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REAL FLEXIBLE DIVISION ALGEBRAS 

GEORGIA M. BENKART, DANIEL J. BRITTEN AND J. MARSHALL OSBORN 

1. Introduction. In this paper we classify finite-dimensional flexible 
division algebras over the real numbers. We show that every such algebra 
is either (i) commutative and of dimension one or two, (ii) a slight 
variant of a noncommutative Jordan algebra of degree two, or (iii) an 
algebra defined by putting a certain product on the 3 X 3 complex 
skew-Hermitian matrices of trace zero. A precise statement of this result 
is given at the end of this section after we have developed the necessary 
background and terminology. In Section 3 we show that, if one also 
assumes that the algebra is Lie-admissible, then the structure follows 
rapidly from results in [2] and [3]. 

All algebras in this paper will be assumed to be finite-dimensional. A 
nonassociative algebra A is called flexible if (xy)x = x(yx) for all x, y Ç A. 
Most frequently, we will be using the linearized form 

(1.1) (xy)z + (zy)x = x(yz) + z(yx) 

of the flexible identity. A is noncommutative Jordan if it is flexible and also 
satisfies the identity {x2y)x = x2(yx) for all x, y Ç A. If xy = 0 for 
x, y G A implies that either x = 0 or y = 0, A is said to be a division 
algebra. Every real division algebra is known to have dimension 1, 2, 4, 
or 8, and hence so does every subalgebra of a real division algebra ([7] and 
[8]). 

Defining the products [x, y] = xy — yx and x o y = xy + yx in A, 
we denote by A~ and A+ the algebras obtained from A by replacing the 
product xy in A by [x, y] and x o y respectively. It is known [1] that the 
operator ad^ on A defined by ad^ (y) = [x, y] is a derivation of A+ for 
all x Ç A if and only if A is flexible. A is called Lie-admissible if A~ is 
a Lie algebra. A helpful reformulation of this definition is that A is Lie-
admissible if and only if adx is a derivation of A~ for each x £ A. From 
this it is clear that A is both flexible and Lie-admissible if and only if ad* 
is a derivation of A for all x £ A. 

The algebra A is called quadratic if A has an identity element e, and 
for each x £ A there exist real numbers T(x) and N(x) such that 

x2 - T(x)x + N{x)e = 0. 

We need to use a few of the basic properties of such algebras developed 
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in [12]. In a real quadratic algebra A, the set 

V = {x e A\x g Re, x2 G Re} 
where R denotes the real numbers is a vector space, and A = Re © V. 
For x, y £ V, we write xy = — (x, 3>)e + x X 3>, where — (x, y)e and 
x X y are the components of xy in Re and F respectively. Then (x, y) is 
a bilinear form on F, and x X y = — y X x. It is convenient to extend 
the bilinear form to all of A by defining (e, e) = 1 and (e, x) = 0 for 
x £ F. For future reference, we state the most relevant elementary facts 
about quadratic algebras pertaining to flexibility as 

LEMMA 1.2. For a quadratic algebra A, the following properties are 
equivalent: 

(i) The bilinear form (x,y) on A is symmetric, 
(ii) xy + yx = — 2(x, y)eforx, y G F 

(iii) [x,y] Ç F/0rx,;y G F. 
If these properties hold, then the following conditions are equivalent: 

(iv) (x,xy) = 0, for all x, y £ F, 
(v) (x^, z) = (x,yz),for allx,y,z £ F. 

Furthermore, A is flexible if and only if all these properties hold. 

A real quadratic algebra 4̂ is a division algebra if and only if the bilinear 
form is positive definite on A and if for any linearly independent x, y 6 V, 
the elements x, y, x X y are linearly independent. If A is a flexible 
quadratic algebra, then A is also noncommutative Jordan, since 

(x2y)x = ((T(x)x — N(x)e)y)x = T(x)(xy)x — N(x){ey)x 

= T(x)x(yx) — N(x)e(yx) = (T(x)x — N(x)e)(yx) = x2(yx). 

Let P and Q be two nonsingular linear transformations on an algebra 
A, and let ' V be the operation on A defined by x * y = P(x)Q(y). The 
algebra (A, *) is called a principal isotope oî A. lî A is a real flexible 
quadratic algebra, and if P and Q are defined by P(e) = e = Q(e) and by 
P(x) = ax = Q(x) for all x G V and for some fixed nonzero a ^ R , then 
we call (A j *) the scalar isotope of A determined by a, and we denote it by 
aA. We want to show that aA is flexible if A is flexible. Choosing fi, y Ç R 
and x, y Ç F, and using (x, y) = (y, x), (x, x X y) = 0, and the fact that 
e commutes with everything in aA, we obtain 

[(fie + x)* (ye + y)]* (fie + x) - (fie + x)*[(ye +y)* (fie + x)] 
= [fiye — a2(x, y)e + ayx + ocfiy + a2x X y] * (0e + x) 

— (0e + x) * [70e — a2(y, x)e + cryx + afiy + a2;y X x] 
= [o!7X + afty + a2x X y] * (fie + x) 

— (fie + x) * [ayx + afiy + ct2^ X x] 
= [«YX + afty + a2x X y] * x — x* [«7X + a/3j + a2y X x] 

+ a2fi(x X y) * e — a2fie * (y X x) 
= «8fty X x + a4(x X y) X x - a3£x X y — a4x X (y X x) 

+ a30x Xy - a*fiy X x = 0. 

https://doi.org/10.4153/CJM-1982-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-039-x


552 G. M. BENKART, D. J. BRITTEN AND J. M. OSBORN 

Thus aA is flexible when A is. It is also clear from the definition of aA that 
it is a division algebra whenever A is. 

Next, we recall that the set o f w X w complex skew-Hermitian matrices 
of trace zero forms a Lie algebra under the commutator [x, y], and this is 
a simple Lie algebra over the reals which is denoted by su(n). When 
n = 3, this set of matrices is also closed under the commutative operation 
i{x o y — § tr (xy)I), where tr is the trace, i = y/—l, and I is the 3 X 3 
identity matrix. It is shown in Section 3 of [3] that the set 5(a, /3) of 3 X 3 
complex skew-Hermitian matrices of trace zero under the operation 

x * y — a[xj y] + fii{x o y — f tr (xy)I\ 

is a flexible real division algebra for any nonzero a, f$ Ç R. Now S(a, /3) 
is isomorphic to S(ay, fiy) for any nonzero y (E R using the map x —> yx 
for all x Ç 5(a, £). Thus, up to isomorphism, we can restrict our atten­
tion to the algebra S(8, J) , which has the product 

(1.3) x * y = ô[x, y] + §i{x 03/— f tr (xy)I\ 

for some nonzero ô £ R. When ô = ± \ / 3 / 2 , this algebra was first 
studied by Okubo [9], and was called by him the pseudo-octonions. For 
this reason, we call the algebras 5(ô, J) defined using (1.3) generalized 
pseudo-octonion algebras, or GP-algebras for short. 

We are now able to state our main result precisely. 

THEOREM 1.4. If A is a finite-dimensional real algebra, then A is a flexible 
division algebra if and only if A has one of the following forms: 

(a) A is a commutative division algebra of dimension I or 2, 
(b) A is isomorphic to a scalar isotope aB of'some quadratic real division 

algebra B which is flexible {and hence noncommutative Jordan), or 
(c) A is a generalized pseudo-octonion algebra. 

It is clear from the preceding discussion that algebras of these three 
types are real flexible division algebras, and most of the remainder of the 
paper is devoted to showing that these are the only types which occur. 
Real commutative division algebras are considered in Section 2, and we 
classify them in Theorem 2.3. Scalar isotopes of flexible quadratic divi­
sion algebras are discussed in Section 5, where we show (Theorem 5.13) 
that A has to be of this type if A is a real flexible division algebra of 
dimension 4 or 8 containing an idempotent commuting with every element 
of A. In Section 6, the real flexible division algebras of dimension 8 with­
out such an idempotent are shown to be GP-algebras. The reduction to 
the cases considered in Sections 5 and 6 and the basic results needed for 
these sections (and hence for Theorem 1.4) are found in Section 4. 

The structure of real flexible Lie-admissible division algebras can be 
found by combining the results of Theorem 1.4 with Proposition 5.15. 
However, this important special case can be derived much more quickly 
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using results from [2] and [3], and without using any of the results in 
Sections 4-6. Such a proof of the Lie-admissible case is given in Section 3. 

2. Commutative division algebras. The task of investigating real 
commutative division algebras is greatly simplified by the following 
result of Hopf. 

THEOREM 2.1. [6]. Every real commutative division algebra has dimension 
lor 2. 

We begin our study with 

LEMMA 2.2. Every real commutative division algebra A contains an 
idempotent. 

Proof. Let X \z Jx} X 9^ 0. If the subalgebra generated by x is 1-dimen­
sional, then x2 = ôx for some ô £ R, and e = (l/ô)x is an idempotent. By 
Theorem 2.1, we may assume that x generates a 2-dimensional subalgebra 
with basis x, x2 and multiplication given by 

xx2 — x2x = ax + bx2, (x2)2 = ex + dx2 

for some a, b, c, d £ R. Then for any X G R, the element y = Xx + *2 

satisfies 

yt = \2#2 _|_ 2\(ax + bx2) + ex + dx2. 

Thus, y2 = [xy for some M £ R if and only if 

2Xa + c = X/x, X2 + 2X6 + d = M-

This system has a solution if and only if 

X3 + 2\2b + (d - 2a)\ - c = 0 

has a solution. Since every cubic polynomial possesses a root in R, there 
exists some X G R which satisfies this equation. For this X, y2 = \xy where 
\i = X2 -f 2X& + d, and e = (l/n)y is an idempotent of A. 

THEOREM 2.3. If A is a real commutative division algebra of dimension 2, 
then A has a basis e, x with the property that multiplication is given by one of 
the tables 

(2.4) 

from some a, 0, y G R. The algebras over R defined by these tables are division 
algebras if and only if the constants in the multiplication tables satisfy the 
relations 4a2 > y2 and 0 < 0 respectively. 

e e ax e e e + x 
X ax — e + yx X e + x &e 
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Proof. By Lemma 2.2, A contains an idempotent e. Let Le be the 
linear transformation on A defined by Ley = ey for y Ç A, and suppose 
first that Le is diagonalizable. Then there exists a 6 R and x Ç A such 
that ex = ax. Letting x2 = fie + 7X, we calculate that the matrix of left 
multiplication by \ie + X2x relative to the basis e, x has determinant 
given by 

otXi + 7X1X2 — afi\2 • 
Xi fi\2 

I (2X2 «Xi + 7X21 

Thus, A is a division algebra if and only if the quadratic form aXi2 + 
7X1X2 — afi\2

2 does not represent zero over R, which is equivalent to the 
discriminant of the form being negative: 

0 > 72 + 4a2/3. 

If A is a division algebra, clearly fi < 0. Replacing x by ( — fi)~1/2x, we 
can assume that fi = — 1 , to give the first table in (2.4). When fi — — 1, 
the condition for i to be a division algebra reduces to 4a2 > 72. 

If Le is not diagonalizable, then there exists y 6 A with 63/ = e + y. 
If ;y2 = be + 73/, the element x = — \^e + y satisfies 

ex = — -|7^ + e + ^ = ^ + x, x2 

= |72e — y(e + y) + ôe + yy = fie, 

where fi = J72 — 7 + 6. This gives the second table in (2.4). The deter­
minant of the matrix of left multiplication by Xie + X2x relative to the 
basis e, x is 

Xi + X2 Xi + fi\2 

X2 Xi 
= Xi2 - fi\2\ 

which does not represent zero if and only if fi < 0. 

