keZ”
Then M is as in Figure 1. If one defines
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Figure 1

g(x,y)=Qx,y) when 0=x<1,1=sy=2
={(x,y) otherwise
and then sets
h(x,y)=(x+3,y),

the map f=heog is in E(M)— H(M). Thus M is non-reversible. To complete
the proof we note that M X R* is non-reversible if M is. O

The following lemmas will be used several times.

LemMma 1. For any manifold M and any map f € E(M), the restriction
f|IntM is a homeomorphism and f(IntM) is a dense open subset of Int M.

Proor. Everything except the density of f(Int M) follows directly from
invariance of domain. If f (Int M) were not dense in M, then some closed cell e
(of maximum dimension) would have to be covered by f(Bd M). Each
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component of Bd M is expressible as a monotone union of compact sets of
codimension one. Via an appropriate diagonalization we can express Bd M as a
monotone union U, e of such compact sets. Each f|e; is a homeomorphism
and, since f is bijective, we may write

e=eNfBAM)=enf(U e)=en U fe)
= U {eNfle).

This expresses ¢ as a countable union of compact sets of codimension one,
violating the dimensional sum theorem. ]

LEMMA 2. For any manifold M and any map f€ E(M), if f(BdM)=
Bd M, then f € H(M).

This is Theorem 3.4 of Pettey (1970).
THeoreM 2. If Bd M is compact, then M is reversible.

Proor. Let f € E(M). For any component C of Bd M we know from
Lemma 2 that f~'(C) C Bd M. Since C is closed in M, f'(C) is closed in Bd M
and hence is compact. It follows that f | f'(C) is a homeomorphism of f~'(C) to
C. Each component of Bd M is the homeomorphic image of a component of
Bd M. There being only finitely many components of BdM, f|BdM is a
homeomorphism of Bd M onto itself and Lemma 3 applies. 0

The argument above can be carried further. Suppose each component of
Bd M is compact but that, perhaps, Bd M is not compact. Let f be any map in
E(M) and C, be any component of Bd M. Enumerate the remaining compo-
nents of BAM, C,,C,,---,C,, - -. Since C, is closed in M and Bd M is closed
in M, f'(C) is closed in Bd M. Then for each k =0, C. N f'(C,) is compact.
Thus f|[C. N f7'(Cy)] is a homeomorphism for each k =0 and surely

Co= LkJ fICc N f7H(CI].

This expresses the connected set C, as a countable union of compact pairwise
disjoint sets which is impossible (Theorem 3, p. 173, Kuratowski (1968)) unless
C. Nf'(Co) = for all but one value of k. Again then each component of
Bd M must be covered by precisely one component of Bd M. Hence if C is a
component of BAM we must have either f(C)CBdM or f(C)CInt M. This
proves the next result.

THEOREM 3. Suppose every component of BdM is compact. For any
f€ E(M), each component C of Bd M satisfies either f(CYCBdM or f(C)C
IntM.
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CorOLLARY 1. If every component of Bd M is compact, then a necessary
condition for M to be non-reversible is that some component of BdM be
repeated infinitely often.

Proor. If M is non-reversible, then by Lemma 3 there exists f € E(M)
such that f(Bd M) N Int M # . From Theorem 3, then, some component C of
Bd M is “swallowed”, i.e., f(C)C Int M. The distinct components f'(C),
f'If '(C)), - - - suffice to prove this corollary. 0O

An example illustrating Theorem 3 and its Corollary 1 is illustrated in
Figure 2. (This was actually the first non-reversible manifold we knew.) We
construct M by removing from R? the open disks {(x, y):(x — k)*+ y*< 1/16}
with circular boundary C,, k € Z. On each pair of circles Cu-1, Cai, k >0, we
construct a handle and on each Ci., k <0, we erect a cylinder Cy4, X [0, 1).
This provides a manifold M with countably many circles in its boundary. A
map f€ E(M)— H(M) can be defined by bending over the cylinder C_, x
[0,1) until its (missing) upper boundary coincides with C,, thus creating a
new handle, and then translating to the right by two units.

Figure 2

In the example above the boundary component C, is “swallowed”. We
know from the example in Theorem 1 that non-compact boundary components
need not be swallowed but that example does have infinitely many identical
boundary components. Before the reader is tempted into making a false
conjecture we present the following modification of the first example: Let M
be the union of the following sets in R*:

D {(x,y,2):z2=0}

2) {(,y,2):—3=x=33k-1=2y=3k, 0=z=2},kEeZ

3 {(x,y,z):—3=x ,3k=y<3k+1, 1=z22}, kez

4 {(x,y,2):—1=x=4, 3k+1=y=3k+3,1sz=2}, kEZ".

Then M is as pictured in Figure 3. This is a non-reversible 3-manifold with
connected boundary. (A map f € E(M)— H(M) can be defined by setting

/\ A 1A

g(x,y,2) = (x,2y,2) if —i=x=3,0=sy=1,1=2=2,
=(x,5,2) otherwise
and h(x,y,z)= (x,y +3,2), then f=hog))
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Figure 3

Another erroneous impression could have been imparted by our examples
and results above. It is not true that a compact boundary component must
either be swallowed entirely or left in the boundary. In the presence of
non-compact boundary components, compact ones can be just partially swal-
lowed. The example shown in Figure 4 is easily seen to have this property, of

course.
1 -
o | | }
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————

Figure 4

Let M be a non-compact manifold. A generating sequence for M is a
sequence { D, } of compact submanifolds of M such that (i) for each i € Z",
D, CInt D, and (i) U.,D,=N. (Any PL manifold has such generating
sequences, for example.) If {D;}is such a generating sequence for M, consider
the manifold N; = M — Int D,. We let C; denote the components of N. Each
sequence {Cyq} such that Cyq, is non-compact and Ci.ija+n C Gy for each i
determines an end E of M. To avoid subscript problem let Ci(E) denote the
manifold C,q, in the sequence defining the end E.

