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REAL FLEXIBLE DIVISION ALGEBRAS
GEORGIA M. BENKART, DANIEL J. BRITTEN AND J. MARSHALL OSBORN

1. Introduction. In this paper we classify finite-dimensional flexible
division algebras over the real numbers. We show that every such algebra
is either (i) commutative and of dimension one or two, (ii) a slight
variant of a noncommutative Jordan algebra of degree two, or (iii) an
algebra defined by putting a certain product on the 3 X 3 complex
skew-Hermitian matrices of trace zero. A precise statement of this result
is given at the end of this section after we have developed the necessary
background and terminology. In Section 3 we show that, if one also
assumes that the algebra is Lie-admissible, then the structure follows
rapidly from results in [2] and [3].

All algebras in this paper will be assumed to be finite-dimensional. A
nonassociative algebra 4 is called flexible if (xy)x = x(yx) forallx,y € 4.
Most frequently, we will be using the linearized form
(L1 (xy)z + (zy)x = x(y2) + 2(yx)
of the flexible identity. 4 is noncommutative Jordan if it is flexible and also
satisfies the identity (x?y)x = x%(yx) for all x, y € 4. If xy = 0 for
x,y € A implies that either x = 0 or y = 0, 4 is said to be a division
algebra. Every real division algebra is known to have dimension 1, 2, 4,
or 8, and hence so does every subalgebra of a real division algebra ([7] and
(8]).

Defining the products [x, ¥y] = xy —yxandx oy = xy + yxin 4,
we denote by A~ and A+ the algebras obtained from A by replacing the
product xy in 4 by [x, ¥] and x o y respectively. It is known [1] that the
operator ad, on 4 defined by ad, (y) = [x, y] is a derivation of A+ for
all x € A if and only if 4 is flexible. 4 is called Lie-admissible if A~ is
a Lie algebra. A helpful reformulation of this definition is that 4 is Lie-
admissible if and only if ad, is a derivation of A~ for each x € 4. From
this it is clear that 4 is both flexible and Lie-admissible if and only if ad,
is a derivation of 4 for all x € 4.

The algebra A is called guadratic if A has an identity element e, and
for each x € A there exist real numbers 7°(x) and N (x) such that

x2 — T'(x)x + N(x)e = 0.

We need to use a few of the basic properties of such algebras developed
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in {12]. In a real quadratic algebra 4, the set
V ={x € Alx ¢ Re, x* € Re}

where R denotes the real numbers is a vector space, and 4 = Re @ V.
For x,y € V, we write xy = —(x, y)e + x X y, where —(x, ¥)e and
x X y are the components of xy in Re and V respectively. Then (x, y) is
a bilinear form on V,and x X y = —y X x. It is convenient to extend
the bilinear form to all of 4 by defining (e, ¢) = 1 and (e, x) = 0 for
x € V. For future reference, we state the most relevant elementary facts
about quadratic algebras pertaining to flexibility as

LEMMA 1.2. For a quadratic algebra A, the following properties are

equivalent:
(1) The bilinear form (x,y) on A is symmetric,
(i) xy +yx = —2(x,y)eforx,y € V

(iii) [x,y] € Vforx,y € V.

If these properties hold, then the following conditions are equivalent:

(iv) (x,xy) = 0,forallx,y € V,

v) (xy,2) = (x,y2),forallx,y,2 € V.
Furthermore, A is flexible if and only if all these properties hold.

A real quadratic algebra 4 is a division algebra if and only if the bilinear
form is positive definite on 4 and if for any linearly independent x,y € V,
the elements x, y, x X ¥ are linearly independent. If 4 is a flexible
quadratic algebra, then A4 is also noncommutative Jordan, since

(@y)x = (T(x)x — N(x)e)y)x = T'(x)(xy)x — N(x)(ey)x
= T(x)x(yx) — N(x)e(yx) = (T'(x)x — N(x)e)(yx) = x*(yx).

Let P and Q be two nonsingular linear transformations on an algebra
A4, and let ‘¥’ be the operation on 4 defined by x * y = P(x)Q(y). The
algebra (4, *) is called a principal isotope of A. If A is a real flexible
quadratic algebra, and if P and Q are defined by P(e) = ¢ = Q(e) and by
P(x) = ax = Q(x) for all x € V and for some fixed nonzero @ € R, then
we call (4, *) the scalar isotope of A determined by a, and we denote it by
«A4. We want to show that .4 is flexible if A is flexible. Choosing 8, v € R
and x,y € V,and using (x,y) = (y,x%), (x,x X y) = 0, and the fact that
e commutes with everything in .4, we obtain

[(Be + x)* (ye +y)]* (Be + x) — (Be + x)*[(ve + y)* (Be + x)]
= [Bye — a®(x, y)e + ayx + aBy + o’ X y]* (Be + x)
— (Be + x) * [vBe — a*(y, x)e + ayx + By + a’y X x]
= [ayx + aBfy + a®x X y]* (Be + x)
— (Be + x) * [ayx + aBfy + a2y X x]
= [ayx + aBy + a?x X y]*x — xx [ayx + aBy + a?y X x]
+ a?B(x X y)*e — a’Be* (y X x)
=a%By X x+at(x Xy) Xx—a®Bx Xy —aix X (y X x)
+ a¥fe Xy — a3y X x = 0.
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Thus .4 is flexible when 4 is. It is also clear from the definition of .4 that
it is a division algebra whenever 4 is.

Next, we recall that the set of n X n complex skew-Hermitian matrices
of trace zero forms a Lie algebra under the commutator [x, y], and this is
a simple Lie algebra over the reals which is denoted by su(n). When
n = 3, this set of matrices is also closed under the commutative operation
i{x oy — % tr (xy)I}, where tr is the trace, 7 =+/—1,and I is the 3 X 3
identity matrix. It is shown in Section 3 of [3] that the set S(a, 8) of 3 X 3
complex skew-Hermitian matrices of trace zero under the operation

xxy = alx,y] + Bifxoy — 3 tr (xy)I}

is a flexible real division algebra for any nonzero «, 8 € R. Now S(e, 8)
is isomorphic to S(ay, Bvy) for any nonzero v € R using the map x — vyx
for all x € S(e, 8). Thus, up to isomorphism, we can restrict our atten-
tion to the algebra S(5, %), which has the product

(1.3)  x*y =6[x,y] + 3i{xoy — % tr (xy)I}

for some nonzero § € R. When § = ++/3/2, this algebra was first
studied by Okubo [9], and was called by him the pseudo-octonions. For
this reason, we call the algebras S(8, %) defined using (1.3) generalized
pseudo-octonion algebras, or GP-algebras for short.

We are now able to state our main result precisely.

THEOREM 1.4. If A is a finite-dimensional real algebra, then A 1is a flexible
division algebra if and only if A has one of the following forms:

(a) A4 s a commutative division algebra of dimension 1 or 2,

(b) A s isomorphic to a scalar isotope B of some quadratic real division
algebra B which 1s flexible (and hence noncommutative Jordan), or

(c) 4 s a generalized pseudo-octonion algebra.

It is clear from the preceding discussion that algebras of these three
types are real flexible division algebras, and most of the remainder of the
paper is devoted to showing that these are the only types which occur.
Real commutative division algebras are considered in Section 2, and we
classify them in Theorem 2.3. Scalar isotopes of flexible quadratic divi-
sion algebras are discussed in Section 5, where we show (Theorem 5.13)
that 4 has to be of this type if 4 is a real flexible division algebra of
dimension 4 or 8 containing an idempotent commuting with every element
of A. In Section 6, the real flexible division algebras of dimension 8 with-
out such an idempotent are shown to be GP-algebras. The reduction to
the cases considered in Sections 5 and 6 and the basic results needed for
these sections (and hence for Theorem 1.4) are found in Section 4.

The structure of real flexible Lie-admissible division algebras can be
found by combining the results of Theorem 1.4 with Proposition 5.15.
However, this important special case can be derived much more quickly
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using results from [2] and [3], and without using any of the results in
Sections 4-6. Such a proof of the Lie-admissible case is given in Section 3.

2. Commutative division algebras. The task of investigating real
commutative division algebras is greatly simplified by the following
result of Hopf.

THEOREM 2.1. [6]. Every real commutative division algebra has dimension
1or 2.

We begin our study with

LEMMA 2.2. Every real commutative division algebra A contains an
idempotent.

Proof. Let x € A, x # 0. If the subalgebra generated by x is 1-dimen-
sional, then x? = dx for some 6 € R, and e = (1/8)x is an idempotent. By
Theorem 2.1, we may assume that x generates a 2-dimensional subalgebra
with basis x, x? and multiplication given by

xx? = x%x = ax + bx?, (x?)? = cx + dx?

for some a, b, ¢, d € R. Then for any A € R, the element y = Ax + x?
satisfies

y? = Nx? 4 2N (ax + bx?) + cx + dx*.
Thus, y2 = uy for some p € R if and only if

2Ma +c = Mg, N+ 2N+ d = p.
This system has a solution if and only if

N4+2M + (d—2a)—c=0

has a solution. Since every cubic polynomial possesses a root in R, there
exists some A € R which satisfies this equation. For this A, ¥ = uy where
uw=AN+2\ +d,and e = (1/p)y is an idempotent of 4.

THEOREM 2.3. If 4 is a real commutative division algebra of dimension 2,
then A has a basis e, x with the property that multiplication is given by one of

the tables
e X e x
(24) e e ax e e e+ x
x lax —e+ yx x|le+x Be

from somea, B, v € R. The algebras over R defined by these tables are division
algebras if and only if the constants in the multiplication tables satisfy the
relations 4a® > v* and B < 0 respectively.
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Proof. By Lemma 2.2, A contains an idempotent e. Let L, be the
linear transformation on 4 defined by L.y = ey for y € A4, and suppose
first that L, is diagonalizable. Then there exists « € R and x € 4 such
that ex = ax. Letting x> = Be + vx, we calculate that the matrix of left
multiplication by A\;e 4+ X.x relative to the basis ¢, x has determinant
given by

A BAz
aks  al1 + YA:

Thus, 4 is a division algebra if and only if the quadratic form a)\% +
YMA2 — aB).? does not represent zero over R, which is equivalent to the
discriminant of the form being negative:

0> v+ 4a?6.

= aAr’ + YAh: — affAs.

If 4 is a division algebra, clearly 8 < 0. Replacing x by (—8)~'/2%x, we
can assume that 8 = —1, to give the first table in (2.4). When 8 = —1,
the condition for 4 to be a division algebra reduces to 4a? > 2.

If L, is not diagonalizable, then there exists y € 4 with ey = ¢ + y.
If y2 = 6e + vy, the element x = — 3vye + y satisfies

ex = —3ve+e+y=ce+4x
= iv’e —v(e+y) + de + vy = Be,

where 8 = v — v + 4. This gives the second table in (2.4). The deter-
minant of the matrix of left multiplication by Me + \ox relative to the
basis ¢, x is

MAN MBS g
A2 A1

which does not represent zero if and only if 8 < 0.