3. Real flexible Lie-admissible division algebras. In this section 
we classify real flexible division algebras under the added assumption of 
Lie-admissibility. Since the hypothesis that A is flexible and Lie-admis­
sible is equivalent to assuming that ada is a derivation of A for each a in 
A, our technique is to use the derivation algebra Der A of A to severely 
limit the possibilities for A. Our proof relies heavily on the following 
theorem which determines those Lie algebras which can arise as the 
derivation algebra of a real division algebra. 

THEOREM 3.1. [2]. Let S be a subalgebra of Der A for A a real division 
algebra. 

(i) If dim A = 1,2, thenS = 0. 
(ii) If dim ^ 4 = 4 , then S is isomorphic to su(2) or dim S = 0 or 1. 

(iii) If dim ^4=8 , then S is isomorphic to one of the following Lie algebras: 
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1. compact (J2 

2. su(3) 
3. su(2) 0 su(2) 
4. su(2) © N where N is an abelian ideal and dim N = 0 or 1 
5. iV î^fore iV w abelian and dim iV = 0, 1, or 2. 
In particular, if S = Der A, then Der A is one of the Lie algebras listed 

above. 

One may view A as a module for a subalgebra S of Der A, and if 5 is 
semisimple, then A decomposes into the direct sum of irreducible 5-
submodules. In a subsequent investigation [3], Theorem 3.1 together 
with the representation theory of semisimple Lie agebras was used to 
analyze the structure of A. 

Suppose now that A is a real flexible Lie-admissible division algebra. 
Then A~ is a Lie algebra, and the transformation A~ —» Der A given by 
ad is a Lie homomorphism with kernel Z where 

Z = {z e A\ [z,x] = 0 for all x £ A}. 

LEMMA 3.2. Zis a subalgebra of A. 

Proof. For y, z Ç Z and any x M w e have 

[3/2, x] = £y, x]s + y [2, x] = 0. 

The space Z is also a Lie ideal of A~ and A~/Z is isomorphic to a Lie 
subalgebra S of Der A, where 5 then is one of the Lie algebras listed in 
Theorem 3.1. For any Lie subalgebra L of Der A, the space Z also has 
one further property: Z is an L-submodule of A. For if d G L, z G Z and 
x Ç i , then 

[d(z), x] = d[z, x] - [z, d(x)] = 0. 

We are now ready to state and prove our classification result. 

THEOREM 3.3. Assume A is a real flexible Lie-admissible division algebra. 
(i) If dim A = 1 or 2, then A is commutative. 

(ii) If dim A = 4, £fow /fore is a basis e, xi, X2, #3 0/ 4̂ swcft /fo/ /fo 
multiplication is given by Table 3.4 below for a, 0 Ç R witffe a ^ O awd 0 > 0. 

e X\ X2 X3 

e ax 1 ax 2 ax 3 

ax\ -fie X3 — x2 

ax 2 ~Xz -fie Xi 

ax 3 X2 — Xi -fie 

(iii) 7/ dim ^ 4 = 8 , then A is a generalized pseudo-octonion algebra. 
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Proof. As we noted previously, if A is a flexible Lie-admissible real 
division algebra, then A~/Z is isomorphic to a subalgebra 5 of Der A. 

Assume first that dim A = 1 or 2. Then by Theorem 3.1, 5 = 0, so that 
A = Z and A is commutative. 

We suppose next that dim A = 4. If 5 = 0, then A is commutative, 
which is impossible by Hopf's result. The case dim 5 = 1 cannot occur, 
because if it did the subalgebra Z would be 3-dimensional. Therefore 6" 
must be isomorphic to su(2)} and dim Z = 1. In [3], 4-dimensional real 
division algebras with su (2) as derivations were shown to have a basis 
e, Xi, #2, x3 with multiplication as prescribed in Table 3.4 except that the 
constant appearing in the first column was not necessarily equal to a. 
Thus, we may suppose that xte = yxt and that the remainder of the 
products are given by (3.4). Further, we assume that 0 ^ z = a0e + 
]>^=1 ciiXi lies in Z. Then 

0 = [xu z] = a0(y — a)xi + 2a2x3 — 2a3x2, 

and hence a2 = a3 = 0. Similarly from the product [x2, z] = 0 we obtain 
d\ = 0. Since z ^ 0, it must be that a0 9^ 0, y = a, and e £ Z. It is shown 
in [3] that such algebras are division algebras if and only if afiy > 0. In 
the present situation a = 7, so that A is a division algebra exactly when 
j3 > 0. It will follow from Theorem 5.13 and Proposition 5.15 in Section 5, 
that each algebra with multiplication given by Table 3.4 is flexible and 
Lie-admissible. The algebra A is also a special case of a more general 
construction of flexible Lie-admissible algebras studied in [4], and these 
properties could be deduced from results in that paper as well. 

Assume now that dim ^ 4 = 8 . Using the fact that Z is a subalgebra of A, 
we obtain dim 5 = 8, 7, 6, 4 or 0. We can eliminate the cases dim S = 0 
and dim 5 = 4 immediately by the Hopf result since Z is a commutative 
subalgebra. Also the case dim 5 = 7 can be ruled out by a dimension 
comparison with the list in Theorem 3.1. 

Let us suppose then dim 5 = 6 . Under this assumption, 5 is isomorphic 
to su (2) © su (2), and by ([3], Theorem 5.1) the algebra A decomposes 
into three irreducible 5-summands which have dimensions 1, 3 and 4. 
Since Z is an 5-submodule, and since the dimensions of the summands are 
distinct, Z must be a sum of some of the irreducibles. But this is impossible 
since dim Z = 2. 

The only possibility that remains is that dim 5 = 8, and 5 is isomorphic 
to su(3). In this situation A~ is isomorphic to su(S), and thus is a simple 
Lie algebra. The algebra A cannot decompose into more than one ir­
reducible 5Zi(3)-summand because such summands would be proper Lie 
ideals of A~. By ([3], Theorem 3.2) any real division algebra A on which 
su(3) acts irreducibly as derivations can be constructed from 3 X 3 com­
plex skew-Hermitian matrices of trace zero by defining the product to be 
that given in (1.3), and thus, A is a generalized pseudo-octonion algebra. 
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As we mentioned in Section 1, it is verified in [3] by a straightforward 
calculation that such algebras are flexible, and are division algebras if and 
only if ô J** 0. Lie-admissibility follows easily from the fact that x * y — 
y*x = 2<5[x,;y]. Thus, the only real flexible Lie-admissible division algebras 
are the ones listed in Theorem 3.3, and each of those algebras is flexible, 
Lie-admissible, and division. 

4. Idempotent decompositions. We initiate our study of arbitrary 
real flexible division algebras A by showing that A possesses an idempotent 
e, and then use the operators Le, Re (left and right multiplication by e) to 
investigate the structure of A. Ultimately, we prove that either (i) A 
possesses an idempotent which commutes with all of A, or (ii) dim . 4 = 8 
and A has an idempotent commuting with a 4-dimensional subalgebra. 
The two possibilities are then explored individually in subsequent sections. 

PROPOSITION 4.1. [13]. / / {xzj is a set of commuting elements in a flexible 
algebra A over afield of characteristic not 2, then the subalgebra generated by 
theXfS is commutative. 

Proof. Although this result appears in [13] we include the brief proof 
for the convenience of the reader. 

If y and z are two monomials in the x /s , we must prove that [y, z] = 0. 
Since the x-s commute, we may suppose that one of the elements, y} z> 
say z, is not an xt. Then z — uv where u, v are monomials in the x /s . 
Inducting on deg y + deg z, we may assume that [y, u] — 0 = [y, v] = 
[u, v). But then 

[y, z] = [y, uv] = i[y, u o v] = %[y, u] ov + %u o [y,v] = 0 

as was to be shown. 

COROLLARY 4.2. Every element of A generates a commutative subalgebra. 

Using the result of Hopf cited in Section 2, we have 

COROLLARY 4.3. In a real flexible division algebra if two elements commute, 
they generate a subalgebra of dimension I or 2. 

An immediate consequence of Corollary 4.3 and Lemma 2.2 is 

COROLLARY 4.4. Every real flexible division algebra contains an idempotent. 

We assume henceforth that A is a real flexible division algebra of 
dimension = 2, and e is an idempotent of A. The following subspaces, 
defined using right and left multiplication by e, play a crucial role in our 
investigations: 

Aa = {x £ A\(Le + Re - 2al)x = 0}, where a Ç R, 

Ea = {x e A\(Le + Re - 2al)nx = 0, for some «}, a Ç R, 

Bx = {x 6 A\(Le + Re - 2IYx = 0}, 

C{e) = {x e A\[e,x] = 0}. 
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Clearly, Aa C Ea for every a G R, and Ea C\ Ep = 0 for a y^ 0. Often, a 
helpful way of restating x G 4̂« is that e o x = 2ax. 

THEOREM 4.5. Either 
(i) 4 = Re © Ei/2, or 

(ii) C(e) is a sub algebra, A = C(e) © £1/2, and either 

C(e) = B\ or C{e) = Re © Aafor some a ^ 1 J . 

The proof of this theorem will be the end-product of a sequence of 
results which begins with 

LEMMA 4.6. (i) Aa C C(e) for all a 7^ \. 

(ii) The roots of the minimum polynomial of Le + RelieinR. 

Proof. For x £ Aa, the linearized flexible identity gives 

(4.7) (xe)e + (ee)x = x(ee) + e(ex), 

or 
(2ax — ex)e + ex = xe + e(2ax — xe). 

Since (ex)e = e(xe), the last equation reduces to (2a — l)[e,x] = 0, which 
implies part (i) : x G C(e) when a 7e \. This argument depends only on the 
flexibility of A, and so must work for the complexifïcation Ac of A also. 
Thus, if | ^ 7 G C and 

(Ac)7 = K Ac\(Le + Re- 2yl)x = 0}, 

then (Ac)y Q C(e). Suppose 7 G C — R and 

0 ^ y G {* G 4 | ( L , + £ e - 2 7 / ) ( L , + Re ~ 2yl)x = 0}. 

Then in Ac, y = 3>i + Ji where yi G (Ac)y and y2 G (Ac)y so that 
3> G C(e). Since e and 3; commute, the subalgebra they generate is at 
most 2-dimensional, and so ey = fi\e + fi2y for some 0i, /32 G R. But then 
on Ac 

Pie - foyi + i32y2 = ey = eyi + ey2 = 73>i + T^-

This gives 7 = £2 = 7, which is a contradiction to 7 G C — R. Since 
such an element 3; would exist if Le + i^e had roots in C — R, we conclude 
that assertion (ii) must hold. 

LEMMA 4.8. (i) Aa = Eafor alia 9^ i , 1. 
(ii) £1 = S i Ç C(e). 

(iii) r&ere is a ôaszs e, x, 3/1, . . . , ym of Bx with ex = x + ee where 
e = 0 or 1, and eyt = ytfor alii = 1, . . . , ra. 

Remark. It is to be understood that if dim Si = 2, then there are no 3>'s, 
and if dim B\ — 1, then the basis is just e. 
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Proof. Suppose that 

(Le + Re- 2al)nx = 0, (Le + Re - 2al)n~1x ?* 0, and 

(Le + Re~ 2al)x = w 9* 0 

where w Ç C(e). Then ex + xe — 2ax = w, and (4.7) becomes 

(w + 2ax — ex)e + ex = xe + e(w + 2ax — xe). 

Since w £ C(e), this equation reduces to 

(4.9) (1 - 2a)[e,x] = 0. 