Now consider a map f € E(M). Each f{D; isa homeomorphism of D; into
M and hence f(D;) C Int f(D;.,) and, f being bijective, U.f(D.)= M. That is,
{f(D,)} is another generating sequence for M. We shall say that f carries the end
E to the end E' if, for each i € Z*, there exist J, k € Z* such that

f(C(E))CC(E" and GC(E')Cf(CE)).
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THEOREM 4. Let M be a non-compact manifold and f € E(M). If f carries
each end of M to an end of M, then f € H(M).

ProoF. Such a map f clearly extends to a continuous bijection f: M —» M
on the Freudenthal compactification M of M. Since M is Hausdorff, f is a
homeomorphism and so is its restriction f|M = f. O

Again suppose M is a non-reversible and f € E(M) ~ H(M). By Lemma 3
some point a € Bd M has f(a) in Int M. Let U be an open cell neighborhood of
f(a) such that U is compact and lies in Int M. For any generating sequence
{D;}for M, we must have the set f~(U)— D, # & for all i. For if f'(U) C D; for
any i, then f'(U) would be compact. Then f|f'(U) would be a homeomor-
phism whence the point a would be interior to the open cell f'(U). It follows, as
Rajagopalan and Wilansky (1966) pointed out that if f€ E(M) preserves
non-compactness, then f € H(M). We can carry this a bit further in our setting.

Let U= f(IntM)and U = UMC, where the C.’s are compact. The sets
Ji = U — U¥C, exhibit the ends of U. The unbounded components of J, having
compact frontiers yield decreasing sequences called “‘ends”. Let {D,} be the
usual sequence determining an end for U. Then {f'(D.)} determines an end for
interior M since f|IntM is a homeomorphism. So the map f:IntM — U
permutes ends merely.

For M ends are in general different. The very fact that f € E(M) - H(M)
takes some discrete sequence D to a convergent one shows that ends are not
preserved. But by continuity f~* does preserve discrete closed sets. It may be
noted that by passing a half-ray through D that f fails to preserve contractible
sets.

The following is a restatement of Theorem 5.1, Pettey (1970)

THEOREM 5. A 2-manifold with a trivial 1-dimensional homology group is
reversible.

The proof of Theorem 5 depends on some rather detailed separation
arguments and establishes a fact about continua in the plane that is of some
interest.

CoroLLARY. If X is the space composed of a single isolated point and a
countable number of disjoint copies of the line, then any 1-1 mapping of X into
the two-sphere having a continuum image C has an image C that separates the
two-sphere.

THEOREM 6. Let M be an n-manifold that embeds in euclidean n-space.
Then if each boundary component of M is compact, then M is reversible.

https://doi.org/10.1017/51446788700014713 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014713

[7] Continuous bijections 263

Proor. By Theorem 3 one notes that any mapping violating reversibility
would result in carrying a separating (n — 1)-manifold into interior M. d

From Doyle and Hocking (1962) an n-manifold M = U UR where
RNM=(, U is topologically euclidean n-space and R has a dimension at
most n — 1. R is called “a residual set”.

THEOREM 7. M is a connected n-manifold. M is reversible if and only if for
each residual set R of Int M and each bijection f in E(M) it is true that f(R) is
residual for Int (M).

ProoF. The necessity of the condition is clear enough.

Suppose that f(R) always meets the residual condition. If M is not
reversible select f in E(M)— H(M). Then in Int M we note that f(R) and
B = f(Bd M)N Int M are disjoint relatively closed sets. One selects f(r) in
f(R)and f(b) in B. In Int M there is a flat arc A joining f(r) to f(b). In any case
A contains a first point proceeding from f(r) to f(b) at which it strikes B. Let
this be f(b). Similarly A coritains a last point at which it strikes f(R). Again call
this f(r). Whence A is an arc such f(M)D A — f(b). We may then consider the
set f(R)U[A — f(b)]Cf(IntM). The set f(R)Cf(RY)U[A ~f(b)] is in
f(IntM) and has a complement that is (E"'— a point)X E'. Thus one may
add to it another point set in f(Int M) so as to obtain a slightly larger residual
set in f(Int M). Call this f(R"). Consider, then IntM —R". f|IntM is a
homeomorphism to f(Int M). Whence we have R" is a residual set in Int M.
Clearly f(R") is not a residual set of Int M since it is not even closed in Int (M) .

For f in E(M) in general one has that for each R for M, f(R)U
{[f(BdM)N Int M] is a residual set for Int(M). O

References

P. H. Doyle and J. G. Hocking (1962), ‘A decomposition theorem for n-dimensional manifolds,’
Proc. Amer. Math. Soc. 13, 469-471.

K. Kuratowski (1968), ‘Topology,” (Vol. 2, Academic Press).

Dix H. Pettey (1970), ‘One-to-one mappings into a plane,” Fund. Math. 67, 209-218.

M. Rajogopalan and A. Wilkansky (1966), ‘Reversible topological spaces,’” J. Austral. Math. Soc. 6,
129-138

Department of Mathematics,
Michigan State University,
Wells Hall, .

East Lansing,

Michigan 48824,

US.A.

https://doi.org/10.1017/51446788700014713 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014713