3. Real flexible Lie-admissible division algebras. In this section
we classify real flexible division algebras under the added assumption of
Lie-admissibility. Since the hypothesis that 4 is flexible and Lie-admis-
sible is equivalent to assuming that ad, is a derivation of 4 for each a in
A4, our technique is to use the derivation algebra Der 4 of 4 to severely
limit the possibilities for 4. Our proof relies heavily on the following
theorem which determines those Lie algebras which can arise as the
derivation algebra of a real division algebra.

THEOREM 3.1. [2]. Let S be a subalgebra of Der A for A a real division
algebra.

(1) Ifdim 4 = 1,2,then S = 0.
(1) If dim A = 4, then S is isomorphic to su(2) or dim S = 0 or 1.
(iii) If dim 4 = 8, then S is isomorphic to one of the following Lie algebras:
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. compact G,
su(3)
Lsu(2) @ su(2)
.su(2) ®@ N where N is an abelian ideal and dim N = 0 or 1
5. N where N 1s abelian and dim N = 0, 1, or 2.
In particular, if S = Der A, then Der A 1s one of the Lie algebras listed
above.

WD

One may view 4 as a module for a subalgebra S of Der 4, and if S is
semisimple, then 4 decomposes into the direct sum of irreducible S-
submodules. In a subsequent investigation [3], Theorem 3.1 together
with the representation theory of semisimple Lie agebras was used to
analyze the structure of 4.

Suppose now that 4 is a real flexible Lie-admissible division algebra.
Then A~ is a Lie algebra, and the transformation A— — Der 4 given by
ad is a Lie homomorphism with kernel Z where

Z=1{z¢€ A|[z,x] =0 forallx € 4}.
LeEMMA 3.2. Z is a subalgebra of A.
Proof. Fory,z € Zand any x € 4 we have

[yz, 2] = [y, x]z + [z, x] = 0.

The space Z is also a Lie ideal of A~ and 4—/Z is isomorphic to a Lie
subalgebra S of Der 4, where S then is one of the Lie algebras listed in
Theorem 3.1. For any Lie subalgebra L of Der 4, the space Z also has
one further property: Z is an L-submodule of 4. Forif d € L,z € Z and
x € A4, then

[0(z), x] = d[z,x] — [, d(x)] = 0.
We are now ready to state and prove our classification result.

THEOREM 3.3. Assume A is a real flexible Lie-admissible division algebra.
(1) Ifdim A = 1o0r 2, then A is commutative.

(1) If dim A = 4, then there is a basis e, x1, X2, x3 of A such that the

multiplication is given by Table 3.4 below for a, 8 € R witha % 0and 8 > 0.

e X1 X2 X3
e e ax, aXe ax;
(34) x1|axy —Be x3 —x
Xo |axes —x3 —fBe X1
X3 | axs X2 —x1 —fe

(i) If dim A = 8, then A is a generalized pseudo-octonion algebra.
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Proof. As we noted previously, if 4 is a flexible Lie-admissible real
division algebra, then 4~/Z is isomorphic to a subalgebra S of Der 4.

Assume first that dim 4 = 1 or 2. Then by Theorem 3.1, S = 0, so that
A = Z and 4 is commutative.

We suppose next that dim 4 = 4. If S = 0, then 4 is commutative,
which is impossible by Hopf’s result. The case dim S = 1 cannot occur,
because if it did the subalgebra Z would be 3-dimensional. Therefore S
must be isomorphic to su(2), and dim Z = 1. In [3], 4-dimensional real
division algebras with su(2) as derivations were shown to have a basis
e, X1, X9, X3 with multiplication as prescribed in Table 3.4 except that the
constant appearing in the first column was not necessarily equal to a.
Thus, we may suppose that x,6 = vx, and that the remainder of the
products are given by (3.4). Further, we assume that 0 # z = aee +
> iax;liesin Z. Then

0 =[x, 2] = ae(y — a)x; + 2a:x3 — 2asxs,

and hence a» = a3 = 0. Similarly from the product [xs, z] = 0 we obtain
a; = 0. Since z # 0, it must be thatay # 0,y = a«,and e € Z. It is shown
in [3] that such algebras are division algebras if and only if a8y > 0. In
the present situation @ = v, so that 4 is a division algebra exactly when
B > 0. It will follow from Theorem 5.13 and Proposition 5.15 in Section 5,
that each algebra with multiplication given by Table 3.4 is flexible and
Lie-admissible. The algebra 4 is also a special case of a more general
construction of flexible Lie-admissible algebras studied in [4], and these
properties could be deduced from results in that paper as well.

Assume now that dim A = 8. Using the fact that Z is a subalgebra of 4,
we obtain dim S = 8,7, 6, 4 or 0. We can eliminate the cases dim S = 0
and dim S = 4 immediately by the Hopf result since Z is a commutative
subalgebra. Also the case dim S = 7 can be ruled out by a dimension
comparison with the list in Theorem 3.1.

Let us suppose then dim S = 6. Under this assumption, .S is isomorphic
to su(2) ® su(2), and by ([3], Theorem 5.1) the algebra 4 decomposes
into three irreducible S-summands which have dimensions 1, 3 and 4.
Since Z is an S-submodule, and since the dimensions of the summands are
distinct, Z must be a sum of some of the irreducibles. But this is impossible
since dim Z = 2.

The only possibility that remains is that dim .S = 8, and S is isomorphic
to su(3). In this situation A~ is isomorphic to su(3), and thus is a simple
Lie algebra. The algebra 4 cannot decompose into more than one ir-
reducible sx(3)-summand because such summands would be proper Lie
ideals of A~. By ([3], Theorem 3.2) any real division algebra 4 on which
su(3) acts irreducibly as derivations can be constructed from 3 X 3 com-
plex skew-Hermitian matrices of trace zero by defining the product to be
that given in (1.3), and thus, 4 is a generalized pseudo-octonion algebra.
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As we mentioned in Section 1, it is verified in [3] by a straightforward
calculation that such algebras are flexible, and are division algebras if and
only if § 5 0. Lie-admissibility follows easily from the fact that x x y —
y*x = 28[x,y]. Thus, the only real flexible Lie-admissible division algebras
are the ones listed in Theorem 3.3, and each of those algebras is flexible,
Lie-admissible, and division.

4. Idempotent decompositions. We initiate our study of arbitrary
real flexible division algebras A by showing that 4 possesses an idempotent
e, and then use the operators L., R, (left and right multiplication by e) to
investigate the structure of 4. Ultimately, we prove that either (i) 4
possesses an idempotent which commutes with all of 4, or (ii) dim 4 = 8
and 4 has an idempotent commuting with a 4-dimensional subalgebra.
The two possibilities are then explored individually in subsequent sections.

PropositioN 4.1. [13]. If {x,} 1s a set of commuting elements in a flexible
algebra A over a field of characteristic not 2, then the subalgebra generated by
the x;'s is commutative.

Proof. Although this result appears in [13] we include the brief proof
for the convenience of the reader.

If y and z are two monomials in the x,'s, we must prove that [y, z] = 0.
Since the x;'s commute, we may suppose that one of the elements, y, z,
say z, is not an x;. Then z = uv where %, v are monomials in the x,’s.
Inducting on deg ¥ + deg z, we may assume that [y, u] = 0 = [y, 9] =
[u, v]. But then

[y, 2] = [y, wv] = 3[y,uo0v] = 3ly,ulov+ juoly,v] =0
as was to be shown.
COROLLARY 4.2. Every element of A generates a commutative subalgebra.
Using the result of Hopf cited in Section 2, we have

COROLLARY 4.3. In a real flexible division algebra if two elements commute,
they genmerate a subalgebra of dimension 1 or 2.

An immediate consequence of Corollary 4.3 and Lemma 2.2 is
COROLLARY 4.4. Every real flexible division algebra contains an idempotent.

We assume henceforth that 4 is a real flexible division algebra of
dimension = 2, and e is an idempotent of A. The following subspaces,
defined using right and left multiplication by e, play a crucial role in our

investigations:
A, = {x € A|(L. + R, — 2al)x = 0}, wherea € R,
E, = {x € A|(L,+ R, — 2al)x = 0, for some n}, « € R,
B, = {x € A|(L. + R, — 2I)*x = 0},

Cle) = {x € A|le,x] = 0}.
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Clearly, 4, C E, forevery a € R, and E, N Eg = 0 for & # 8. Often, a
helpful way of restating x € A, is that e o x = 2.

THEOREM 4.5. Either
(i) 4 = Re @ Ey, or
(ii) C(e) ts a subalgebra, A = C(e) @ Ei,q, and either

C(e) = B, or C(e) = Re ® A, for somea # 1, 3.

The proof of this theorem will be the end-product of a sequence of
results which begins with

LEMMA 4.6. (i) 4, € C(e) for all o = 3.
(ii) Theroots of the minimum polynomial of L, + R, lie in R.

Proof. For x € A,, the linearized flexible identity gives
4.7)  (xe)e + (ee)x = x(ee) + e(ex),

or
(2ax — ex)e + ex = xe + e(2ax — xe).

Since (ex)e = e(xe), the last equation reduces to (2« — 1)[e, x] = 0, which
implies part (i): x € C(e) whena # %. This argument depends only on the
flexibility of 4, and so must work for the complexification 4¢ of 4 also.
Thus, if 2 # v € C and

(Ac)y = {x € Ac|(L. + R, — 2yI)x = 0},
then (4¢), © C(e). Suppose v € C — R and

0%vy€ix€A(L,+ R, —2¢I)(L, + R, — 27])x = 0}.

Then in Ac, ¥ = y1 + y: where y; € (Ac)y and y, € (Ag)y so that
y € C(e). Since e and y commute, the subalgebra they generate is at
most 2-dimensional, and so ey = (8:¢ + B2y for some B, B2 € R. But then
on AC

Bie — Bay1 + Boys = €y = ey1 + eys = yYy1 + ¥Ya.

This gives vy = B2 = v, which is a contradiction to ¥ € G — R. Since
such an element y would exist if L, + R, had rootsin C — R, we conclude
that assertion (ii) must hold.

LEMMA 4.8. (1) Ao = Eq for all o # 3, 1.

(ii) Ey = B, € C(e).

(iii) There is a basis e, x, Y1, - - ., Y Of B1 with ex = x + ee where
e=0o0rl,andey; =y, foralli=1,...,m.

Remark. 1t is to be understood that if dim B; = 2, then there are no y's,
and if dim B, = 1, then the basis is just e.
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Proof. Suppose that
(L. + R, — 2al)" = 0, (L, + R, — 2al)™!x % 0, and
(Le+ R, —2a)x =w #0
where w € C(e). Then ex 4+ xe — 2ax = w, and (4.7) becomes
(w + 2ax — ex)e + ex = xe + e(w + 2ax — xe).
Since w € C(e), this equation reduces to
(4.9) (1 — 2a)e,x] =0.