Thus, if a ?£ i , then x G C(e) also. Now x ? Re, since w 9e 0, and con­
sequently x, e generate a 2-dimensional commutative subalgebra. But 
then w = ex + xe — 2ax is a linear combination of e, x, say w = pie + 
p2x. Because (Le + Re — 2a/) n _ 1 annihilates w but not x, the scalar pi is 
nonzero in this situation. 

We now apply these results to three different choices of x to obtain 
Lemma 4.8. First, let us suppose that Ea 9e- Aa for some a 9e 1, \. Then 
there is an x Ç Ea — Aa such that 

(Le + Re- 2al)2x = 0 and 0 5* w = (Le + Re - 2al)x ê Aa. 

Since Aa Ç C(e) by Lemma 4.6, the above argument implies that w = 
Pie + Pioc where p] 5̂  0. But solving for e, we obtain e £ Ea P\ Ei = 0, a 
contradiction. Therefore, no such x can be found, and Ea = ^4«. 

We now consider the case that x £ -Bi — A\. Here, 

0 ^ w = (Le + Re- 2I)x e Al9 

which lies in C(e) by Lemma 4.6. We conclude first from (4.9) that 
Bi C C(e), and secondly that w = pie + p2x where pi 5̂  0. If p2 9

e 0, then 
we would obtain x £ Ai, contrary to our assumption. Thus, we have 
shown that for every x (E B\ — A\, 

(Le + Re- 2I)x = w Ç Re. 

We argue next that Bx = £ ] . If this is not the case, then there is an 
x £ Ei — Bi such that 

0 ^ w = (Le + i?e - 2/)x G Si C C(e) and w g 4 L 

But «; = pie + P2X, and if p2 7̂  0 then x G i?i, while if p2 = 0 then 
w G Ai. These contradictions show that no such x exists, and hence Ei = 
Bi Ç C(e) as claimed. Since £1 C C(e), we have 

(Le + i ? e - 27) = 2(Le- I) onBu 

so that for every x G $1, ex — x G Re. If ex — x 5̂  0 for some x G $ i 
then by suitably modifying x by a scalar if necessary, we may assume 
ex = x + e. Let Wi, . . . , wm together with e, x form a basis for Biy where 
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ewt = Wi + rjie. Then for yt = wt — rjiX, eyt = yu and the elements 
e, x, yu . . . , ym form the desired basis. If no such x exists, then B\ = A\ 
and any choice of elements x, yi, . . . , ym, which together with e form a 
basis of A i will satisfy (iii). 

LEMMA 4.10. (i) If g £ C(e),then [g, Aa] C Aa for alia. 
(ii) g2£ Re + Rgforallge C(e). 

(iii) A i, B i and Re © Aafora 9e \,\ are subalgebras of A. 

Proof. Assume h G Aa and g G C(e). Then, it follows from 

2«[g, *l = [ g , « o i ] = [ g , e ) o i + « o [g, ft] = e o [g, h] 

that [g, A] G Aa, and (i) is verified. Part (ii) is just an easy consequence of 
the fact that e and g generate a commutative subalgebra. 

For convenience, let S denote Re ® Aa or A i and observe that S C C(e) 
by Lemma 4.6. For 5, / G S we deduce from (i) that [s, /] G 5. Now, by (ii) 

(s + t)2 G Re + R(s + 0 ç Re + Rs + R/, 

s2 £Re + Rs, and /2 G Re + R*, 

and combining these statements we have 

s o t £ Re + Rs + Rt Q S. 

Since [s,t] G S also, we obtain st G S and 5 is a subalgebra. 
What remains to be shown is that B\ is a subalgebra. We assume that 

Bi has a basis e, x, yu . . . , ;ym of the type described in Lemma 4.8. Then 
since Ai + Rx = 5 i C C(e), and ^4i was just shown to be a subalgebra, 
all that is left is to show xB\ and B\X are contained in B\. The argument 
above can be copied verbatim to give x o ^ i Ç ^ i , and in fact B\ o B\ C 
J5i. Since x G C(e), part (i) implies that 

[x, 5 i ] = [x, Rx + ^ i ] C i i Ç Bi. 

Therefore, xB\ C 2$x and i?ix C J5i, and B\ is a subalgebra as claimed. 

An immediate consequence of Lemma 4.8 and Lemma 4.10 (iii) is 

COROLLARY 4.11. If Bi ^ Ax, then A1 = Re and Bi = Re + Rx w&ere 

The next lemma combined with Lemma 4.6 drastically reduces the 
number of possible a with Aa 9e 0. 

LEMMA 4.12. There cannot exist elements x, y in C{e) — Re such that 
x G Aa, y G A$ and a 5e ft, or such that x G Aa for a ^ 1 and y G B\. 

Proof. Assume the contrary, that such x, y do exist. Then by Lemmas 
4.6 and 4.8 the subalgebra S generated by e and x + y is commutative. 
If x G Aa, y G Ap, then ax + fty = e(x + y) G 5 and since a 5* ft we 
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obtain x, y G S. If x G Aa and y £ 5 i , then 

«^ + y + pe — e(x + y) £ S for some p € R, 

and since e G S and a 7̂  1 we obtain x} y G 5 as before. Therefore, in 
both instances we have produced a commutative subalgebra 5 with 
dim 5 ^ 3 . This gives the desired contradiction. 

All the necessary ingredients for proving the theorem are in place. 

Proof of Theorem 4.5. Assume A 9e R# © £1/2. Then because Le + Re 

has no roots in C — R, either Aa 9e 0 for some a 9e | , 1 in R or B\ 9e Rtf. 
Both of these spaces lie in C{e) by Lemmas 4.6 and 4.8, and by Lemma 
4.12 either C{e) = Re © Aa or C(e) = Bx. It follows from Lemma 4.10 
(iii) that C(e) is a subalgebra. Also, Lemma 4.12 with Lemmas 4.6, 4.8 
eliminates the possibility of any other nonzero space occurring except for 
E1/2. Finally, since EaC\ E$ — 0 for a 9^ & we have A = C(e) © £1/2, and 
the proof is complete. 

We now turn our attention to gathering information about the structure 
of £1/2. 

LEMMA 4.13. (i) For all x G -41/2, *2 G C(e). 
(ii) £1/2 = U® V where 

[ / = ( ^ E1/2\(Le - %I)x = 0} C C(e) 

and F w aw Le-invariant sub space on which Le has eigenvalues in C — R. 

Proof. For each x G ^1/2, 

(e + x)2 = e + x + x2 and 0 = [e + x, (e + x)2] = [e, x2] 

giving (i). 
Suppose now that 7 is a real eigenvalue of Le and let 

U= {x£ E1/2\(Le- yl)x = 0}. 

Since Le + Re — I commutes with Le — 7/ , it leaves £/ invariant, so there 
is an x G U, x ^ 0, with 

But then 

(4.14) (xe)x = x(ex) = 7X2 

and because 4̂ is a division algebra we have xe = yx. Therefore 
(Le + Re — I)x = 0 implies 27 — 1 = 0 and 7 = §. Thus, \ is the only 
real eigenvalue of Le on £i / 2 , and 

U = {x e Eltl\(Le- il)x = 0}. 
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Our argument using (4.14) shows also that U is contained in C(e), and 
xe = §x for all x £ U. 

Consider now the generalized eigenspace 

W = {x <E Ei/2\(Le — \I)nx = 0 for some n}. 

Since W and U are invariant under the transformations Le and Le + Rei 

if W/U 9^ 0 there is a w ^ 0 in IF with the following properties: 
e o w = w -\- y, ew = \w + #, where x ^ O and x, y G C7. From the 
linearized flexible identity 

x(ew) + 7£>(ex) = (xe)w + (we)x 

it follows that 

\xw + x2 + ^ x = \xw + Ju'x + yx — x2. 

Hence, 2x2 = yx, 2x = y, and we = \w + x = ew. Because w G C(e), 
the subalgebra generated by e and w is 2-dimensional, so that 

x = ew — \w Ç Re + Rw. 

If x = jue + *>w where M ^ 0 , then e £ £ i / 2 which cannot be, but if x = vw 
where v 7^ 0, then w £ U, contrary to our choice of w. These contradic­
tions show that W = U. Since Le has no real eigenvalues besides J, the 
space £1/2 has the structure claimed in (ii). 

For r e C - R define 

F r = \v Ç E1/2|(L« - f /)(L e - U)v = 0}. 

LEMMA 4.15. rfeere w a z G -41/2 wi/fe z2 Ç? Re + Rz if awd 0w/;y if /fee 
minimum polynomial of Leon E\ >2 has roots in C — R. 

Proof. If there is a z 6 ^4i/2 with z2 ? Re + Rz, then e fails to commute 
with this z. Thus, in the notation of the previous lemma, Ei/2 9^ U and 
so Le must have complex roots. Conversely, suppose f £ C — R is a root 
of Le. Then Vç T* 0 and since Ff is Le + .^-invariant, Vç O -41/2 ^ 0. 
Let s 6 F f n i i / 2 , s ^ 0, and assume further that z2 £ Re + Rz. If z2 6 
Rz, then since [e, z2] = 0, we obtain [e, z] = 0 and ez = ze = \z. However, 
this contradicts the fact that Le on Vç has eigenvalues in C — R. There­
fore, z2 g Rz, and since we are assuming z2 Ç Re + Rz, we have Rz2 + 
Rz = Re + Rs. Since the space on the left is commutative, we again 
obtain [e, z] = 0 which gives a contradiction. Thus, z2 $ Re + Rz and 
we are done. 

COROLLARY 4.16. If z e F r H A1/2 and z ^ 0, then z2 g Re + Rz. 

COROLLARY 4.17. (i) A = C(e) if and only if z2 G Re + Rs for all 
z G Al/2. 
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(ii) If A = C(e) and dim A ^ 4, then A = Re © Aafor some a ^ R . 

Proof. If e and z commute, then z2 G R# + Rz, so the "only if" portion 
of (i) is clear. Conversely, assume z2 G Re + Rz for ail s G -41/2. Then by 
Lemma 4.15, Le must have real roots on £1/2, and by Lemma 4.13 

E1/2 = U = {xe E1/2\(Le - %I)x = 0} C C(e). 

Since xe = ex = %x for all x G £1/2, we have £ i / 2 = A i/2, and if £ i / 2 ^ 0, 
then by Lemma 4.12 A = Re © 4 i / 2 = C(e). If E1/2 = 0, then the 
hypothesis z2 £ Re -\- Rz is vacuously satisfied. However, Theorem 4.5 
implies that A = C(e) in this case where C(e) = B\ or Re © ^4«. In the 
course of proving (i) we showed that when A satisfies the hypotheses in 
(i), then A = Re + Aa or A = Bx. But if A = Bx and dim . 4 ^ 4 , then 
Bi = Aiby Corollary 4.11, and so assertion (ii) must hold. 

COROLLARY 4.18. Every flexible real division algebra of dimension 2 is 
commutative. 

Proof. The condition z2 G Re + Rz is trivially satisfied by 2-dimensional 
algebras. 

We next consider the case when Le has complex roots on £1/2. 

LEMMA 4.19. If z G VK C\ A1/2, z ^ 0, then for someô G R , / = (l/<5)s2 G 
C(e) w aw idempotent of A not equal to e, and dim C(J) è 3. 

Proof. By Lemma 4.13, z2 commutes with e and therefore (z2)2 lies in 
the subalgebra Re + Rz2. If (z2)2 G Rs2, then Rz2 + R(z2)2 is 2-dimen­
sional and is contained in the subalgebra Rz + Rz2, so in fact the two are 
equal. However, e commutes with everything in Rz2 + R(z2)2, and thus 
would commute with z. But then ez = ze = Jz, which cannot be true for 
z G Ff. Thus, it must be that (z2)2 G Rs2, and / = (l/ô)z2 is an idempotent 
if (z2)2 = ôz2. The elements e , /are linearly independent since 2; commutes 
wi th / but not e, and dim C(f) ^ 3 because e, z,f G C(/). 

With these preliminaries in hand, we have the information needed to 
prove 

THEOREM 4.20. Let A be a real flexible division algebra. Then there is an 
idempotent e in A such that 

(i) A = C(e), or else 
(ii) dim A = 8, and A = C(e) © Ei/2 where C(e) is a ^-dimensional 

subalgebra with C{e) = Re + Aafor some a?£\, and Le on Ell2 has eigen­
values in G — R. 

Proof. To begin, let e be any idempotent of A and define the spaces 
C(e), Aa, etc. with respect to e. If z2 G Re + Rz for all z G A1/2, then 
by Corollary 4.17', A = C(e), and we are in case (i). We may assume then 
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that z2 d Re + Rz for some z G A i/2, which by Lemma 4.15, is equivalent 
to saying Le has complex roots on £1/2. Let f Ç C — R be such a root, and 
suppose 0 ^ z e F r H A1/2. Then by Lemma 4.19, / = (l/d)z2 £ C(e) 
is an idempotent for some 5 G R and dim C(f) ^ 3. If C(f) = A we are 
in case (i), so we may assume that A 9^ C(J) and dim C(J) ^ 3. We now 
apply Theorem 4.5 to the idempotent / , to conclude that there are two 
possibilities: either A = C(f) © £1/2(0 where C(f) is a subalgebra with 
C(J) = B^f) or C(J) = R/ 0 Aa(f) for some a ^ 1, i or else 4 = R/ 0 
^i/2(/)- (We have modified the notation to emphasize that the decompo­
sitions are relative to/ . ) In the first case, it follows from Lemmas 4.12 and 
4.13 that Lf has eigenvalues in C — R on £i / 2(f) . Also in this case, dim 
C(f) — 4, since C(f) is a subalgebra of dimension at least 3, and whenever 
C(f) = Bi(f), then C(/) = ^ i ( / ) by Corollary 4.11. Thus, in the first 
possibility, we are in case (ii) relative to the idempotent/. 

Suppose now A = R/ © £1/2(/) and dim C(f) ^ 3. Since e commutes 
with / , they generate a 2-dimensional subalgebra, on which Lf has eigen­
values 1, I, Therefore,/# = \e + £/, and relative to the basis/ , £ the 
transformation L\lf+\2e has the matrix 

A i + A2£ Xi£ \ 
\ 2^2 2̂ X1 + X2/ 

Thus, L\1/+x2e is nonsingular if and only if for Xi, X2 not both zero 

èXx2 + XXX2 + X2
2£ ^ 0. 

The discriminant 1 — 2£ must be negative for this to happen, and hence, 
£ > ^. But relative to the basis/, e, Le has matrix 

and hence £ is an eigenvalue for Le on C{e). Since £ > §, C{e) is a sub­
algebra by Theorem 4.5, and C(e) = Re ® A$(e) ii £ 5e 1 or else C(e) = 
B1(e). If dim C(e) = 4, then 4̂ satisfies (ii) with respect to the idempotent 
e, and we are done. Consequently, we have argued that except when dim 
C(e) = 2 for our initial choice of an idempotent e, cases (i) and (ii) hold. 
Therefore, beginning with the idempotent / , we can proceed as we did 
with e, and cases (i) and (ii) must hold since dim C(f) ^ 3. This con­
cludes the proof. 

5. The case A = C(e). Since we have already covered the case when 
dim A = 2 in Corollary 4.18 and Theorem 2.3, we can assume here that 
dim A = 4 or 8. By Corollary 4.17 it follows that A = Re + Aa for some 
nonzero a Ç R. Then A has a basis e, yi, . . . , ym where eyt = ayt = yte 
for 1 S i S m = dim A — \. Since e and yt commute, 

yt
2 = fiie + ô^i for some pt, 5f 6 R 
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by Corollary 4.3, and hence the element xt = yt — ^ôta~le satisfies 

Changing to the new basis e, Xi, . . . , xm, we obtain 

1 * i A 5 , 1 \ 
ext = ayt — - ôte = a%i + I - — - - ô J e . 

We have achieved a basis e, Xi, . . . , xm with the properties tha t 

(5.1) Xi2 <E Re, ex* = «Xj + 77^ 

for some 77* £ R and for 1 :g i g m. 

LEMMA 5.2. (i) 77ze 5e/ F = {;y G 4̂|3> # Re, 3>2 G Re} w a subspace of A 

of dimension m = dim A — I, and xi, . . . , xm a/r a &asis of V. 
(ii) 7 / ^ ,2 G V,thenyoz £ Re. 

Proof. Let 3^,2 G F, say 3>2 = pe and s2 = ce. For each X Ç R, X^ + z 
commutes with e, so there exist M, V Ç R depending on X such tha t 

(X;y + s ) 2 = jue + K ^ + z). 

Thus , 

(5.3) X2pe + \(y o s) + <re = fie + ^ 3 / + PJS, 

which shows tha t 3/ o s is a linear combination of e, 3% z, say 

3/ o s = n e + r2y + r3s. 

Subst i tut ing this into (5.3) and assuming tha t e, y, z are linearly inde­
pendent, we may equate the coefficients of y and z on the two sides of (5.3) 
to get Xr2 = v\ and Xr3 = v. Thus , r2 = v = Xr3 for all nonzero values of 
X G R, which implies t ha t r2 = 0 = r3 since r2 and r3 do not depend on X. 
This shows t ha t 3/ o z £ Re, and hence (X^ + z)2 £ Re for e, 3/, s linearly 
independent. If e, 3/, z are linearly dependent , then y and s are linearly 
dependent , and again y o z £ Re and (Xy + s ) 2 £ Re. Thus , \ j + 2 G F. 
Since Xi, . . . , xm £ F and e g F, clearly dim V = m = dim A — 1 and 
Xi, . . . , xw are a basis of F. 

Pa r t (ii) of Lemma 5.2 allows us to define a bilinear form (y, z) on F 
by 3/ o s = —2(3/, z)e, and it is immediate t ha t (y, z) = (2, 3/) for all 
y, z £ F . This bilinear form can be extended to a symmetric bilinear form 
on all of A by defining (e, e) = 1 and (e, x) = 0 = (x, e) for x 6 F. 

LEMMA 5.4. (i) Ify£Vand a (z A, then y o a £ Re i/*awd <w7yif a £ V. 
(ii) Ify,z £ V and if {y, z) = 0,thenyz £ V and (y}yz) = 0. 

(iii) 7/3/, s G F, //zew [3/, s] G F. 
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Proof. If y G V and a G A, then a = fie + z for some /? G R and 2 G V, 
and y o a = 2fiey + y o z. Since y o z £ Re, clearly y o a G Ke if and only 
if a G V. For part (ii), suppose that y, z G V with (y, s) = 0. Then 
yz = — zy, and so 

3/0 (yz) = y(yz) + (yz)y = —y(zy) + {yz)y = 0. 

By part (i), yz G V, and hence (y, yz) = 0. Finally, for part (iii), given 
y, z G Vy we may find h G R and z\ G F satisfying (y, zi) = 0 such that 
z = Z\ + ôy. Then 

[y» z] = [y* zi + h] = b» *i] = yzi - z^y-

Since yzi, Ziy G V by part (ii), we have [y, z] 6 F. 

LEMMA 5.5. The bilinear form (y, z) w associative and positive definite 
on V. 

Proof. For y, z £ V} we again write z = zj + ôy for ô G R, and Zi G F 
and (y, zi) = 0. Then 

(y, yz) = (y, yzi + Ôy2) = (y, yzi) + Ô(y, y2) = 0 

using part (ii) of Lemma 5.4 and y2 G Re. Linearizing y in this relation 
gives (x, yz) + (y, xz) = 0, which yields 

(xz,y) = (y, xz) = — (x,yz) = — (x, y o z) + (x, zy) = (x, zy). 

To prove that the form is positive definite, we must show that (y, y) > 0 
for any nonzero y (z V, We have 

y2 = èy o y = - (y, y)e, 

and the relation ey — ay + 77e for some rj G R follows from (5.1). The 
determinant of left multiplication by the element \\e + X2y in the sub-
algebra spanned by e and y is 

Xi + 7̂X2 77X1 - (yjy)\2 
a\2 a\\ <*(Xi2 + (y.y)X22). 

Since 4̂ is a division algebra, this determinant cannot be zero for any 
Xi, X2 G R not both zero, and hence (y, y) > 0. 

Now that we have a symmetric positive definite form on V, we want to 
make our basis Xi, . . . , xm of V behave nicely with respect to this form. 
By the Gram-Schmidt orthonormalization process, we can modify the 
x / s so that they form an orthonormal basis of V. Thus, we may assume 
thatx7

2 = — eamdXiXj = — x^X/forl ^i,j ^ w a n d i ?±j. 

LEMMA 5.6. Ifxi, • • • , xmis an orthonormal basis of V, then 
m 

(5.7) XiXj = J2 ytjkOOic — dfje 
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where ôtj is the Kronecker delta, and where yijk Ç R and yijk is skew-
symmetric in its subscripts. 

Proof. If i ?*• j , then xtXj Ç V by Lemma 5.4 (ii), showing that the 
^-component of (5.7) is correct. Also, yijk — —yijk, since XtXj = —XjXi. 
Finally, 

-Jijke = (7 <#**!**) = yUlaiXi — àiSefxk) = {XiXj,xk) 

= (x.j, aĉ fc) = \xu ^JjkiXi — djke) = (**, 7#i*i) = ~ 7#«e, 

or ŷ A; = 7 ^ . It follows that yijk is skew-symmetric on its subscripts. 

LEMMA 5.8. For any y £ Y, ey = ay. 

Proof. It is sufficient to show that, for an orthonormal basis xu . . . , xm 

of V, the constants 77,of (5.1) are all zero. From (1.1) we have for i ^ j 

0 = (xtXj)e + {exf)Xi — xt{xje) — e(XjXi) 

= 2(xix./)e + («X; + 7)ie)Xi — xt{aXj + 77̂ ) 

= 2{XiXj)e — 2axiXj = 2 ]T yijkxke — 2a £ ) 7*#a* 
* A; 

= 2 S 7Witt, 
k 

or 

(5.9) 0 = £ 7«/»u» 

for any z, j not equal. If dim ^ 4 = 4 , then w = 3 and (5.9) gives 

0 = 7l21*?l + 7l22?72 + 7l23>?3 = 7l23??3, 

since 7121 = 0 = 7122 by the skew-symmetry of the subscripts on y ijk. 
Now 7i23 7̂  0 since xxx2 7e 0, and so 773 = 0. Similarly, 771 = 0 = 772. 

If dim A = 8, we consider the six equations 

6 

(5.10) £ 77,*i?* = 0 
k=l 

for 1 ^ j g 6. To show that 771, . . . , 776 are zero, it is sufficient to show 
that the determinant \yijk\ for 1 ^ j , k ^ 6 is nonzero. For this, we con­
sider left multiplication by x7 on the space V spanned by xu • . • , £6. 
Since V is the orthogonal complement on R#7 in V, we have xj V C F, 
and the relation 0 = (XT^JV) implies tha tx 7 F ' C V'. In fact, x7V = V 
because A is a division algebra. But the determinant of left multiplication 
by x-i acting on V is just \yijk\ for 1 ^ j} k ^ 6, so this determinant is 
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nonzero. Thus, (5.10) implies that 771, . . . , T?6 are zero, and 777 = 0 by 
symmetry. 