Thus, if @ # 3, then x € C(e) also. Now x ¢ Re, since w # 0, and con-
sequently x, e generate a 2-dimensional commutative subalgebra. But
then w = ex + xe — 2ax is a linear combination of e, x, say w = pie +
pex. Because (L, + R, — 2al)*! annihilates w but not x, the scalar p; is
nonzero in this situation.

We now apply these results to three different choices of x to obtain
Lemma 4.8. First, let us suppose that E, # A, for some « % 1, 3. Then
there is an x € E, — A, such that

(L,4 R, —2al)x =0 and 0= w= (L, + R, — 2al)x € A..

Since 4, € C(e) by Lemma 4.6, the above argument implies that w =
p1e + p2x where p; # 0. But solving for ¢, we obtaine € E, M E, =0, a
contradiction. Therefore, no such x can be found, and E, = 4,.

We now consider the case that x € B; — 4,. Here,

0% w=(L,+ R, —2Dx € 4,,

which lies in C(e) by Lemma 4.6. We conclude first from (4.9) that
B, C C(e), and secondly that w = pie 4+ p2x where p; % 0. If p, % 0, then
we would obtain x € A4,, contrary to our assumption. Thus, we have
shown that for every x € B; — 4.,

L.+ R, — 2)x = w € Re.

We argue next that B; = E,;. If this is not the case, then there is an
x € E; — Bj such that

0#w= (L, +R,—2)x € BC C(e) and w ¢ 4,.

But w = pie + pox, and if p; # 0 then x € Bj, while if p, = 0 then
w € A,;. These contradictions show that no such x exists, and hence E; =
B; C C(e) as claimed. Since B; C C(e), we have

(Le+Re""2[) =2(Le—I) on Bl,

so that for every x € Bj,ex — x € Re. If ex — x 5 0 for some x € B,
then by suitably modifying x by a scalar if necessary, we may assume
ex = x + e. Letw,, ..., w, together with e, x form a basis for B;, where
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ew; = w; + 7. Then for y, = w; — n:x, ey; = y;, and the elements
e, %, Y1, . . ., Yo form the desired basis. If no such x exists, then B; = 4,
and any choice of elements x, y1, . . ., ¥», which together with e form a
basis of 4, will satisfy (iii).

LeEmmA 4.10. (i) If g € C(e), then (g, Ao] © Aa for all a.
(i1) g2 € Re + Rgforallg € C(e).
(iii) 41, Brand Re ® A, for a # }, 1 are subalgebras of A.

Proof. Assume h € A,and g € C(e). Then, it follows from
2a(g, h] = [g,eoh] = [g,e]Joh + eo g h] = eo[g k]

that [g, k] € A,, and (i) is verified. Part (ii) is just an easy consequence of
the fact that e and g generate a commutative subalgebra.
For convenience, let S denote Re ® 4, or 4, and observe that.S € C(e)
by Lemma 4.6. For s, t € S we deduce from (i) that [s, ¢] € S. Now, by (ii)
s+ 1t2€ Re+ R(s +t) € Re+ Rs + Ry,
s2€ Re+ Rs, and 2 € Re 4+ R¢,

and combining these statements we have
sot€ Re+Rs+ Rt CS.

Since [s, {] € Salso, we obtain st € Sand .S is a subalgebra.

What remains to be shown is that B, is a subalgebra. We assume that
B has a basis ¢, x, y1, . . . , ¥n of the type described in Lemma 4.8. Then
since 4; + Rx = B; € (C(e), and 4, was just shown to be a subalgebra,
all that is left is to show xB; and Bix are contained in B;. The argument
above can be copied verbatim to give x 0 B; C B, and in fact B; o B; C
Bi. Since x € C(e), part (i) implies that

[x, Bl] = [x, Rx + Al] g A1 g Bl.
Therefore, xB; € B; and B;x C B, and B; is a subalgebra as claimed.
An immediate consequence of Lemma 4.8 and Lemma 4.10 (iii) is

COROLLARY 4.11. If By # A,, then A, = Re and B; = Re + Rx where
ex = x + e = xe.

The next lemma combined with Lemma 4.6 drastically reduces the
number of possible a with 4, # 0.

LemMA 4.12. There cannot exist elements x, y in C(e) — Re such that
x € A,y € Agand a # B, or such that x € A, for a % 1 and y € B,.

Proof. Assume the contrary, that such x, y do exist. Then by Lemmas
4.6 and 4.8 the subalgebra .S generated by e and x + ¥ is commutative.
If x € Ao,y € Ap, thenax + By = e(x + y) € S and since a #* 8 we
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obtainx,y € S. If x € A, and y € By, then
ax + vy + pe = e(x +y) €S forsomep € R,

and since ¢ € S and a # 1 we obtain x, y € S as before. Therefore, in
both instances we have produced a commutative subalgebra S with
dim S = 3. This gives the desired contradiction.

All the necessary ingredients for proving the theorem are in place.

Proof of Theorem 4.5. Assume 4 # Re ® E;;5. Then because L, + R,
has no roots in C — R, either 4, # 0 for somea # %,1in R or B; # Re.
Both of these spaces lie in C(e) by Lemmas 4.6 and 4.8, and by LLemma
4.12 either C(e) = Re @ A4, or C(e) = B,. It follows from Lemma 4.10
(iii) that C(e) is a subalgebra. Also, Lemma 4.12 with Lemmas 4.6, 4.8
eliminates the possibility of any other nonzero space occurring except for
E1 ). Finally, since E, M Eg = Ofora # Bwe have 4 = C(e) ® E;2, and
the proof is complete.

We now turn our attention to gathering information about the structure
of El/g.

LeMMA 4.13. (i) For all x € A, x* € C(e).
(ii) Evj2 = U ® V where

U= {x € Eip|(L, — 31)x = 0} € C(e)
and V is an Linvariant subspace on which L, has eigenvalues in G — R.
Proof. For each x € 44,
e+ x)2=e+x4+x* and 0= [e+ x, (e + x)?] = [e, x2]

giving (i).
Suppose now that v is a real eigenvalue of L, and let

U = {x E E1/2l(Le - 'yI)x = 0}

Since L, + R, — I commutes with L, — yI, it leaves U invariant, so there
isanx € U, x # 0, with

(Le+ R, — DNx =0= (L, — vD)x.
But then
(4.14) (xe)x = x(ex) = yx?

and because 4 is a division algebra we have xe = yx. Therefore
(L. + R, — I)x = 0 implies 2y — 1 = Q0 and v = %. Thus, % is the only
real eigenvalue of L, on E,,, and

U= {x € Eip|(L. — 3D)x = 0}.
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Our argument using (4.14) shows also that U is contained in C(e), and
xe = jxforallx € U.
Consider now the generalized eigenspace

W = {x € Eipo|(L, — 3[)"¢ = 0 for some n}.

Since W and U are invariant under the transformations L, and L, + R,,
if W/U # 0 there is a w # 0 in W with the following properties:
eow=w-+7y, ew= 3w+ x, where x # 0 and x, y € U. From the
linearized flexible identity

x(ew) + w(ex) = (xe)w + (we)x
it follows that

xw + x% + jwx = Jxw 4+ Jwx + yx — x2

Hence, 2x% = yx, 2x = y, and we = 3w + x = ew. Because w € C(e),
the subalgebra generated by ¢ and w is 2-dimensional, so that

x =ew — 3w € Re 4+ Ruw.

If x = pe + vw where u # 0, then e € E, ;s which cannot be, but if x = »w
where v # 0, then w € U, contrary to our choice of w. These contradic-
tions show that W = U. Since L, has no real eigenvalues besides %, the
space E;,; has the structure claimed in (ii).

For ¢ € G — R define
V!’ = {v € E1/2|(Le - ?I)(Le — (-'I)Z} = 0}

LEmMMA 4.15. There is a 3 € A1y with 22 ¢ Re 4+ Rz if and only if the
mintmum polynomial of L,on E1, has roots in G — R.

Proof. If thereisa z € A, with 22 ¢ Re + Rz, then e fails to commute
with this z. Thus, in the notation of the previous lemma, E;;,, % U and
so L, must have complex roots. Conversely, suppose { € G — R isa root
of L,. Then V¢ # 0 and since V¢ is L, + R.-invariant, Vi M A2 # 0.
Letz € VeM Ay, 2 # 0, and assume further that 22 € Re + Rz. If 22 €
Rz, then since [e, 22] = 0, we obtain [e¢, z] = 0 and ez = ze = 3z. However,
this contradicts the fact that L, on V; has eigenvalues in C — R. There-
fore, 22 ¢ Rz, and since we are assuming z2 € Re + Rz, we have Rz? +
Rz = Re + Rz. Since the space on the left is commutative, we again
obtain [e, 2] = 0 which gives a contradiction. Thus, 22 ¢ Re + Rz and
we are done.

COROLLARY 4.16. If 2 € Vi Ay and z # 0, then 22 ¢ Re + Ra.

CoRrROLLARY 4.17. (i) A = C(e) of and only if 2> € Re + Rz for all
z € Ay
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(i) If A4 = C(e) and dim A = 4, then A = Re ® A, for some a € R.

Proof. If e and z commute, then 22 € Re + Rz, so the ‘‘only if’”’ portion
of (i) is clear. Conversely, assume z2 € Re + Rz forall z € 4,,,. Then by
Lemma 4.15, L, must have real roots on E, s, and by Lemma 4.13

E1/2 =U-= {x € El/zt(Le - %I)x = 0} g C(e)

Since xe = ex = $xforallx € Ey,;, we have E1;2 = A1je, and if E; ) # 0,
then by Lemma 4.12 4 = Re @ 4, = C(e). If E;;» = 0, then the
hypothesis 22 € Re 4+ Rz is vacuously satisfied. However, Theorem 4.5
implies that 4 = C(e) in this case where C(¢) = B; or Re ® 4,. In the
course of proving (i) we showed that when 4 satisfies the hypotheses in
(i),then 4 = Re + A,or A = B;. Butif A = B;and dim 4 = 4, then
B; = A4, by Corollary 4.11, and so assertion (ii) must hold.

COROLLARY 4.18. Every flexible real division algebra of dimension 2 is
commutative.

Proof. The condition z2 € Re + Rz is trivially satisfied by 2-dimensional
algebras.

We next consider the case when L, has complex roots on Ejs.

LEMMA 4.19. If 2 € VM A1y, 2 # 0, then for somed € R, f = (1/8)z% €
C(e) is an idempotent of A not equal to e, and dim C(f) = 3.

Proof. By Lemma 4.13, 2* commutes with e and therefore (22)? lies in
the subalgebra Re + Rz? If (22)? ¢ Rz?, then Rz? 4+ R(3?)? is 2-dimen-
sional and is contained in the subalgebra Rz 4+ Rz?2, so in fact the two are
equal. However, e commutes with everything in Rz?2 + R(22)2, and thus
would commute with z. But then ez = ze = 3z, which cannot be true for
z € V;. Thus, it must be that (22)2 € Rz?,and f = (1/8)3%isan idempotent
if (22)% = 6z% The elements e, f are linearly independent since z commutes
with f but not e, and dim C(f) = 3 because e, z, f € C(f).

With these preliminaries in hand, we have the information needed to
prove

THEOREM 4.20. Let A be a real flexible division algebra. Then there is an
idempotent e in A such that
(1) 4 = C(e), or else
(i) dim 4 = 8,and A = C(e) ® E,,, where C(e) 1s a 4-dimensional
subalgebra with C(e) = Re 4 A4, for some a % %, and L, on E,,; has eigen-
values in G — R.

Proof. To begin, let ¢ be any idempotent of 4 and define the spaces
C(e), A, etc. with respect to e. If 22 € Re 4+ Rz for all z € 4,2, then
by Corollary 4.17, A = C(e), and we are in case (i). We may assume then
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that 22 ¢ Re + Rz for some z € A1), which by Lemma 4.15, is equivalent
to saying L, has complex roots on E; 2. Let { € G — R be such a root, and
suppose 0 ## z € Vi M Ay;e. Then by Lemma 4.19, f = (1/8)2% € C(e)
is an idempotent for some § € R and dim C(f) = 3. If C(f) = 4 we are
in case (i), so we may assume that 4 # C(f) and dim C(f) = 3. We now
apply Theorem 4.5 to the idempotent f, to conclude that there are two
possibilities: either 4 = C(f) @ Ei,2(f) where C(f) is a subalgebra with
C(f) = Bi(f) or C(f) = Rf @ A,(f) for somea # 1, 3,orelse 4 = Rf @
E,5(f). (We have modified the notation to emphasize that the decompo-
sitions are relative to f.) In the first case, it follows from Lemmas 4.12 and
4.13 that L, has eigenvalues in C — R on E;,3(f). Also in this case, dim
C(f) = 4, since C(f) is a subalgebra of dimension at least 3, and whenever
C(f) = Bi(f), then C(f) = A.(f) by Corollary 4.11. Thus, in the first
possibility, we are in case (ii) relative to the idempotent f.

Suppose now 4 = Rf @ E;;2(f) and dim C(f) = 3. Since e commutes
with f, they generate a 2-dimensional subalgebra, on which L, has eigen-
values 1, 4, Therefore, fe = }e + &f, and relative to the basis f, e the
transformation Ly, s4»,. has the matrix

<A1 + ot M )
%>\2 %)\1 + )\2 :

Thus, Ly, s42, . is nonsingular if and only if for A\;, X\; not both zero
N2 4 M + N2 = 0.

The discriminant 1 — 2¢ must be negative for this to happen, and hence,
£ > 3. But relative to the basis f, ¢, L, has matrix

G )

and hence £ is an eigenvalue for L, on C(e). Since £ > %, C(e) is a sub-
algebra by Theorem 4.5, and C(e) = Re @ A(e) if £ # 1 orelse C(e) =
Bi(e). If dim C(e) = 4, then A4 satisfies (ii) with respect to the idempotent
e, and we are done. Consequently, we have argued that except when dim
C(e) = 2 for our initial choice of an idempotent e, cases (i) and (ii) hold.
Therefore, beginning with the idempotent f, we can proceed as we did
with e, and cases (i) and (ii) must hold since dim C(f) = 3. This con-
cludes the proof.

5. The case A4 = C(e). Since we have already covered the case when
dim A = 2 in Corollary 4.18 and Theorem 2.3, we can assume here that
dim A = 4 or 8. By Corollary 4.17 it follows that 4 = Re + A, for some
nonzero @ € R. Then 4 has a basis e, y1, ..., ¥, Wwhere ey; = ay; = v.e
forl <7< m = dim A — 1. Since ¢ and y, commute,

vy = B+ 8y, forsomeB; 6, € R
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by Corollary 4.3, and hence the element x; = y, — 13,0 e satisfies

15, \* 15} 15,
x12=(l—§;e> =yi2—6iyi+z_j§e=6ie—1;—2€€ Re-
Changing to the new basis ¢, x4, . . ., x,, we obtain
_ 1, _ 15 1 )
ex; = ay; 2aie—axi+ <2a 26,~ e.
We have achieved a basis ¢, x4, . . ., x,, with the properties that

5.1) x2€Re, ex;=ax;+ ne
for some n; € Rand forl €1 £ m.

LEMMA 5.2. (i) Theset V = {y € Aly ¢ Re, ¥* € Re} is a subspace of A
of dimensionm = dim 4 — 1, and x:, . . . , x,, are a basis of V.
Gi) Ify,z € V,thenyoz € Re.

Proof. Lety, 2 € V,say y> = pe and 22 = ge. Foreach A € R, \y 4+ =
commutes with e, so there exist u, » € R depending on \ such that

Ay +2)% = pe + v(\y + 2).

Thus,

(5.3)  ANpe+ Nyoz) + ge = ue + vy + vz,

which shows that y o 2 is a linear combination of e, v, z, say
YOz =T + T2y + T35

Substituting this into (5.3) and assuming that e, y, z are linearly inde-
pendent, we may equate the coefficients of y and z on the two sides of (5.3)
to get A\re = vA and A3 = ». Thus, 75 = v = Ar; for all nonzero values of
N\ € R, which implies that 7, = 0 = 7, since 7; and 73 do not depend on A.
This shows that y 0 z € Re, and hence (\y + z)? € Refor e, y, z linearly
independent. If e, y, z are linearly dependent, then y and z are linearly
dependent, and againy oz € Reand (A\y + z)? € Re. Thus,\y +z € V.
Since x4, .. ., %, € Vande ¢ V,clearly dim V = m = dim 4 — 1 and
X1, ..., %n are a basis of V.

Part (ii) of Lemma 5.2 allows us to define a bilinear form (y, z) on V
by y 0z = —2(y, z)e, and it is immediate that (y, z) = (3, ) for all
v,z € V. This bilinear form can be extended to a symmetric bilinear form
on all of 4 by defining (¢, ¢) = 1 and (¢, x) = 0 = (x,¢) forx € V.

LEmMA 5.4. (i) Ify € Vanda € A,thenyoa € Reifand onlyif a € V.
(i) Ify,2 € Vandif (y,3) = 0, thenyz € Vand (y,yz) = 0.
Gii) Ify,z € V, then [y, 3] € V.
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Proof. If y € Vanda € A, thena = Be 4+ zforsome 8 € Rand z € 7,
and yoa = 2Bey + y 0 z.Sincey oz € Re, clearly y o a € Reif and only
if @ € V. For part (ii), suppose that v, z € V with (y, 3) = 0. Then
yz = —zy, and so

yo (y2) = y(yz) + (¥2)y = —y(zy) + (y2)y = 0.

By part (i), ¥z € V, and hence (y, yz) = 0. Finally, for part (iii), given
y,2z € V,we may find § € R and z; € V satisfying (v, 2;) = 0 such that
z = 21 + 6y. Then

[y, 2] = [y,20+ 0yl = [y, z1] = yz21 — 21
Since yzi, z1y € V by part (ii), we have [y, z] € V.

LeEmMA 5.5. The bilinear form (y, z) is associative and positive definite
onV.

Proof. For y,z € V, we again writez = 2, + éyforé € R,and z, € V
and (y, z1) = 0. Then

¥, y2) = (¥, y21 + 8?) = (y,921) +6(y,9*) =0
using part (ii) of Lemma 5.4 and y? € Re. Linearizing y in this relation
gives (x, vz) + (v, xz) = 0, which yields

(xz,y) = (y,x2) =—(x,y2) = —(x,y02) + (x,29) = (x,2).

To prove that the form is positive definite, we must show that (y,y) > 0
for any nonzero y ¢ V, We have

y:=3y0y = —(3,9)e

and the relation ey = ay + 7ne for some n € R follows from (5.1). The
determinant of left multiplication by the element Me 4+ Aqy in the sub-
algebra spanned by ¢ and y is

MA e A — (YA
a)\z Ol)\l

=a(\M + (9, YND).
Since 4 is a division algebra, this determinant cannot be zero for any
M, N2 € R not both zero, and hence (y, y) > 0.

Now that we have a symmetric positive definite form on V, we want to
make our basis x1, . . ., %, of VV behave nicely with respect to this form.
By the Gram-Schmidt orthonormalization process, we can modify the
x's so that they form an orthonormal basis of V. Thus, we may assume
thatx;? = —eandxx; = —xx;forl £ 4,7 < mands # j.

LEMMA 5.6. If x1, . . ., %, 1S an orthonormal basis of V, then

m
(5.7) xix,- = Zl ’y,-,-kxk —_ 61jj6
k=
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where 8;; 15 the Kronecker delia, and where v,5 € R and v, is skew-
symmetric 1w its subscripts.

Proof. If 1 # j, then xx; € V by Lemma 5.4 (ii), showing that the
e-component of (5.7) is correct. Also, vijx = —v i, SINCE X X; = —X;X;.
Finally,

—Yijk€ = (Y iu%ns %) = <Z Yiji%X: — 04€, xk) = (xixjy %)
7

= (xir xjxk) = <xiy Z YikXr — 5]7:6) = (xiy “/jkixi) = T Yit
l
or vijx = v 1t follows that v, is skew-symmetric on its subscripts.
LEMMA 5.8. For anyy € V,ey = ay.

Proof. It is sufficient to show ‘that, for an orthonormal basis x;, . . . , %,
of V, the constants 5, of (5.1) are all zero. From (1.1) we have for 7 # j

0 = (xix;)e + (ex;)x; — xi(xse) — e(xsx;)
= Q(xix]')e + (ax; + nie)x; — xi(axj + 7€)
= Z(xixj)e —_ 20’.36in =2 Zk Y ijxXk€ — 2a Zk Y i5x%k
=2 zk: RET LIRS
or
(5.9) 0= kz_:l Y ijkMk

for any 7, j not equal. If dim 4 = 4, then m = 3 and (5.9) gives

0 = viam + vieame + vi2sms = Y1273,

since y121 = 0 = 7v122 by the skew-symmetry of the subscripts on v ;.
Now 7123 # 0 since x;x2 # 0, and so 73 = 0. Similarly, 7, = 0 = 7..
If dim A = 8, we consider the six equations

6
(5-10) ;Z; Y = 0

for1 £ j £ 6. To show that 4, . . ., 56 are zero, it is sufficient to show
that the determinant |y7;4| for 1 < j, k < 6 is nonzero. For this, we con-
sider left multiplication by x; on the space V' spanned by xi, ..., x.
Since V” is the orthogonal complement on Rx7 in V, we have x, V' C V,
and therelation 0 = (x7, x;V’) implies thatx;V’ € V’. In fact, x, V' = V'
because 4 is a division algebra. But the determinant of left multiplication
by x7 acting on V' is just |y7;| for 1 =< j, B = 6, so this determinant is
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nonzero. Thus, (5.10) implies that 7, ..., 76 are zero, and 77 = 0 by
symmetry.