LEMMA 5.11. For each a 6 A, there exist 0i, 02 £ R and x £ V such that 
a = fi\e + fax and x2 = — e. Every subalgebra B of A of dimension 2 has 
as a basis e, xfor some x £ V with x2 = —e. 

Proof. Given a G A, we can find 0i £ R and y £ V such that a = 
0ie + j . If j = S * fi*, ^ 0 for f, 6 R, then y2 = - (£< f ,*)* by (5.7). 
Setting 02 = ( ^ t fz2)172 and x = fii~ly, we have x2 = —e and a = 
0i# + 02X as desired. If B is any subalgebra of A of dimension 2, then 
B C\ V T6 0 since dim F = dim 4̂ — 1, and so B contains a nonzero ele­
ment y Ç 7. Just as above, y = 02X for x2 = — e, and x G B. Clearly, 
e £ B, and e, x form a basis for B. 

At this point, the only additional property that would be needed to 
make A into a flexible quadratic algebra would be to have a = 1. Since 
a is not necessarily 1 in general, we can only achieve this by taking an 
appropriate isotope. 

LEMMA 5.12. Let Q be the linear transformation on A defined by Q(e) = e 
and Q(x) = a~lx for x £ V, and let (A, *) be the principal isotope of A 
defined by a * b = Q(a)Q(b) for all a, b Ç A. Then (A, *) is a flexible 
quadratic algebra, and A is a scalar isotope of (A,*). 

Proof. The element e is the identity element in (A,*), since 

e * e = e2 = e, e * x = eQ(x) = e(a~1x) = x = (a~lx)e — x * e 

for x Ç F. For fie + x where 0 G R and x £ F, we define 

!T(/te + x) = 20 and 7V(0e + x) = 02 + a~2(x, x), 

and we calculate that 

(fie + x) * (fie + x) - 7\0e + x) (fie + x) + N(fie + x)e 

= fi2e + 2fix + x*x - 2fi(fie + x) + fi2e + a~2(x, x)e 

= — a~2(x, x)e + af"2(x, x)e = 0. 

Thus (̂ 4, *) is a quadratic algebra. 
In order to show that (A, *) is flexible, one of the properties that we 

have to verify (see Lemma (1.2)) is that any commutator lies in F (which 
is the same in (A, *) as in A). This follows from 

(fie + x) * (be + y) — (be + y) * (fie + x) = x * y — y * x 

= a~2(xy — yx) G F 

for 0, <5 G R and x, 3/ G F. As we saw in Section 1, this property is equiva­
lent to the property that the natural bilinear form (x, y)* on (A, *) is 
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symmetric. Using this symmetry, we have for x, y £ V 

(x, y)*e = — \(x* y + y * x) = — \a~2(xy + yx) = a~2(x, y)e, 

so that (x, y)* = a~2(x, ;y). Then the second property needed to establish 
flexibility in (A, *) follows from 

(x, x * y)* = a~2(x, a~2JC )̂ = a~4(x, x;y) = 0 

for x, y £ F. 
Now that (̂ 4, *) is known to be a flexible quadratic algebra, we want 

to show that A is a scalar isotope of (A, *). Defining the linear trans­
formation P on A by P(e) = e and P(x) = ax for x G F, we see that 
P = <2-1 and that 

xy = QP(x)QP{y) = P(x)*P(y). 

We have proved all but the last sentence of 

THEOREM 5.13. Le/ A be a real flexible division algebra of dimension 4 or 
8 containing an idempotent commuting with all the elements of A. Then A is 
isomorphic to a scalar isotope aB of some real flexible quadratic division 
algebra B. If dim ^ 4 = 4 , then A has a basis which multiplies as in the Table 
3.4. Conversely an algebra with multiplication as in (3.4) where a 9e 0 and 
0 > 0 is a flexible division algebra. 

Proof. If dim ^ 4 = 4 , let e, Xi, x2, x3 be an orthonormal basis. Then by 
Lemma 5.6, 7123 = 7231 = 7312 = —7213 = —7132 = —7321, and the 
other yijkS are zero. Writing 7 for 7123 and using (5.7) and Lemma 5.8, 
the multiplication table for A is given by 

e Xi X2 Xz 

e ax 1 ax 2 OiXz 

ax 1 — e 7*3 — yx2 

ax 2 - 7 * 3 — e 7x1 

axz 7*2 - 7 x 1 — e 

If, in this table, we replace each xt by y~l times itself and write 0 = 7~2, 
we obtain Table 3.4. 

To see that this algebra is flexible, we note that all commutators lie in 
V, and that (XfXjf xk) = {xu XjXk) for all i,j, k £ {1, 2, 3}. Thus, flexibility 
follows from Lemma 1.2. 

We asserted in Theorem 3.3 that the algebra defined by (3.4) is Lie-
admissible. This is proved in 

PROPOSITION 5.15. Let A be a scalar isotope of a flexible quadratic division 
algebra. If dim ^ 4 = 4 , then A is Lie-admissible. If dim . 4 = 8 , then A is 
not Lie-admissible. 
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Proof. Since e commutes with all elements of A, e is in the center of A . 
If dim A = 4, the products between Xi, x2, x$ in A~ are 

[xu x2] = 2x3, [#2, xz] = 2xi, and [x3, Xi] = 2x2. 

Thus, V~ is isomorphic to su(2), and A is Lie-admissible. If dim . 4 = 8 , 
we observe that the multiplication in A~ differs only by a scalar multiple 
from the multiplication in B~ where B is the flexible quadratic algebra of 
which A is a scalar isotope. Thus, we only need to consider the case where 
A itself is a flexible quadratic division algebra. As we saw in Section 1, 
the fact that A is a division algebra implies that, for any linearly inde­
pendent x, y 6 V, the elements x, y, and [x, y] = 2x X y are linearly 
independent. It is clear from this that V~ is a simple algebra of dimension 
7. But, since there are no simple Lie algebras of dimension 7, V~ cannot 
be a Lie algebra, and hence A is not Lie-admissible. 

One can readily see from Theorem 5.13 that every flexible quadratic 
division algebra of dimension 4 is a scalar isotope of the quaternions, but 
it is not the case that every 8-dimensional one is a scalar isotope of the 
octonions. There are many more flexible quadratic division algebras of 
dimension 8 than of dimension 4, and we find no method of classifying 
them which further illuminates their structure. Basically, the reason that 
there are so many more algebras of dimension 8 is that the condition that 
xy is orthogonal to both x and y for x, y £ V does not come close to deter­
mining xy, as it does in the case of dimension 4. To illustrate this diversity 
for dimension 8, we end this section by constructing a class of real 
flexible division algebras which are not scalar isotopes of the octonions. 

PROPOSITION 5.16. Let A be the real algebra with basis e, Xi, . . . , X7 and 
with multiplication determined by Table 5.17 where a, fi, ô £ R and a ^ 0. 
Then A is flexible, and A is a division algebra if fi > 0 and \d\ < 2. If, in 
addition, ô 9^ 0, then A is not isomorphic to any of the algebras defined in 
Section 2 of [3], and hence A is not isomorphic to a scalar isotope of the 
octonions. 

e Xi x2 x3 x4 X5 X6 X7 

e ax 1 ax2 OLXz ax 4 ax 5 «X 6 ax 7 

ax 1 -fie x4 X7 -x2 x6 — X5 + ÔX7 — X3 — ÔX6 

ax 2 — x4 -fie x5 Xi — x3 X7 -x6 
ax 3 -x7 — x5 -0e X6 x2 — X4 Xi 

ax 4 x2 — Xi — x6 -0e X7 x3 ~xh 

\ax-0 — x6 x3 — x2 — X7 -fie Xi XA 

\OCXQ X 5 — ÔX7 — Xi X4 — x3 — Xi -fie X2 + ÔXi 

\ax-i x 3 + <5x6 XG — Xi x5 x4 — x2 — 8x1 -fie 
. 1 
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Proof. Letting V denote the subspace of A spanned by X\, . . . , xi, and 
Q the linear transformation of A defined by Q(e) = e and Q(x) = a~lx for 
x (E V, we see that e is the identity element for (A, *). By our remarks in 
Section 1, it is sufficient to show that (A, *) is a flexible division algebra 
in order to show that A is (see also Lemma 5.12). If x, y G V, then 
x * y = a~2xy, implying that multiplication in (A, *) between elements of 
V will be exactly as in (5.17) if we replace xt by axt for 1 ^ i g 7. Thus 
it is sufficient to establish the proposition when a = 1. We shall assume 
a = 1 in the remainder of the proof. 

If a 6 A, then there exists rj £ R and y £ V such that a = r\e + y, 
and ry = y = ye and y = —Ce for some f G R. Thus, 

a2 - 2va + (??2 + Ç)e = r)2e + 2vy - fe - 2T?2£ - 2 ^ 

+ o?2 + r)* = o, 

showing that A is quadratic. The condition that [x, y] (z V for x, y £ V" 
follows immediately from the form of (5.17). Then by Lemma 1.2, to 
show that A is flexible, we need only show that the bilinear form is 
associative on V. The form is defined here by 

— 2(xiy Xf)e = 2xt2 = —2(3e and 

— 2(xu Xj)e = XiXj + XjXi = 0 for i ^ j , 

giving (xiy Xi) = ft and (xif Xj) = 0 for i ^ j . We have 

xi*j = X^ 7*/*** — ^ for some yijk, 77̂  £ R, 
A; 

and from (5.17) we obtain t\u = fi, rjij = 0 for i ^ j , and 7 ^ = — yjik. 
The condition that the form is associative is that yijk is skew-symmetric 
in its subscripts, since 

(XiXj,xk) = Kz^yijiXuXkj = \yijicXk,xk) = y^fi, 

(xi}xjxk) = \xt, ^yjiciXi) = (xi}yjkiXi) = 7 ^ 0 . 

The skew-symmetry of yijk can be verified directly from (5.16), for 
example, 

à = 7167 = 7671 = 7716 = —7617 = " 7 1 7 6 = ~ 7 7 6 1 -

Except when {i, j , k] = {1, 6, 7}, the numbers yijk are the same here as 
in the octonions. Thus, we have shown that A is flexible. 

To show that A is a division algebra when 0 > 0 and \ô\ < 2, we shall 
verify that the linear transformation defined by left multiplication by the 
element X0e + X7*=i ^ixiIS nonsingular for any X0, . . . , X7 G R not all zero. 
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The matrix of this linear transformation with respect to the basis e, 
XU . . . , X1 IS 

Xc - / 3 X i - / 3 X 2 - 0 X 3 - 0 X 4 - | 3 X 6 -0X6 -0X, 

Xi Xo -x4 
-X7 X2 —X6 X5 — ÔX7 X3 + ÔX6 

x2 
X4 Xo -x5 -x, x3 -x7 x6 

x3 X7 x5 Xo -x, -x, X4 - X i 

X4 - X s X! X6 Xo -x7 -x3 x5 
x5 x6 -x, x2 x7 Xo - X i -x4 
X6 - X 5 + ÔX7 x7 -x4 x3 Xi Xo — X2 — ÔX1 

x7 - x 3 - ôX6 -x, x, -x5 x\ x2 + 8X1 Xo > 

Multiplying the first row of this matrix by /3"1, we obtain a matrix which 
we denote by M. We shall show that \M\ 5* 0 for all X0, . . . , X7 G R 
not all zero, when /3 > 0 and |5| < 2. If iV denotes the matrix obtained 
from M by setting £ = 1 and 5 = 0, then iV is the left multiplication 
matrix that comes from the octonions, and so |iV| 5* 0 for any choice of 
X0, . . . , X7 not all zero. Thus, in order to show that \M\ 7e 0 for X0, . . . , X7 

not all zero, it is sufficient to verify that \MNl\ 5* 0 for X0, . . . , X7 € R 
not all zero, where N* is the transpose of N. We calculate that MNl is as 
given below, where the asterisks denote entries which need not be 
computed. 