LEMMA 5.11. For each a € A, there exist 81, B2 € R and x € V such that
a = Bie + Box and x> = —e. Every subalgebra B of A of dimension 2 has
as a basis e, x for somex € V withx® = —e.

Proof. Given a € A4, we can find 8; € Rand y € V such that a =
Bie +y. Ify = Z,- {x; # 0for ¢; € R, then y* = —(Zi ¢2)e by (5.7).
Setting 8, = (O_; {2 and x = B,7ly, we have x2 = —e and a =
Bie + Bex as desired. If B is any subalgebra of A of dimension 2, then
BNV # 0sincedim V = dim 4 — 1, and so B contains a nonzero ele-
ment y € V. Just as above, y = B.x for x? = —e¢, and x € B. Clearly,
e € B, and ¢, x form a basis for B.

At this point, the only additional property that would be needed to
make 4 into a flexible quadratic algebra would be to have a = 1. Since
a is not necessarily 1 in general, we can only achieve this by taking an
appropriate isotope.

LeEMMA 5.12. Let Q be the linear transformation on A defined by Q(e) = e
and Q(x) = a~x for x € V, and let (4, *) be the principal isotope of A
defined by a x b = Q(a)Q(b) for all a, b € A. Then (A, *) is a flexible
quadratic algebra, and A is a scalar isotope of (4, x).

Proof. The element e is the identity element in (4, %), since

exe=2e=¢exx =eQx) =elax) =x = (@x)e = xxe
forx € V. For Be + x where 8 € Rand x € V, we define

TBRe+x) =28 and N(Be + x) = B2 + a~2(x, x),
and we calculate that

(Be + x) * (Be + x) — T'(Be + x)(Be + x) + N(Be + x)e

= B% + 28x + x*x — 28(Be + x) + B + a7 (x, x)e
= —a"%(x,x)e + a7 2(x, x)e = 0.

Thus (4, ) is a quadratic algebra.

In order to show that (4, ) is flexible, one of the properties that we
have to verify (see Lemma (1.2)) is that any commutator liesin V' (which
is the same in (4, %) as in A). This follows from

Be+x)x(Be+y) — (Be+y)* (Be+x) =xxy —y*x
=axy —yx) €V

for 3,6 € Rand x,y € V. As we saw in Section 1, this property is equiva-
lent to the property that the natural bilinear form (x, y)* on (4, *) is
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symmetric. Using this symmetry, we have forx,y € 1
(g, y)% = —3(xxy + y*x) = —fa 2 (xy + yx) = a72(x, )e,

so that (x, ¥)* = a~2(x, ). Then the second property needed to establish
flexibility in (4, *) follows from

(x, 2% y)* = a2(x,a7xy) = a¥(x,xy) =0

forx,y € V.

Now that (4, *) is known to be a flexible quadratic algebra, we want
to show that 4 is a scalar isotope of (4, *). Defining the linear trans-
formation P on A by P(e) = e and P(x) = ax for x € V, we see that
P = Q'and that

xy = QP(x)QP(y) = P(x) * P(y).
We have proved all but the last sentence of

THEOREM 5.13. Let A be a real flexible division algebra of dimension 4 or
8 containing an idempotent commuting with all the elements of A. Then A is
isomorphic to a scalar isotope B of some real flexible quadratic division
algebra B. If dim 4 = 4, then A has a basis which multiplies as in the Table
3.4. Conversely an algebra with multiplication as in (3.4) where a # 0 and
B8 > 01s a flexible division algebra.

Proof. If dim A = 4, let ¢, x1, x2, x3 be an orthonormal basis. Then by
Lemma 5.6, y123 = 7ves1 = Y312 = —7va1s = —7Yi32 = —7321, and the
other v,'s are zero. Writing v for 23 and using (5.7) and Lemma 5.8,
the multiplication table for 4 is given by

€ X1 X2 X3
e e axi axe axs
(5.14) X1 | axy —e YX3 —YXe
Xo | X2 —7YX3 —¢€ X1
X3 | aXs YXo —YX1 —e€

I, in this table, we replace each x; by y~! times itself and write 8 = y=2,
we obtain Table 3.4.

To see that this algebra is flexible, we note that all commutators lie in
V,and that (xx,, %) = (x4 x) forall<,j, k € {1,2,3}. Thus, flexibility
follows from Lemma 1.2.

We asserted in Theorem 3.3 that the algebra defined by (3.4) is Lie-
admissible. This is proved in

ProposITION 5.15. Let A be a scalar isotope of a flexible quadratic division
algebra. If dim A = 4, then A ts Lie-admissible. If dim 4 = 8, then A 1is
not Lie-admassible.
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Proof. Since e commutes with all elements of 4, e is in the center of 4.
If dim 4 = 4, the products between x1, x2, x3in 4~ are

[x1, x2] = 2x5, [x2, 23] = 2%;, and [x3, x1] = 2x..

Thus, V'~ is isomorphic to s« (2), and 4 is Lie-admissible. If dim 4 = 8§,
we observe that the multiplication in 4~ differs only by a scalar multiple
from the multiplication in B~ where B is the flexible quadratic algebra of
which 4 is a scalar isotope. Thus, we only need to consider the case where
A itself is a flexible quadratic division algebra. As we saw in Section 1,
the fact that 4 is a division algebra implies that, for any linearly inde-
pendent x, ¥y € V, the elements x, v, and [x, y] = 2x X y are linearly
independent. It is clear from this that V—is a simple algebra of dimension
7. But, since there are no simple Lie algebras of dimension 7, ¥V~ cannot
be a Lie algebra, and hence 4 is not Lie-admissible.

One can readily see from Theorem 5.13 that every flexible quadratic
division algebra of dimension 4 is a scalar isotope of the quaternions, but
it is not the case that every 8-dimensional one is a scalar isotope of the
octonions. There are many more flexible quadratic division algebras of
dimension 8 than of dimension 4, and we find no method of classifying
them which further illuminates their structure. Basically, the reason that
there are so many more algebras of dimension 8 is that the condition that
xy is orthogonal to both x and y for x, y € 1 does not come close to deter-
mining xy, as it does in the case of dimension 4. To illustrate this diversity
for dimension 8, we end this section by constructing a class of real
flexible division algebras which are not scalar isotopes of the octonions.

PROPOSITION 5.16. Let 4 be the real algebra with basis e, x1, . . ., X7 and
with multiplication determined by Table 5.17 where a, 8,6 € R and o # 0.
Then A 1s flexible, and A is a division algebra if 8 > 0 and |8| < 2. If, in
addition, 5 # 0, then A is not isomorphic to any of the algebras defined in
Section 2 of [3], and hence A is not isomorphic to a scalar isotope of the

octonions.
e X1 X2 X3 X4 X5 X6 X7
e e aXi aXo aXsg aXy aXs aXe aXxX
X1 |axy —Be X4 X7 —Xs X¢ —X5+06x7 —x3— 6xs
Xo|0Xs — X4 —Be x; X1 —X3 X7 —Xs
(5.17) x3jaxy  —x7 —x; —Be Xs X — Xy X1
Xy|oXs X —X1 —X¢ —Pe x7 X3 —X;
X5 |ax; — X6 X3 —Xs —x71 —fe X1 X4
Xglaxe X3 — 0X7 —X7 X4 —X3 —Xi —Be X9 + 0x;
X7laxy X3+ 0xs Xs —X1 X5 —X4 —X»— 0X1 —Be
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Proof. Letting V denote the subspace of 4 spanned by x, . . ., x7, and
Q the linear transformation of 4 defined by Q(¢) = eand Q(x) = a~'x for
x € V, we see that e is the identity element for (4, x). By our remarks in
Section 1, it is sufficient to show that (4, %) is a flexible division algebra
in order to show that 4 is (see also Lemma 5.12). If x, ¥y € V, then
x*y = a2y, implying that multiplication in (4, *) between elements of
V will be exactly as in (5.17) if we replace x; by ax;for 1 < 7 £ 7. Thus
it is sufficient to establish the proposition when a = 1. We shall assume
a = 1 in the remainder of the proof.

If @ € A4, then there exists € Rand y € V such that ¢ = ne 4+ y,
and ey = y = yeand y* = —{e for some { € R. Thus,

a* — 2na + (n* + ¢)e = n’e + 29y — e — 2% — 2y
+ (*+ e =0,
showing that 4 is quadratic. The condition that [x, y] € Vforx,y € V
follows immediately from the form of (5.17). Then by Lemma 1.2, to

show that A is flexible, we need only show that the bilinear form is
associative on V. The form is defined here by

2x;2 = —2Be and

—2(x;, x;)e = xx; + x2; =0 fori # j,

I

—2(x4 x;:)e

giving (x4, x;) = Band (x;, x;) = 0forz % j. We have
X, = ; YiaXe — nye for some v, ni; € R,

and from (5.17) we obtain n;; = B, 7,; = Ofor< # j, and v = —7v,u-
The condition that the form is associative is that v, is skew-symmetric
in its subscripts, since

(xixjy xk) = (; YiiX, xlc) = (’Ytjkxky xk) = Yiil,

(x4, xjxk) = <xir Z'ijl%) = (x4 Yiei¥®s) = YjiB-
7

The skew-symmetry of v;;; can be verified directly from (5.16), for
example,

0 = Y161 = Yer1 = Y716 = — Y611 = — Y116 = — Y76l

Except when {1, j, B} = {1, 6, 7}, the numbers v,;; are the same here as
in the octonions. Thus, we have shown that 4 is flexible.