\MN'\ 

0-%2 + èxt 2 * * * * * * * 

0 E X,2 - ÔX5X7 + 5X3X5 
* * * * -ÔX 0 > 7 — 18X2X6 -ÔX 2 X 7 + /3X„X6 

0 0 Ex.2 0 0 0 0 0 

0 0 0 Ex,2 
0 0 0 0 

0 0 0 0 Ex,2 0 0 0 

0 0 0 0 0 Ex,2 0 0 

0 0X0X7 — 0X1X3 * * * * E x ;
2 - ÔX5X7 + ÔXjXo — 6X3X7 — ÔX0X1 

0 -S\oXt + «XAs • * * * 0X5X6 + ÔX0\, E X,2 + «XjXe + «XiX 

Expanding \MNl\ on the first column and then on the rows with only 
one nonzero entry, we obtain 

I MAT (/rV + Zx,2)(Ex/)4z) 

/here 

D = 

E Xi2 — ÔX5X7 + ÔX3X6 —ÔX0X7 — 6X2X5 —ÔX2X7 + ÔX0X6 

ÔX0X7 - ÔX1X3 L Xf2 - ÔX5X7 + 5XiX2 -ÔX3X7 - ôXoX! 

-ÔX0X6 + ÔX1X5 5X5X6 + ôXoXx £ X,2 + ÔX3X6 + ÔX1X0 
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Since j8 > 0, /3-1X0
2 + 22\=i X*2 ^ 0 if X0, . . . , X7 (î R are not all zero. 

Hence, A is a division algebra if D ?* 0 for X0, . . . , X7 not all zero. 
Multiplying the second row of D by XÔ, and then adding Xi times the 

first row and X7 times the third row to the second row, yields 

X6£> 

7* Xt- — 5X5X7 + ÔX3X6 —5X0X7 — 5X2X0 —5X2X7 + 5XoX6 

Xi E A*2 A6 E V A7 E X,2 

— 5XQX6 + 5X1X5 5X5X6 + 5XQXI E A*2 + 5X3X6 + 5XiX2 

Dividing the second row by E A*2, then adding 5X2 times the second row 
to the first row and subtracting 5X5 times the second row from the third 
row, we obtain 

X6 

Lx<! D = 

£ X,2 - ÔX5X7 + ÔX3X6 + 0X^2 

Xi 

—ÔX0X6 

—ÔX0X7 ÔX0X6 

Xô X7 

ôXoXi 2 X,2 + ÔX3X6 + 5X^2 - SX5X7 

If we expand out the right side and divide each term by X6, we arrive at 

1 

Ex, 
D = ( E A/ - 5X5X7 + 5X3X6 + 5X1X2) + ô V X i 

+ 5 Xo X7 — 5 Xo X6 . 

The right side of this equation can only be zero if 

0 = E A*2 ~ 5X5X7 + 5X3X6 + 5XjX2 

= Ao2 + (Xi2 + 5XjX2 + X2
2) + (X3

2 + 5X3X6 + X6
2) 

+ (X5
2 - 5X5X7+ X7

2). 

Since |5| < 2, this can only be zero if all the X's are zero. Thus, we have 
proved that A is a division algebra when £ > 0 and |5| < 2. 

To see that, when 5 ^ 0 , the algebra A is not isomorphic to any of the 
algebras defined in Section 2 of [3], we need only note that the latter 
algebras cannot be generated by 2 elements, whereas A is generated by 
Xi and x5 when 5 ^ 0 . 

6. The generalized pseudo-octonion algebras. Throughout this 
section we assume that A is an 8-dimensional flexible division algebra over 
R which contains no idempotent commuting with all of A. By Theorem 
4.20, we know that there exists an idempotent e G A which decomposes A 
into A = Re + Aa © £ i / 2 from some a Ç R, a 9^ \. Moreover, C(e) = 
Re + Aa is a 4-dimensional subalgebra and the eigenvalues of Le restricted 
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to £1/2 are in C - R. The main purpose of this section is to prove that A 
is a GP-algebra. To aid our discussion, we present the following example. 

Example 6.1. Recall that the GP-algebra S = 5(5, J) is described in 
Section 1 as the algebra of 3 X 3 complex skew-Hermitian matrices of 
trace zero with "*" given by: 

(6.2) x * y = 8[x, y) + \i{x oy - f tr {xy)I}. 

Since 5 is an 8-dimensional flexible Lie-admissible real division algebra 
with minus algebra isomorphic to the simple Lie algebra sw(3), it contains 
no idempotent which commutes with every element of S. Therefore, S is 
an algebra of the type that we are studying in this section. 

Let {ejk\ be a set of 3 X 3 matrix units. Then a basis for S is given by: 

e = ien + ie?2 - 2ieU} 

f = -2ieu + ie22 + ieu, 

x = \f3ieu + \ / 3 ie2i, 
fx = ( 3 A / 3 5 + £V3i)*i2 + (SV3Ô + iV3i)e21, 

z = \/3ie23 + \ / 3 ieZ2, 
ez = ( - 3 \ / 3 ô + %V3i)e2z + (3y/S8 + h\/^i)e^ 

w = ( - 3 5 - | i)«1 8 + (So - |i)«8i, 

ew = (30 - (f + 9ô2)i)eu + ( - 3 5 - ( i + 9ô2)i)c8i. 

Table 6.5 is a multiplication table for 5. The coefficients in this table 
are all rational polynomials in 8 which have been simplified by using: 

r = i + 952, 4, = i ( 2 r + 1), 

(6.4) a = K 4 - r), <p = i ( 4 r - 1), 

P = i ( r - 1), 7 = *(T + 2 ) . 

It is apparent from Table 6.5 that e, f and g = —e — f are idempotents 
in 5. One can verify that C(e) is the linear span of {e,f, x,fx\ and 

5i / 2 = {y e S\ (Le + Re- I)y = 0} 

is the linear span of \zy ez, w, ew}. For f = i + 35i, 

F r = {y G 5| (£.* - Le + ff/)y = 0} 

is such that Vç = 5i / 2 . Furthermore, decomposing C(e) as in Theorem 
4.20 gives C(e) = Re 0 5_i. 

Guided by this example, we begin our study of the algebra A using 
the idempotent e given to us by Theorem 4.20. Our first aim is to show 
that the decomposition of A relative to this idempotent into the spaces 
defined in Section 4 has the property that Ei/2 = Aï/2 = Vç. This involves 
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considering the action of Le on Ac = C (x) A. For f Ç C — R, let 

t / f = ( ^ E1/2\(Le> - (f + f)Le + tf/)2* = 0| , 

(-4c) 1/2 = {x G 4c|ft* + xe = x}, 

Wç = {x Ç i 4 c | ( L e - f / )* = 0}. 

By Theorem 4.20, we know that the eigenvalues of Le restricted to Ei/2 

are complex. Since £1/2 is 4-dimensional, the characteristic polynomial 
of Le on £1/2 is 

(x2 - (f + ?)x + ff)(x2 - o* + p)\ + MM) 

for some f, JLI £ C — R. Therefore, when f = /x or /z, £ i / 2 = C/f and when 
r ^ M or /Z, £1/2 = 7 r 0 FM. 

LEMMA 6.6. For f, M G C - R, 

(i) F r n ^1 / 2 c [i7r n (4c)i/2] e [ w ^ n Uc)i / 2], 
(ii) if F r j* 0 *fo» f + f = 1, 

(iii) i/ Fr 7e FM are nonzero, then Ai/2 = Vç © FM = £ i / 2 , 
(iv) z/x £ F f , y Ç FM, Ff 7e FM, thenxy — — yx. 

Proof. There are polynomials fti(X), fe2(X) G C[X] such that 

x = h1(Le)(Le - (I)x + h2(Le)(Le - f/)x. 

Clearly, this representation of x satisfies part (i) for x £ Vf P\ ^41/2. 
Let x G (i4c)i/2 H PTr> y € G4c)i/2 H W». Then 

xe = x — ex — (1 — f)x and ;ye = ^ — ey = (1 — /x)y 

and using the flexible identity, (1.1), we obtain 

(6.7) (1 — f — /x )^ = (xe)y — x(e;y) = y (ex) — (ye)x 

= (f + M — 1 ) ^ -

Therefore, if f + /x ^ 1, then xy = — 3/x. 
Now, let w £ 4̂1/2 P\ Ff with w = Wi + w2 where 

wi e (4c) 1/2 H Wt, w2 £ (Ac) 1/2^ Wj, 

and similarly let s Ç Ai/2 P\ FM with 2; = zi + s2 where 

21 G 0 4 c ) i / 2 n WMf z2 6 ( ^ c ) i / 2 n IF*. 

Then if f + /u 5* 1 7̂  f + A, we can use equation (6.7) to obtain 

(6.8) wz = (w\ + w2) (z\ + z2) = W1Z1 + ^iS2 + W2Z1 + ^ 2 s 2 

= — (zi + z2)(wi + w2) = — zw, 

so that z#z = — zw. From this, we see that if f + f 7̂  1 then w2 = — ?£>2 

for all w 6 yli/2 P\ Ff, which cannot occur with a nonzero w in a division 
algebra. Therefore, if Ff 7e 0, then f + f = 1 so that (ii) is proved. 
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If F f T£ FM are nonzero, then dim F f = 2 = dim V» and if 0 ^ w Ç 
Ff H -41/2, O ^ z f FM H -41/2 then w, ew is a basis for F f contained in 
A i/2 and 2, ez is a basis for FM contained in A i/2. That is, if F} 5̂  FM are 
nonzero then Vç, FM C -41/2, and we see that -4i/2 = V$ © FM. 

Part (iv) follows from (iii) and (6.8). 

LEMMA 6.9. (i) Ei / 2 = ^4i/2. 
(ii) Uf = VçforallÇ Ç C - R. 

Proof. Since f + f = 1 for Ff ^ 0, upon setting r = ff we have 

£/<• = {2 e A: (Le* - Le + rl)h = 0}. 

Suppose £1/2 9e A i/2. Since £ i / 2 = £/$• or JE1/2 = F f 0 V» for f, 
M G C — R with Vç 9e Vp, we see by Lemma 6.6 (iii) that this supposi­
tion implies £1/2 = Uç. Hence, there is some z £ £/$• such that ez + ze = 
z + x for some x G -41/2, x 9e 0. Let 

z' = (Le
2 - L, + rl)z e 7 f . 

Then 

z' = e(ez) — ez + TZ — e(z + x — ze) — ez + rz 

= ex — eze -\- rz = ex — (z + x — ze)e + rz 

= ex — xe — ze + (20)0 + rz 

and since x G 4̂1/2 this implies 

(6.10) (ze)e — ze = 2/ + x — 2ex + TZ. 

From the definition of z', the flexible identity, and (6.10) we have 

z' — rz = e(ez) — es = (ze)e — ze = z' + x — 2ex — rs 

which upon simplifying gives 

(6.11) x = 2ex. 

But (6.11) implies that | is an eigenvalue of Le restricted to E1/2, contrary 
to Theorem 4.20. Therefore, Ei / 2 = A i /2 and Uç Q A1/2. 

Once again let z £ Uç with z' = (Le
2 — Le + r/)2: and let w G Ff. 

Then substituting w, e, ez into the flexible identity we see that 

w(e(ez)) + (ez)(ew) = (we)(ez) + (eze)w. 