To show that 4 is a division algebra when 8 > 0 and |§] < 2, we shall
verify that the linear transformation defined by left multiplication by the
element \oe + 27,-=1 N ; is nonsingular for any Ao, . . . , A\7 € R not all zero.
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The matrix of this linear transformation with respect to the basis e,

X1y o ooy X7 is
N =BM —Bhy —BA; —BNy —BN; —BNs —BA7
A Ao —Ns =N A2 —Ng A5 — N7 N3+ N
Ao A4 N —N =N N — N7 N6
N3 A7 A5 N —Xe —Ne Ay —N
Ay — N M e No — N7 —N\; s
A5 Ne —Ns A A No -\ — N\
Ne —As+ 0N A —Ny Ag A Ao — Ny — 6N\
N —A3 —0Ne —Ag A —Ns Ny A+ 0N No

Multiplying the first row of this matrix by 8~!, we obtain a matrix which
we denote by M. We shall show that |[M| # 0 for all Np, ..., N\ € R
not all zero, when 8 > 0 and 13| < 2. If N denotes the matrix obtained
from M by setting 8 = 1 and § = 0, then N is the left multiplication
matrix that comes from the octonions, and so |N| ## 0 for any choice of
Mo - - ., A7 not all zero. Thus, in order to show that | M| £ 0 for N, . .., \s
not all zero, it is sufficient to verify that |[MN*| £ 0 for N, ..., N\ € R
not all zero, where N is the transpose of N. We calculate that M N' is as
given below, where the asterisks denote entries which need not be

computed.
ﬁ—l)\oz + i: )\‘2 * * * * * * *
f=1
0 DONE — Bhsh + BAgh;  * * * * —8Noh7 — BAaks —8XaA7 + Bhoke
0 0 A2 0 0 0 0 0
|MNY| = 0 0 0 X2 0 O 0 0
0 0 0 0 a2 0 0 0
0 0 0 0 0 X2 0 0
0 Shohs — BNiAg * * * T A2 — A F OMA: —8Ashs — Shoky
0 —8\ohs + OA1As * * * * 5hshe + OAohy SN2 4 8Ashs + ShiA:

Expanding |MN'| on the first column and then on the rows with only
one nonzero entry, we obtain

7
|MN'| = (B_l)\o2 + > >\3> (AN
i=1
where

SN2 — ONsN7 4 GAshe —O0AoA7 — ONolg —8NoN7 + OAoAg
D = ShoA7 — OA1A;3 SN2 — 8NsAr + SANe —0A3h7 — OAoNy
—8Nohs + ON1As 0Ashe + ONoA: 22 N2+ Ok + NN
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Since 8 > 0, 7'\ + le N2 # 0if N, ..., A7 € R are not all zero.
Hence, 4 is a division algebra if D # 0 for A, . . ., A7 not all zero.

Multiplying the second row of D by \s, and then adding \; times the
first row and \; times the third row to the second row, yields

2o N2 — ONsA7 + OAshe  —OAoMr — hohe —0AaA7 + GAohe
)\6D = )\1 Z )\i2 )\6 Z )\iz )\7 Z )\i2
—0Nohg + N5 ONshe + GAoN1 2 N2 4 ON3hs - AN

Dividing the second row by 3 A%, then adding 8\, times the second row
to the first row and subtracting 6\; times the second row from the third
row, we obtain

2 N2 — 8Ash7 + 6A3hg + SA A2 —ONoMNs NN
A
Tl = M & M
—0Nohe 2N Z N2 4 SA3he + OAh2 — A5\,

If we expand out the right side and divide each term by X\, we arrive at

il—h—gD = (X A5 — sk + Ohahe 4 Aik2)” + 8NN
+ 80"\ — 8NN
The right side of this equation can only be zero if
0 = > N2 — 0hsh7 + dNzhe + AN
Ao% F (M2 + 0hihe + No?) + (Ns? 4 dNshe + Ne?)
+ (52 — 8hshs + A2).

Since |8] < 2, this can only be zero if all the N's are zero. Thus, we have
proved that 4 is a division algebra when 8 > 0 and [8] < 2.

To see that, when § # 0, the algebra 4 is not isomorphic to any of the
algebras defined in Section 2 of [3], we need only note that the latter
algebras cannot be generated by 2 elements, whereas 4 is generated by
x1 and x5 when & # 0.

6. The generalized pseudo-octonion algebras. Throughout this
section we assume that 4 is an 8-dimensional flexible division algebra over
R which contains no idempotent commuting with all of A. By Theorem
4.20, we know that there exists an idempotent e € 4 which decomposes 4
into4A = Re + A, ® E,;: from some a € R, a # 3. Moreover, C(e) =
Re + A4, is a 4-dimensional subalgebra and the eigenvalues of L, restricted
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to Eyj, are in G — R. The main purpose of this section is to prove that 4
is a GP-algebra. To aid our discussion, we present the following example.

Example 6.1. Recall that the GP-algebra .S = S(5, 3) is described in
Section 1 as the algebra of 3 X 3 complex skew-Hermitian matrices of
trace zero with “*”’ given by:

(6.2)  xxy =d[x, 3]+ 3ifxoy — Ftr (xy)I}.

Since S is an 8-dimensional flexible Lie-admissible real division algebra
with minus algebra isomorphic to the simple Lie algebra su#(3), it contains
no idempotent which commutes with every element of .S. Therefore, .S is
an algebra of the type that we are studying in this section.
Let {e;x} be a set of 3 X 3 matrix units. Then a basis for .S is given by:
e = 1e11 + tess — 2ie33,
f = —2te11 + tesn + tess,
X = '\/gielz + \/§i3211
fx = 336 + 2v31i)en + (—3vV356 + 1v/310)ea,
z = \/—giezz + \/gie:n:
ez = (=335 + $V30)ess + 335 + 1V 30)es,
w = (—35 - %i)€13 + (3 - %i)eM,
ew = (30 — (2 + 98%)1)e;s + (—36 — (2 4+ 96%)1)es.
Table 6.5 is a multiplication table for .S. The coefficients in this table
are all rational polynomials in § which have been simplified by using:
P= 1408 =@+ 1),
64) o=3@—1), o=3@r— 1),
p=3G—1), v=10+2).

It is apparent from Table 6.5 that e, fand g = —e — f are idempotents
in S. One can verify that C(e) is the linear span of {e, f, x, fx} and

Sip=1{y €S L.+ R.—I)y=0]}

(6.3)

It

is the linear span of {z, ez, w, ew}. For { = } + 31,
Ve={y €S| (L — L.+ {D)y = 0}

is such that Vi = Sj,». Furthermore, decomposing C(e) as in Theorem
4.20 gives C(e) = Re ® S_,.

Guided by this example, we begin our study of the algebra A using
the idempotent e given to us by Theorem 4.20. Our first aim is to show
that the decomposition of 4 relative to this idempotent into the spaces
defined in Section 4 has the property that E{;» = A1, = V¢. Thisinvolves
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TABLE 6.5.
The constants in this table are defined by (6.4).

fx

€z

ew

e f x fx 3 ez w ew
e —e—f —x —fx ez ez — 713 ew ew — TW
—e— f fx fx — 1x —z —ez w — ew TW
—x x — fx —e 2pe + of w ew 0z + ez T2 — pez
—fx ™ —ye — of —71e w — ew TW TZ — pes —71p2
z — ez -z —py"'w + vy lew Yy ~lw —f ve + 2pf yx yx — yfx
73 —ez —7my~ w4+ oy~ lew  —71py w4+ Ty lew —pe — e —7f Yfx TYX
w — ew ew %1 yez —px + fx —7x + ofx —vg eve + 2pvg
TW ew — TWw yez —7Tv2 — Y€z ¥x + pfx —7px + 7fx  —ve — Yy¢ —y7g
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considering the action of L,on 4¢ = C® 4.For¢ € C — R, let
U§ = {x € EI/ZI(Le2 - (g- + E)Le + ?(:I)Zx = 0},
(Ac)ijs = {x € Aclex + xe = x},
W, = {x € Ac|(L. — ¢I)x = 0}.

By Theorem 4.20, we know that the eigenvalues of L, restricted to E; .
are complex. Since E;,; is 4-dimensional, the characteristic polynomial
of Le on E1/2 is

A=+ OO0 = (b + BN+ pi)

for some ¢, p € C — R. Therefore, when { = por g, E 2 = U; and when
{#IJOI‘/:,El/g = V;@ V,‘.

LEMMA 6.6. For ¢, n € G — R,
() Ve N A1 © [We N (Ac)12] @ [We N (A,
) 1f Ve #0then¢ +§ =1,
(i) of Vi 5= V, are nonzero, then Ao = Ve @ V, = Eqps,
(iv) ifx € Ve, v € Vi Ve # V, then xy = —yx.

Proof. There are polynomials k,(N), ha(X) € G[A] such that
x=mhL)L,— Dx + ho(L,) (Lo — ().

Clearly, this representation of x satisfies part (i) forx € Vi M\ Ay)s.
Letx € (AC)1/2 N Wg', y € (Ac)l/zn W,,. Then

xe=x—ex=(1—¢)x and ye=y —ey = (1 — p)y
and using the flexible identity, (1.1), we obtain
6.7) (A —¢— pxy = (xe)y — x(ey) = y(ex) — (ye)x
= +n— yx.

Therefore, if { + p ## 1, then xy = —yx.
Now, let w € 41,2 V¢ with w = w; + w, where

w1 € (Ac)ip M Wi, w2 € (Ac)2 M W,
and similarly let z € 4,2 M V, with z = z; + 2, where
21 € (Ac)12MN Wy, 22 € (Ag)12 M W
Then if ¢ + u # 1 # ¢ 4+ §&, we can use equation (6.7) to obtain
(6.8) wz = (w1 + w2) (21 + 22) = wiz1 + Wiz2 + Wez1 + Wo2o
= — (21 + 22) (w1 + w2) = —2w,

so that wz = —zw. From this, we see that if { 4+ { # 1 then w? = —w?
forallw € A,,2 M V¢, which cannot occur with a nonzero w in a division
algebra. Therefore, if V; # 0, then { + { = 1 so that (ii) is proved.
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If Vi # V, are nonzero, then dim V; = 2 = dim V,and if 0 # w €
Ve Ay5,0 # 2 € VM Ay then w, ew is a basis for V; contained in
Ay, and z, ez is a basis for V, contained in 4,,,. That is, if Vi # V, are
nonzero then Vi, V, © A4y, and we see that A, = V; @ V,.

Part (iv) follows from (iii) and (6.8).

LEMMA 6.9. (i) E1)2 = 41)2.
(i) Uy = Veforallt € G — R.

Proof. Since { + § = 1 for Vi 5 0, upon setting r = {{ we have
Ur=1{z€ 4A: (L2 — L,+ 1)z = 0}.

Suppose Ei;2 # Ay Since Eijp = Uy or Eypp =V, ® V, for ¢,
p € G — R with V¢ # V,, we see by Lemma 6.6 (iii) that this supposi-
tion implies E,,;» = U;. Hence, there is some z € U; such that ez + ze =
2 4+ x for some x € A1), x # 0. Let

2= (L& — L,+ 1)z € V..
Then

g =elez) —ez+ 712 =e(z+x —2¢) —ez + 73
=ex —eze+ 12 =ex — (3+x — 2e)e + 72

= ex — xe — ze + (ze)e + 72
and since x € A;,. this implies
(6.10) (ze)e — z¢e = 2" + x — 2ex + 73.
From the definition of 2/, the flexible identity, and (6.10) we have
g — 1z =e(ez) —ez = (ze)e —ze =3 +x — 2ex — 72
which upon simplifying gives
(6.11) x = 2ex.

But (6.11) implies that 3 is an eigenvalue of L, restricted to E, 5, contrary
to Theorem 4.20. Therefore, E;;» = A1y and Uy € Aq)o.

Once again let z € U; with 2’ = (L2 — L, + 7l)z and let w € V.
Then substituting w, e, ez into the flexible identity we see that

w(e(ez)) + (ez) (ew) = (we)(ez) + (eze)w.
After recalling that e(ez) — ez + 72 = 5’ and w,z € 4,2, we have

wez — 1z + 3') + (e2)(ew) = (w — ew)(e2) + (ez — (e(ez))w
or

(6.12) (ez) o (ew) = r(woz) —woz.
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Now substituting z, e, ew into the flexible identity, we obtain

z(ew — Tw) + (ew)(ez) = z(e(ew)) + (ew) (ez)
= (z¢) (ew) + (ewe)z = (z — ez) (ew) + (e(w — ew))z
= z(ew) — (ez)(ew) + (ew)z — (e(ew))sz,

and therefore
(6.13) (ez) o (ew) = 7(w o0 2).

From (6.12) and (6.13), we have w 0 2’ = 0. Setting w = 2’ gives (z')2 = 0
which implies 2/ = 0. This means that

(L — L.+ 7)z=0 forallz € Uy,
and hence V; = Us.

LemMA 6.14. (i) C(e)41/2 € A1z and A,1),C(e) € A,
(11) A= C(e) @ V{, i.e., A1/2 = Vg-.

Proof. Since C(e) = Re + A, fora € R, a # %, and L,, R, map 4,2
onto A;,, the proof of (i) is complete once we have shown A,4,s,
A124. € Ay)s. By Lemmas 6.6 and 6.9, 41,2, = Veor Vy @ V, and hence
it suffices to show 4.V, Vide & A1e. Also, by Lemmas 6.6 and 6.9,

Ve © We @ Wr S (Ac) 1,2

and therefore we need only show that 4, W, Wid. © (Ac¢)1/2- We prove
only 4, W, € (Ac)1,2, since the other proof is similar.
Letx € 4, and z € W;. Then

eo[x,z] = [x,e0z] = [x, 2]

and hence [x, z] € (A¢)1,2. Also, the flexible identity gives
(ze)x + (xe)z = z(ex) + x(ez)

or

{ox + axz = azx + {xz
so that

(@ — Oxz = (@ — {)zx.
Hence

(@ — §)xz

and therefore

(@ = Ozx + (¢ — Oax,

It

¢ - $)zx (@ = 9lx, 2] € (Ac)rpe.

The proof of (i) is complete.
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Suppose Vi # V,and 0 # z € Viyand 0 # w € V,. Then, by Lemma
6.6, we have
wz = —zw = 3w, z].
Also, w o {e, z] = 0 since [e, z] € V,. Thus

(wz)oe = iw,z]oe = F{woe,z] — twole z] = 2w, 2] = ws

so that wz € A;,.. But this implies R, maps the 6-dimensional space
C(e) + V, into the 4-dimensional space 4,2, and hence R, is singular,
contrary to 4 being a division algebra.

Having completed our first task of proving E,;» = 41,2 = V¢, we turn
our attention to showing that « = —1. Our proof involves idempotents
other than e, so that from this point on we denote 4;,2 by A4i,:(e),
Ae by Ae(e) etc.

LEMMA 6.15. Let o % § be that real number such that C(e) = Re + A.(e).

Then

)a< 3

(ii) each 2-dimensional subalgebra B of C(e) has a basis e, x where
x € Aa(e), x? = —e, and B contains exactly three idempotents, namely, e

and the two elements given by

(6.16) u = Le :t——-—-“l—an.

2a 2a

Proof. By Lemma 4.19, there exist idempotents in C(e) distinct from e.
Let # be any such idempotent. Then, by Lemma 5.11, u = Bie + Bax for
some 81, B2 € R, x € A,(e) with x? = —e. Now,

Bie + Box = u = u? = Bi%e + 26:18ax — Bi’e
which is equivalent to
B2 = 2818:a and B.2 = B2 — Bu.

Since # # ¢, B2 # 0 and hence

1 2 _ o2 -1 1 _1
51=% and B2 = B 061—4012_201—- az(l_za)-
In particular, we see that @ < 3 since 82 > 0, and u is an idempotent
whenever
R SO V8 Skt 30
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Since by Lemma 5.11, each 2-dimensional subalgebra B of C(e) has such
a basis e, x, the argument above gives part (ii).

LEMMA 6.17. Let 3 € Ay;2(e) and u = (1/8)2* be an idempotent. Then
(1) C(u) ts a 4-dimensional subalgebra,
(ii) C(u) = Re @ An (u) for somea’ € R,a’ < %,
(iii) 4 = C(u) ® A1,2(u) and the eigenvalues of L, restricted to A1,2(u)
arein G — R.

Proof. From Lemma 4.19, e, u form a basis for a 2-dimensional sub-
algebra of C(e). Hence by Lemma 6.15, u is given by (6.16), and

Ly,(e) = él(_x e+ _._17—2_a x,

L) =T =20y

Ly
5%

The restriction of L, + R, to Re ® Rx has characteristic polynomial

A — (1+1>>\+1+1(1—2a).
(4 o (o3

This polynomial does not have 1 for a root, since a < 3%. Therefore,
A # Ru @ E,;2(u) and hence, by Theorem 4.5, C(u) is a subalgebra.
Since C(#) is not 8-dimensional by assumption and «, e, z are linearly
independent in C(u), we conclude that C(u) is 4-dimensional.

From Theorem 4.5 and Corollary 4.17, it follows that

A=Cu) ®@ Eip(u) and C(u) = Ru + A, (u)

for some o' € R. By Corollary 4.17 and Lemma 4.15, L, has complex
eigenvalues of E;;2(#) and hence, by Lemma 6.9, E;;2(u) = A1,2(u).
Finally, we note that Lemma 6.15 gives us o’ < %.

For a fixed 20 € A1,2(e), let xo € A4,(e) be such that the subalgebra
Re @ Rz? has ¢, x for a basis and xy2 = —e. From this point on, e; and
e; denote the two idempotents given by (6.16) with x = xo. Also, when it
is convenient we denote e by e;, and « by a;.

LEMMA 6.18. For 1 = 1, 2, 3, let a; € R be such that
Cle;) = Re; @ Aq;(eq).
Then a; = —1.

Proof. Suppose u = Bie + Box is e; (or e3). Then by Theorem 5.12,
L, is diagonalizable on C(u) with eigenvalues 1 and ay = a; (or az resp.).
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Let v = vie + v2x0 be an eigenvector of L, belonging to ag. Then

(B1e + B2xo) (1€ + v2x0) = (Bry:1 — Bov)e + (B2v1 + Bryz)axe
= apy1e + aoyaXo,

which yields
(B1 — a0)y1 — B2y2 = 0 and  aBey: + a(B1 — ao)y2 = 0.

The determinant of the coefficient matrix of this linear system in vy, v, is
A(By, B2) = ao® — (a + 1)Biao + a(Bi® + B2?)

which is zero since v 3 0. Substituting the coordinates of e; or e; into
A(B1, B2), we have

a+1 l—«a
% @1 o,

a02 + = Oy

or equivalently
20002 — (1 + a)ag + (1 — a) = 0.

From the quadratic formula ey = 1 or (1 — @)/2a, and hence oy =

(1 — a)/2a since @y < 3. In particular, @; = a3. Similarly, @ = a,. Thus
a=(1—-a)/2a or 2224+ a—1=0.

Factoring this polynomial, we find that the possible values of a are —1

and 1, and hencea = —1. Thereforea = a; = a3 = —1.

From Lemma 6.18 and the definition of e; and e3, it follows that each of
e = ey, €y, €3 1s the negative of the sum of the other two. Also, Lemmas 6.17
and 6.18 show us some similarities among the decompositions of 4 relative
to these idempotents which are further exhibited by

LEMMA 6.19. For eachi = 1,2, 3,let {; € C — R be such that A,,2(e;) =
Vi and assume v, = ¢ ;. Then, for 1, j, k distinct, we have
(1) dim C(e;) M Ayip2(ex) = 2 and

Aipp(er) = Cles) M Arpa(e;) ® Cle;) M Arpales),
(i) 71 = 79 = 73.
Proof. Using ¢, = —e; — e;and x € C(e;) M Ai2(e;), we have
R — Ly +7;1)x = (—e; —e;)(x —ex) — (x —ex) + 75

= ej(ejx) — €;X + TX = 0.

The roots of A2 — N + 7, are complex. Therefore, x is in the subspace on
which L, has complex roots. This means

x € Vi = Aije(er).
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But the minimum polynomial of L, on 4,2(e;) is \2 — N + 7, and hence
it must be the case that r; = 7;.

In order to obtain the direct sum in part (i), first note that the above
argument gives us that

Cle) M Arjale;) + Cle;) M Avpaler) S Aijpaler)
and note that
(6.20) [C(es) M Arpa(e)] M [Cley) M Arpa(e)] © Cler) M Arjales) = 0.

Let x € C(e;) M Ayj2(e;) and z2 € C(e;) M Arja(e;). Then x and ejx are
linearly independent in C(e;) M Ai,2(e;), and z and ez are linearly
independent in C(e;) M A, ,2(e;). Now, it follows easily that

Avjp(er) = Cler) M Arple;) @ Cley) M Arjales)
and C(e;) M Ai,2(ex) is 2-dimensional.

Lemma 6.6 tells us that {; + {; = 1. Combining this with the second
part of Lemma 6.19, we deduce that there is some real number § # 0 such
that {; is one of the complex numbers given by 3 =+ é:. From this, we
see that the common value 71 = 7, = 73, which we denote by 7, is greater
than 1.

For each pair 7 £ j in {1, 2, 3}, it is convenient to introduce the nota-
tion: X; = C(e;) M Aij2(e;) and C = C(e;) M C(ey). Since

Cled) M Arpler) = Cle)) NIC() N Avple;) ® Cles) N Arpe)]
= Cles) M Aip2(ey),

the definition of X ; is independent of which e; # e; we use to define it.
Also, C does not depend on the choice of 7z and j because ¢, = —e; — e; €
C.

For 1, j, k distinct, X ;X ; © X, since Lemma 6.14 applies to e; and e;
as well as to e, = e. We have seen, in Section 5, that L,, and R, are
diagonalizable on the subalgebra C(e;). Since X ; is invariant under L,
and R,;, we can conclude, by employing Lemma 6.18, that X, is an

eigenspace belonging to eigenvalue —1 for both transformations L,; and
R,,.

LEMMA 6.21. Let ¢, ¢ and p be defined by (6.4) and let x; be a zonzero
element of X ;. Then {e;, e;, x;, ejx;} 1s a basis for C(e;), and for some
6 € R the corresponding multiplication table is given by:

€ €; X €X;
€; €; —€; — € —X; —€;X;
Ej —e€; — e]' e,- ejxi ejxi— TX
X —X; X — €% —Oei 2p061 + <p06j
€% —e€;X; TX ; —¢06,— - (;306]» ‘07’61
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Proof. Let x; € X ;. By the definition of the idempotents e, e, e; it is
clear that e; € C(e;). Since x; € X; = C(e;) M Ai2(e;), we know, by
Lemma 6.14, that e;x; € X ;. Now, it follows that {e;, ¢}, x4, e;x;} is a basis
of C(e;) because x;, esx; are linearly independent in 41,2(e;) and e, e;
are linearly independent in C(e;).