After recalling that e(ez) — ez + rz = zf and w, 2 G -41/2, we have 

w(ez — rz + z') + (ez)(ew) = (w — ew)(ez) + (ez — (e(ez))w 

or 

(6.12) (ez) o (ew) = r (woz ) — w o zf. 
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Now substituting z, e, ew into the flexible identity, we obtain 

z(ew — TW) + (ew)(ez) = z(e(ew)) + (ew)(ez) 

= (ze)(ew) + (ewe)z — (z — ez)(ew) + (e(w — ew))z 

= z(ew) — (ez)(ew) + (ew)z — (e(ew))z, 
and therefore 

(6.13) (ez) o (ew) = 7 ( ^ 0 2 ) . 

From (6.12) and (6.13), we have woz' = 0. Se t t ings = z' gives (zf)2 = 0 
which implies z' = 0. This means that 

(L2 - Le + rl)z = 0 for all z Ç f/r, 

and hence Vç = £/f. 

LEMMA 6.14. (i) C(e)^i / 2 Ç ^41/2 and Ai/2C(e) Ç ,41/2, 
(ii)i4 = C(e) © Vt,i.e.,A1/2 = Vv 

Proof. Since C(e) = Re + ^4a for a £ R, a 3̂  J, and Le, i?e map -41/2 
onto A1/2, the proof of (i) is complete once we have shown AaAi/2} 

Ai/2Aa Q A1/2. By Lemmas 6.6 and 6.9, A1/2 = V> or 7 f © FM and hence 
it suffices to show AaVç} VçAa Ç ^41/2. Also, by Lemmas 6.6 and 6.9, 

F r C Wi ®WjQ (Ac)m 

and therefore we need only show that AaWç, WçAa C (4c) 1/2. We prove 
only AaWç C (Ac) 1/2, since the other proof is similar. 

Let x G Aa and z G Wf. Then 

e o [x, s] = [x, e o 2] = [x, z] 

and hence [x, z] G (Ac) 1/2- Also, the flexible identity gives 

(ze)x + (xe)z = 2 (ex) + x(ez) 

or 

f zx + axz = azx + f xz 

so that 

(a — Ç)xz = (a — f )sx. 

Hence 

(a — f )xs = (a — f)zx + (f - f )z#, 

and therefore 

(f ~ f)2X = (a - f)[x, 2] G Uc)i/2. 

The proof of (i) is complete. 
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Suppose Vç 7̂  Vy. and 0 ^ 2 f Fj- and 0 ?* w £ FM. Then, by Lemma 
6.6, we have 

WZ = — ZW = ^[W, z\. 

Also, wio[g,2] = 0 since [e, z] G FM. Thus 

(ms) o e = £[«/, 2 ] o e = ^[w o e, s] — \w o [e, s] = %[w, z] = wz 

so that wz € -41/2. But this implies Rz maps the 6-dimensional space 
C(e) + FM into the 4-dimensional space 4 i / 2 , and hence Rz is singular, 
contrary to A being a division algebra. 

Having completed our first task of proving Ei/2 = 4 i / 2 = V^ we turn 
our attention to showing that a = — 1. Our proof involves idempotents 
other than e, so that from this point on we denote 4 i / 2 by Ai/2(e), 
Aa by Aa(e) etc. 

LEMMA 6.15. Let a^\be that real number such that C(e) — Re + Aa(e). 
Then 

(i) a < \ 
(ii) each 2-dimensional subalgebra B of C(e) has a basis e, x where 

x G Aa(e), x2 = — e, and B contains exactly three idempotents, namely, e 
and the two elements given by 

(6.16) u = ±- e±^±f--x. 
la la 

Proof. By Lemma 4.19, there exist idempotents in C(e) distinct from e. 
Let u be any such idempotent. Then, by Lemma 5.11, u — @ie + 02x for 
some 0i, 02 £ R, x £ Aa(e) with x2 = — e. Now, 

0ie + 02* = w = «2 = Pi2e + 20i02ax - 0i2e 

which is equivalent to 

02 = 20i02a and 02
2 = 0i2 - 0i. 

Since u ?± e, 02 9e 0 and hence 

ft«JL and ^ = ^ - ^ = ^ - ^ = ^ ( 1 - 2 * ) . 

In particular, we see that a < \ since 02 > 0, and w is an idempotent 
whenever 
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Since by Lemma 5.11, each 2-dimensional subalgebra B of C(e) has such 
a basis e, x, the argument above gives part (ii). 

LEMMA 6.17. Let z £ A 1/2(0) and u = (l/5)s2 be an idempotent. Then 
(i) C(u) is a ̂ -dimensional subalgebra, 

(ii) C(u) = Re © Aa, (u) for some a' f R , a ' < J, 
(iii) 4̂ = C(w) © v4i/2(w) and /fee eigenvalues of Lu restricted to A 1/2(1*) 

are in C — R. 

Proof. From Lemma 4.19, e, w form a basis for a 2-dimensional sub-
algebra of C(e). Hence by Lemma 6.15, u is given by (6.16), and 

T ( . 1 V l - 2a 

^(x ) = T \a
 2a + \*. 

The restriction of Lu + i?M to Re © Rx has characteristic polynomial 

X 2 - ( i + l ) x + i + i ( l - 2 « ) . 

This polynomial does not have 1 for a root, since a < \. Therefore, 
A T6 Ru © Ei/2(u) and hence, by Theorem 4.5, C(u) is a subalgebra. 
Since C(u) is not 8-dimensional by assumption and u, e, z are linearly 
independent in C(u), we conclude that C(u) is 4-dimensional. 

From Theorem 4.5 and Corollary 4.17, it follows that 

A = C(u) © Ex/2(u) and C(u) = Ru + Aa>(u) 

for some a! Ç R. By Corollary 4.17 and Lemma 4.15, Lu has complex 
eigenvalues of Ei/2(u) and hence, by Lemma 6.9, Ei/2(u) = Ai/2(u). 
Finally, we note that Lemma 6.15 gives us a' < J. 

For a fixed z0 £ Ai/2(e), let x0 £ ^4«(e) be such that the subalgebra 
Re © Rso2 has e, x0 for a basis and xo2 = —e. From this point on, e2 and 
e3 denote the two idempotents given by (6.16) with x = x0. Also, when it 
is convenient we denote e by eu and a by a.\. 

LEMMA 6.18. For i = 1,2, 3, let at £ Rbe such that 

C(et) = Re{ © Aai(et). 

Then a t = — 1. 

Proof. Suppose u = fiie + /3?x0 is e2 (or e3). Then by Theorem 5.12, 
Lu is diagonalizable on C(w) with eigenvalues 1 and a0 = a2 (ora3resp.). 
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Let v = 7i<? + 72X0 be an eigenvector of Lu belonging to a0. Then 

(0i^ + (32x0)(yie + ^2X°) = (^ l71 ~~ ^27)^ + (027i + 0i72)c*Xo 

= a0yie + «072^0, 

which yields 

(0i - «0)71 - 0272 = 0 and a027i + <*(0i ~ a0)y2 = 0. 

The determinant of the coefficient matrix of this linear system in 71, 72 is 

A(j8lf 02) = cto2 - (a + l)0iao + <*(0i2 + 022) 

which is zero since v 9e 0. Substituting the coordinates of e2 or e% into 
A(0i, 02), we have 

2 , a + 1 , 1 - a n 

«0 i -z— a0 H — = U, 
la la 

or equivalently 

2 W ~ (1 + a)a0 + (1 - a) = 0. 

From the quadratic formula a0 = 1 or (1 — a) /2a, and hence a0 = 
(1 — a)/2a since «o < è- I n particular, a2 = a3. Similarly, a = a2. Thus 

a = (1 - a ) / 2 a or 2a2 + a - 1 = 0. 

Factoring this polynomial, we find that the possible values of a are — 1 
and i , and hence a = — 1. Therefore a = a2 = «3 = — 1. 

From Lemma 6.18 and the definition of e2 and e3, it follows that each of 
e = eu £2, ez is the negative of the sum of the other two. Also, Lemmas 6.17 
and 6.18 show us some similarities among the decompositions of A relative 
to these idempotents which are further exhibited by 

LEMMA 6.19. For each i = 1, 2, 3, let f t G C — R be such that Axl2(e>) = 
V^ and assume rt = f if *. Then, for i,j, k distinct, we have 

(i) dim C(ey) H Ai/2(ek) = 2 awd 

^ ( e * ) = c(ef) n ^i /2(^) e c(ej) n 4i/2(e<), 
(ii) n = r2 = r3. 

Proof. Using ek = — et — £,• and x £ C(e*) ^ -41/2(0^), we have 

(Rek
2 - Lek + Tjl)x = (-et - ej)(x - ep) - (x — epc) + Tjx 

= ej(ejx) — e.,x + TjX = 0. 

The roots of X2 — X + TJ are complex. Therefore, x is in the subspace on 
which Lek has complex roots. This means 

x 6 Ffit = 41/2(6*). 
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But the minimum polynomial of Lek on Ai/2(ek) is X2 — X + rkJ and hence 
it must be the case that rs = rk. 

In order to obtain the direct sum in part (i), first note that the above 
argument gives us that 

C(et) H A1/2(ej) + Cifii) C\ A1/2(et) C Al/2(ek) 

and note that 

(6.20) [C(e<) H A1/2(ej)] r\ [C(ej) n A1/2(ei)] C C(et) n Alf2(et) = 0. 

Let x 6 C(et) P\ Ai/2(ej) and z Ç C(ej) Pi A\i2(et). Then x and ê x are 
linearly independent in C{et) C\ Ai/2(ej), and z and ê s are linearly 
independent in C(ef) C\ Ai/2(ei). Now, it follows easily that 

Ai/2(ek) = C{et) C\ All2{ef) 0 C(e?) C\ A1/2(e{) 

and C{ef) C\ Ai/2(ek) is 2-dimensional. 

Lemma 6.6 tells us that f ;- + f 7 == 1. Combining this with the second 
part of Lemma 6.19, we deduce that there is some real number 5 ^ 0 such 
that f j is one of the complex numbers given by f ± bi. From this, we 
see that the common value T\ = r2 = r3, which we denote by r, is greater 
than \. 

For each pair i ^ j in {1, 2, 3}, it is convenient to introduce the nota­
tion: Xi = C{et) C\ Ai/2(ej) and C = C{et) C\ C(ej). Since 

C(et) r\A1/2(ek) = C(et) H [C(e,) H 41 / 2(e,) 0 C(^) H i41/2(e,)] 
= c(^)n^1 / 2(e ;), 

the definition of Xt is independent of which ej ^ e* we use to define it. 
Also, C does not depend on the choice of i and j because ek = — e* — et Ç 
C. 

For i, j , & distinct, X tX j C Xfc since Lemma 6.14 applies to e2 and e3 

as well as to ex = e. We have seen, in Section 5, that Lei and Rei are 
diagonalizable on the subalgebra C(e*). Since Xt is invariant under Lek 

and Rei, we can conclude, by employing Lemma 6.18, that Xt is an 
eigenspace belonging to eigenvalue — 1 for both transformations Lei and 
Re: 

LEMMA 6.21. Let <p, \j/ and p be defined by (6.4) and let xt be a zonzero 
element of Xt. Then \eu ej} xit e^Xi) is a basis for C(et), and for some 
6 G Rthe corresponding multiplication table is given by: 

ts ^ ts j X 'i & ovv 'î 

et e î e j - X , — ejXi 

— e, — ej ej t/ o*V ^ t? ovv ï § jv î 

- X i X •£ t / jJi/ •j — 6et 2pdet + <pdej 

-ejxt TXi — ypdei — (pBej — Ore t 
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Proof. Let Xj Ç I j . By the definition of the idempotents eu e2, e% it is 
clear t ha t ej f C(ei). Since xt 6 Xt = C(^z) P\ ^ î ^ f e ) , we know, by 
Lemma 6.14, t ha t e^* G Xt. Now, it follows tha t {eue a basis 
of C(ei) because linearly independent in . 4 i / 2 ( ^ ) and eu ej 
are linearly independent in C ( ^ ) . 