Since —e; — e; = e, = > = e; + e; + 2e.e; we know that ee; =
—e; — e;. The validity of the remaining entries in the first two rows and
the first two columns follows easily from the definitions of C and X,.

Lemma 4.19 and Table 5.13 imply that there is some positive 6 in R
such that # = —6x ;% is an idempotent in C. Since

x; € Aipa(ey) M Arpaler),

x; does not commute with e; or e;, but clearly x; does commute with «.
Since Lemma 6.15 tells us that the only idempotents in C are e;, e; and e3,
we conclude that u = e,.

Next using (6.13) with 2 = x;, = w and e = ¢; we have

(6.22) (emx:)? = —bre,.
With this we see that only (ex;)x; and x,ex, remain to be determined.
Since (x.e;)x; = (x; — ejxi)x; = x.2 — (ex:)x,, it is clear that once

x e, is known then (e;jx;)x,; can be easily computed. This equation can
be reformulated as

(6.23) (ejxi)ox; = x2 = —0e,.

From (e;jx;) (x:(esx:)) = ((ejxi)x;) (ejx;) and (6.23), it follows that
(6.24) ((ej:)x:) o (ejx;) = e,

Using x;((ejx:)x;) = (xi(ejx:))x; we obtain the corresponding equation
(6.25) ((ex:)x;) ox; = Ox,.

Suppose now (ex;)x; = ae; + be; + cx; + dex;. Then placing this
expression into (6.24) and using that portion of the table already deter-
mined and equation (6.23), we have

(6.26) (—cb — 2dr8)e; + (b — 2a)ex; = bejx;.

Making similar use of (6.25) yields

(6.27) (—2c0 — db)e; + (b — 2a)x; = bx..

From (6.26) and (6.27), we can conclude d6(4r — 1) = 0. Noting that

r > % as indicated earlier, we haved = 0 = c.
To determine a and b, we apply the flexible identity and deduce
(6.28) —26re; = 2(epx;)?
= —((esxi)xi)e; + e;(xi(exq)) + (esx)xs
= (0 4+ 3a)e; + (0 + 2a — b)e;.
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Therefore,
a=—30Q2r +1) = =y, b= —be.
The proof is completed by using (6.23) to find x;(e;x ).

Note that the multiplication table of Lemma 6.21 tells us that C =
Re; ® Re; for each e;  e;.

In order to describe certain symmetries that occur within the multi-
plication on 4 we define the functions Fand Gon AX 4 X 4 into 4 by

F(r,s,t) = r(st) — p(rt) — v(tr)
G(r,s,t) = (st)yr — y(rt) — o(tr)
where v, p, and ¢ are as given by (6.4).
LEMMA 6.29. F and Gvanishon {(r,s,t)|s = e, v € X, t € X, forj # 1}.

Proof. Lets = e;,r € X;,andt € X, fore # j. Then, sincet € A1,2(e;)
= V¢(e;), we can use (1.1) to obtain

r(ei) — 7(rt) — (eit)r = r(e;(eit)) + (ei)(eir)
= (re;)(eit) + ((eit)e;)r = —r(eit) + rtr

and hence we have
(6.30) 2r(eg) — (eit)r = r(rot).
Also,
r(eit) + tler) = (re)t + (te))r = (rey)t + tr — (eit)r
simplifies to become
(6.31) 7o (eit) = 2tr — rt.
Combining (6.30) and (6.31) gives
(6.32) 3r(est) = (r+ 2)tr + (+ — )1t
(6.33) 3(et)r = (4 — r)tr — (v + 2)rt.
The lemma follows from (6.32) and (6.33).

LEMMA 6.34. Let 7 be the 3-cycle (1 2 3). Then for each v = 1,2, 3, there
existsy; € X ; such that

(i) ¥y = —ey,

(i) Yr(oY2cy = '\/;yi-

Proof. For each 17, let x; be any nonzero element in X, and let ; € R
be the value in the table of Lemma 6.21. Then part (i) is satisfied by

1
Vi —\/o—txi-

https://doi.org/10.4153/CJM-1982-039-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-039-x

DIVISION ALGEBRAS 585

For one fixed ¢« we may choose x; = Y (y¥r2(s) since X X2y & X ;. Then

Yr(pYr2(iy = '\/g-tyi-

We show that this particular 6, is v and, also for this ¢, that

Ve (Vi = \/;ywu)-

This is sufficient to prove part (ii), because once we have obtained this
we can begin the process over again to get

YiYr(iy = \/;ywz(i)-

To simplify the notation, we take §; = 6, x3 = ¥y, and show 6 = «
and y:x3 = yy1.

By Lemma 6.21, we know that x3, e;x3 form a basis for X; and hence
Yoy1 = axz + beyx; for some a, b € R. Since x3 € A;,2(e1) = Vi(e1), when
we substitute y,, y1, ¢; into (1.1) we obtain

(6.35) 0 = (yay1)er + (ey1)y: — y2(y1e1) — ex(y1y2)
= 2a+br — Lx;+ (—a + b — 1)exs.

Solving the two coordinate equations for @ and b establishes

(6-36) yy1 = ( + 2>x3 + (T i 2)61x3 = “P‘Y*lxs + ‘Y_lelx:;-

Let x5y, = cy1 + dexy; and yax3; = c1y1 + dieqy:. Substituting these two
expressions into 0 = (x3y2)es + (e2y2)xs — x3(y202) — ea(y2x3) and
simplifying produces

= (26 — (1 + dr + le)yl + (—C — C1 + d — 2d1)€2y1.

By solving the two coordinate equations for ¢; and d; we obtain

_3rd+ (4 —1)c d —3c+(1—r)d
B T+ 2 T r+2
Having found one relationship between the coordinates of y.x; and

X3Y2, we generate a second so that ¢ and d may be found. Lemma 6.29
tells us

(6.37)

0 = F(ys, €2, x3) = y2(eaxs) — pyaxs — ¥X3Ya

Substituting e; = —e; — ¢; into this equation gives

(6.38) ya(eixs) = oyaxs — ¥X3zYa.

Now we substitute y1, 2, ¥2 into (1.1) and use (6.36) and (6.38) to obtain
xy: = (yy2)y: = —y2y1 + yy2” + y2(y2y1)

—y1 + 2e:y1 + ( T 2)yzxs

3 [4—7 _'r—|-2 ]
r+2l 3 ¥ 3 Y9r)-

It

+
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Therefore,

5—2
(6.39) 2x3y, = —y1 -+ 2e2y1 + (9——1>y2x3.
T+ 2

Expressing each term of (6.39) as a linear combination of y; and esy;
and using (6.37), we obtain the following two equations corresponding
to the two coordinates:
—3(r 4+ 2)2 (71 — 4)c — (51 — 27%)d,
2r4+2)2 = (65— 2r)c + (57 + 1)d.

The determinant of the coefficient matrix of this linear system in ¢ and d
is

Il

A(r) = 4r% 4 1572 + 127 — 4,

which is easily seen to be positive whenever 7 > +. From this we con-
clude that there is a unique ¢ and d solving this system. One can check

thatc = —p, d = 1 is this solution so that from (6.37) we have ¢; = ¥
and d; = 0. Therefore,

(6.40) x5y2 = —py1 + ey

(6.41)  yox3 = yy1.

Finally, we show 8 = y. We use (6.36), (6.40), (6.41), and the table of
Lemma 6.21 to simplify

—les = x3* = (y1y2)%5 = — (X3¥2)Y2 + y1(¥axs) + x3(¥2y1).

After doing this and using the values of equation (6.4), we obtain
—bes = (—p+ ¥ — ¢ — v+ ety e+ (—¢ + 3pfy e

from which it follows easily that § = v. Therefore x;> = —+e; so that
ys = x3/A/7v has the properties that y;> = —e; and, by (6.41), yyy; =
/v ¥1. This completes the proof.

We can now prove the main result of this section.

THEOREM 6.42. Let A be an 8-dimensional flexible division algebra over R
containing no idempotent which commutes with every element of A. Then A
is a generalized pseudo-octonion algebra.

Proof. The algebra 4 has an idempotent esuch that 4 = C(e) @ 4,,2(e)
where C(e) is a 4-dimensional subalgebra and 4,,,(¢) = V¢(e), for some
¢ € G — R. We prove that 4 is uniquely determined by the real number
7 = ¢ which we have seen to be greater than .

Let e, €2, €3 be the three idempotents in C and let vy, ¥, v3 be the cor-
responding elements chosen to satisfy Lemma 6.34. Then using y,; instead
of x; in the multiplication table of Lemma 6.21, we see that the multi-
plication constants of C(e;) are uniquely determined by 7.
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Fix 7, j distinct elements in {1, 2, 3}. To see that the products X ;X ; and
X ;X ; are uniquely determined by 7, let v, e;y; be the basis of X; and
¥, ey; be the basis of X ;. Without loss of generality, we may assume
1 = 2,7 = 3 since we have complete symmetry among the three cases.

Lemma 6.29 allows us to express each of y.(exys), vs(esys), (e2ys)ye,
(e3y2)ys, (esy2) (e2ys) and (e2y3) (esy2) as a linear combination of y,y; and
y3y2 where the two coefficients are certain determined expressions in 7.
From (6.40) and (6.41) we have that y.y; and y;y, are linear combina-
tions of y; and eyy; whose coefficients are uniquely determined by 7.
Therefore, the products XX 3 and X3X, are uniquely expressable in terms
of 7 and, by symmetry, X ;X ; and X ,X; are. Therefore, since 4 = C @
X1 ® X, ® X3, we know that the multiplication on 4 is determined by 7.
But as indicated in Example 6.1, corresponding to each 7 € R, 7 > 1, there
is a GP-algebra S(8, $) which decomposes 4 into C(e) @ A4,,2(e) with
Ay;(e) = Vi(e) and 7 = ¢{. Therefore, 4 is this GP-algebra.

Remark. One can use the relations we have generated to construct a
multiplication table for 4. The result is exactly Table 6.5 where the basis
there is replaced by ey, €3, ¥1, €2¥1, V2, €1V2, X3, €1X3 respectively.

Theorem 6.42 is the final result required to establish our main theorem.

Proof of Theorem 1.4. Let A be any finite dimensional flexible division
algebra over the real numbers. Then 4 can be seen to be as indicated by
(a), (b) or (c) of Theorem 1.4 in the following way. In the case that 4 is
1 or 2-dimensional, Corollary 4.18 implies that 4 is commutative and
hence A4 is described by part (a¢). When the dimension of 4 is 4 or 8,
Theorem 4.20 reduces the classification of 4 to two cases. One of these
cases, namely when 4 = C(e) for some idempotent ¢ in 4, is treated by
Theorem 5.13 where it is shown to be described by part (). The other
case is shown to correspond to part (¢) by Theorem 6.42. Since the con-
verse has been argued in Section 1, the proof is complete.
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