Since — et — ej = e* = ek
2 = ez- + ^ + 2etej we know tha t etej = 

— et- — ej. The validity of the remaining entries in the first two rows and 
the first two columns follows easily from the definitions of C and Xt. 

Lemma 4.19 and Table 5.13 imply tha t there is some positive 6 in R 
such t ha t u = — dxt

2 is an idempotent in C. Since 

xt Ç Ail2(ej) C\ A1/2(ek), 

Xi does not commute with ej or ek, but clearly xt does commute with u. 
Since Lemma 6.15 tells us t ha t the only idempotents in C are elf e2 and e3, 
we conclude t ha t u = e,-. 

Next using (6.13) with z = xt = w and e = ej we have 

(6.22) (e ;*,)2 = -Ord. 

With this we see tha t only (ejX^Xi and XtejXt remain to be determined. 
Since (pde^Xi = (xt — e^x^Xi = xt

2 — {ejxt)xiy it is clear t ha t once 
XiejXi is known then (ejX^Xi can be easily computed. This equation can 
be reformulated as 

(6.23) (ejXi) oxt = xt
2 = —de^ 

From (ejXi) (xi{ejXi)) = {(ejXt)xt) (ejXt) and (6.23), it follows tha t 

(6.24) ((ejXi)Xi) o (ejXi) = dejXf. 

Using Xi((ejXi)Xi) = (Xi(ejXi))Xi we obtain the corresponding equation 

(6.25) ((ejXi)Xi) oXf = 6x{. 

Suppose now {ejXi)xi = aet + be$ + cxt + dejXi. Then placing this 
expression into (6.24) and using tha t portion of the table already deter­
mined and equation (6.23), we have 

(6.26) (~cd - 2drti)ei + (b - 2a)efict = dejXt. 

Making similar use of (6.25) yields 

(6.27) (-2cd - dd)ei + (b - 2a)xt = 6xt. 

From (6.26) and (6.27), we can conclude d0(4r - 1) = 0. Noting t ha t 
T > J as indicated earlier, we have d = 0 = c. 

T o determine a and b} we apply the flexible identi ty and deduce 

(6.28) -2dTei = 2(ejXi)2 

= —{(ejXi)Xi)ej + ej{Xi(ejXi)) + (epù^i 

= (0 + 3a)et + (6 + 2a - b)ej. 
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Therefore, 

a = -\6{2T + 1) = - ^ 0 , b = -Bip. 

The proof is completed by using (6.23) to find x^ejXi). 

Note that the multiplication table of Lemma 6.21 tells us that C = 
Ket © Kej for each e* ^ e,-. 

In order to describe certain symmetries that occur within the multi­
plication on A we define the functions F and G on A X A X A into A by 

F(r,s,t) = r(*0 - p{rt) - y(tr) 

G(r} s, t) = ($0r ~ y(rt) - a(tr) 

where 7, p, and 0- are as given by (6.4). 

LEMMA 6.29. F and G vanish on {(r, 5, t)\s — eu r 6 X t , / Ç X jforj 9e i}. 

Proof. Let 5 = e i , r Ç l j , and £ G X ; , for ^ 5̂  j . Then, since / £ Ai^i) 
= Ff^j)» w e can use (1.1) to obtain 

r(e</) - r(rt) - (ett)r = r(e<(e<0) + ( e^ ) (^0 

= (rei){eit) + ((ett)ei)r = — r^efy + rtr 
and hence we have 

(6.30) 2r(e,0 - (erf)r = r(rot). 

Also, 

r(c^) + /(e*r) = (rejt + (tet)r = (ret)t + tr — (ett)r 

simplifies to become 

(6.31) r o (ett) = 2tr - rt. 

Combining (6.30) and (6.31) gives 

(6.32) 3r(erf) = (r + 2)*r + (r - l)r* 

(6.33) S(ett)r = (4 - r)*r - (r + 2)r/. 

The lemma follows from (6.32) and (6.33). 

LEMMA 6.34. Let T be the 3-cycle (12 3). Then for each i = 1,2,3, there 
exists ji Ç X i such that 

(i) yt
2 = -eu 

Proof. For each i, let Xj be any nonzero element in Xt and let 0* G R 
be the value in the table of Lemma 6.21. Then part (i) is satisfied by 

1 
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For one fixed i we may choose x{ = y^^y^u) since XT(i)Xir2(i) C Xt. Then 

y*(i)y*Hi) = V^iyt-

We show that this particular 0Z- is 7 and, also for this i, that 

yrHayt =Vyyru). 
This is sufficient to prove part (ii), because once we have obtained this 
we can begin the process over again to get 

yiym) = Vyy*Hi)-

To simplify the notation, we take #3 = 0, X3 = yiy2 and show 6 = 7 
a n d 3/2X3 = 7^1 • 

By Lemma 6.21, we know that x3, £jx3 form a basis for X% and hence 
3/2̂ 1 = axz + beiXz for some a, b £ R. Since x3 G ^1/2(^1) = ^r(ei), when 
we substitute 3/2, 3>i, e\ into (1.1) we obtain 

(6.35) 0 = (y*yi)ei + (^Ci)^ - 3;2(3,i^i) — ^ O ^ ) 

= (2a + 6r — l)x3 + ( — a + b — \)e\Xz. 

Solving the two coordinate equations for a and b establishes 

(6.36) y2y± = (—T~f )*3 + \~T2/eiXz = ~n~l%z +
 T"1*1*»-

Let x3y2 = cyi + de23>i and y2xz
 = ciyi + ^ î ^ i . Substituting these two 

expressions into 0 = (x3j2)^2 + (e2y2)xz — xz(y2e2) — e2(y2xz) and 
simplifying produces 

0 = (2c — c\ + dr + d\r)yi + ( — c — C\ + à — 2di)e2yx. 

By solving the two coordinate equations for c\ and d\ we obtain 

/ f io7 ï r 3r i + (4 - T)C -3C + (1 - r)d 
(6.37) C l = — , d1 = — . 

Having found one relationship between the coordinates of y2xz and 
xzy2l we generate a second so that c and d may be found. Lemma 6.29 
tells us 

0 = F(y2, e2, xz) = y2(e2xz) — py2xz — yxzy2. 

Substituting e2 — — e\ — ez into this equation gives 

(6.38) 3̂ 2(̂ 1X3) = ay2xz — yxzy2. 

Now we substitute y\, y2} y2 into (1.1) and use (6.36) and (6.38) to obtain 

xzy2 = {yiyî)y2 = —y*yi + yiy? + y2(y2yi) 

= -yx + 2e23'i + {^r^jy*** 

. 3 [ 4 - r r + 2 1 
H T ^ — 5 — 3,2*3 - — ô — ^3^2 . 
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Therefore, 

(6.39) 2x33/2 = -yi + 2e2yi + ( — j - ~ jyix*. 

Expressing each term of (6.39) as a linear combination of yi and e2yi 
and using (6.37), we obtain the following two equations corresponding 
to the two coordinates: 

- i ( r + 2)2 = (7r - 4)c - (5r - 2 r 2 K 

f(r + 2)2 = ( 5 - 2r)c+ (5r + l)d. 

The determinant of the coefficient matrix of this linear system in c and d 
is 

A(T) = 4r3 + 15r2 + 12r - 4, 

which is easily seen to be positive whenever r > J. From this we con­
clude that there is a unique c and d solving this system. One can check 
that c = — p, d = 1 is this solution so that from (6.37) we have C\ = y 
and di = 0. Therefore, 

(6.40) x3y2 = -pyi + e2yi 

(6 .41) 3/2X3 = 73 ,i-

Finally, we show 6 = 7. We use (6.36), (6.40), (6.41), and the table of 
Lemma 6.21 to simplify 

-Bez = x3
2 = (yiy2)xa = ~(xzy2)y2 + 3/1(3/2X3) + xd(y2yi). 

After doing this and using the values of equation (6.4), we obtain 

— Be* = ( - p + i £ - < £ > - 7 + (fBy-^ei + ( — <p + 3p^7_1)^3 

from which it follows easily that B = 7. Therefore x3
2 = —7^3 so that 

3/3 = x^/y/y has the properties that y%2 = — ez and, by (6.41), 3/23/3 = 
\ / Y 3/1- This completes the proof. 

We can now prove the main result of this section. 

THEOREM 6.42. Let A be an ^-dimensional flexible division algebra over R 
containing no idempotent which commutes with every element of A. Then A 
is a generalized pseudo-octonion algebra. 

Proof. The algebra A has an idempotent e such that A = C(e) © Ai/2(e) 
where C{e) is a 4-dimensional subalgebra and A\l2{e) = Fj-(e), for some 
f g C — R. We prove that 4̂ is uniquely determined by the real number 
T = ff which we have seen to be greater than j . 

Let eu e2, e3 be the three idempotents in C and let 3/1, 3/2, 3/3 be the cor­
responding elements chosen to satisfy Lemma 6.34. Then using yt instead 
of Xi in the multiplication table of Lemma 6.21, we see that the multi­
plication constants of C{et) are uniquely determined by r. 
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Fix i,j distinct elements in {1, 2, 3}. To see that the products XtXj and 
XjXi are uniquely determined by r, let yu e^i be the basis of Xt and 
yj} etyj be the basis of Xj. Without loss of generality, we may assume 
i = 2, j = 3 since we have complete symmetry among the three cases. 

Lemma 6.29 allows us to express each of y2(e2y-è), yz(^3^2), (e2y*)y2, 
(^3^2)^3, (̂ 3^2) (e2yz) and (e2yz) {ezy2) as a linear combination of y2y% and 
y%y2 where the two coefficients are certain determined expressions in r. 
From (6.40) and (6.41) we have that y2yz and y^y2 are linear combina­
tions of yi and e2y\ whose coefficients are uniquely determined by r. 
Therefore, the products X2X3 and X^X2 are uniquely expressable in terms 
of r and, by symmetry, X{Xj and XjX 1 are. Therefore, since A = C ® 
Xi © X2 0 X%, we know that the multiplication on A is determined by r. 
But as indicated in Example 6.1, corresponding to each r £ R, r > J, there 
is a GP-algebra S(d, J) which decomposes 4̂ into C(e) © A\,2{e) with 
A\it{e) = Ff(e) and r = ff. Therefore, 4̂ is this GP-algebra. 

Remark. One can use the relations we have generated to construct a 
multiplication table for A. The result is exactly Table 6.5 where the basis 
there is replaced by eif e2, yu e2yu y2f eiy2, x3, 1̂X3 respectively. 

Theorem 6.42 is the final result required to establish our main theorem. 

Proof of Theorem 1.4. Let A be any finite dimensional flexible division 
algebra over the real numbers. Then A can be seen to be as indicated by 
(a), (b) or (c) of Theorem 1.4 in the following way. In the case that A is 
1 or 2-dimensional, Corollary 4.18 implies that A is commutative and 
hence A is described by part (a). When the dimension of A is 4 or 8, 
Theorem 4.20 reduces the classification of A to two cases. One of these 
cases, namely when A = C(e) for some idempotent e in A, is treated by 
Theorem 5.13 where it is shown to be described by part (b). The other 
case is shown to correspond to part (c) by Theorem 6.42. Since the con­
verse has been argued in Section 1, the proof is complete. 
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