
Canad. J. Math. Vol. 76 (6), 2024 pp. 1823–1890
http://dx.doi.org/10.4153/S0008414X23000640
© The Author(s), 2023. Published by Cambridge University Press on behalf of
The Canadian Mathematical Society

The solvability for a nonlinear degenerate
hyperbolic–parabolic coupled system
arising from nematic liquid crystals
Yanbo Hu
Abstract. This paper focuses on the Cauchy problem for a one-dimensional quasilinear hyperbolic–
parabolic coupled system with initial data given on a line of parabolicity. The coupled system is
derived from the Poiseuille flow of full Ericksen–Leslie model in the theory of nematic liquid
crystals, which incorporates the crystal and liquid properties of the materials. The main difficulty
comes from the degeneracy of the hyperbolic equation, which makes that the system is not
continuously differentiable and then the classical methods for the strictly hyperbolic–parabolic
coupled systems are invalid. With a choice of a suitable space for the unknown variable of the
parabolic equation, we first solve the degenerate hyperbolic problem in a partial hodograph plane
and express the smooth solution in terms of the original variables. Based on the smooth solution
of the hyperbolic equation, we then construct an iterative sequence for the unknown variable of the
parabolic equation by the fundamental solution of the heat equation. Finally, we verify the uniform
convergence of the iterative sequence in the selected function space and establish the local existence
and uniqueness of classical solutions to the degenerate coupled problem.

1 Introduction

Liquid crystals are a phase of matter intermediate between isotropic fluids and
crystalline solids, which combine typical properties of liquids (flow properties) with
those of solids (anisotropy). These multi-faceted properties make liquid crystal mate-
rials widely used in industry. Microscopically, to generate liquid crystal phase, the
molecules have to be anisotropic, for example, rod-like or disk-like, and therefore
they tend to organize themselves [11, 40]. According to the structure of the constituent
molecules or groups of molecules, liquid crystals have many forms, such as nematic,
smectic, and cholesteric. A liquid crystal is nematic if only long-range orientational
order is present (rod-like molecules tend to align in a common direction), whereas
is smectic if the order is partially positional (molecules are usually in layers). For the
cholesteric liquid crystals, the molecules are aligned parallel to a certain direction,
but this direction changes in space and makes a helix. Nematic liquid crystals are
one of the simplest and most important members of liquid crystals and have been
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extensively studied theoretically, numerically, and experimentally [8, 11, 13, 30, 40].
There are various continuum theories for nematic liquid crystals [35]; we adopt in
this paper the Ericksen–Leslie theory, which is adequate for the treatment of both
static and dynamic phenomena [34]. Macroscopically, the motion of nematic liquid
crystals can be characterized by the coupling of velocity field u for the flow and director
field n for the alignment of the rod-like feature. The governing system is the so-called
Ericksen–Leslie equations [13, 29, 30, 34], which reads that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νn̈ = λn − ∂W
∂n

− g + ∇ ⋅ ( ∂W
∂∇n

),

ρu̇ + ∇P = ∇ ⋅ σ − ∇ ⋅ ( ∂W
∂∇n

⊗ ∇n),

∇ ⋅ u = 0, ∣n∣ = 1,

(1.1)

where the notation ḟ denotes the material derivative, that is, ḟ = ft + u ⋅ ∇ f . In system
(1.1), ρ is the density, P is the pressure, ν is the inertial coefficient of n, and λ is
the Lagrangian multiplier of the constraint ∣n∣ = 1. Furthermore, the function W =
W(n, ∇n) is the Oseen–Franck potential energy density

W(n, ∇n) = 1
2

k1(∇ ⋅ n)2 + 1
2

k2(n ⋅ ∇ × n)2 + 1
2

k3∣n × (∇ × n)∣2 ,

with elastic constants k i (i = 1, 2, 3), and g and σ are, respectively, the kinematic
transport tensor and the viscous stress tensor given by

g = γ1N + γ2Dn,
σ = α1(nT Dn)n ⊗ n + α2N ⊗ n + α3n ⊗ N + α4D

+ α5(Dn) ⊗ n + α6n ⊗ (Dn),

where N represents the rigid rotation part of director changing rate by fluid vorticity
and D represents the rate of strain tensor expressed as

N = ṅ − 1
2

(∇u − ∇T u)n, D = 1
2

(∇u + ∇T u).

The material coefficients γ1 , γ2 in the expression of g and the Leslie coefficients α i (i =
1, . . . , 6) in the expression of σ satisfy some specific relations and inequalities. For the
one-dimensional Poiseuille flows with the following special form [7]

n(x , t) = (sin θ(x , t), 0, cos θ(x , t))T , u(x , t) = (0, 0, u(x , t))T ,(1.2)

Chen, Huang, and Liu [9] investigated the full Ericksen–Leslie equations (1.1) and
derived the following one-dimensional hyperbolic–parabolic coupled system

{ νθ t t + γ1θ t = c(θ)(c(θ)θx )x − h(θ)ux ,
ρut = a + (g(θ)ux + h(θ)θ t)x ,(1.3)

where a is a constant, and

c2(θ) = k1 cos2 θ + k3 sin2 θ , h(θ) = α3 cos2 θ − α2 sin2 θ ,
g(θ) = α1 sin2 θ cos2 θ + α5 − α2

2
sin2 θ + α3 + α6

2
cos2 θ + α4

2
.
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The solvability for a nonlinear degenerate hyperbolic–parabolic coupled system 1825

For the derivation of (1.3), we refer the reader to the work of Chen, Huang, and Liu
[9]. By choosing appropriate parameters such that h(θ) = g(θ) ≡ 1 and ν = ρ = 1, a =
0, γ1 = 2, system (1.3) reduces to

{θ t t + 2θ t − c(θ)(c(θ)θx )x + ux = 0,
ut − (ux + θ t)x = 0.(1.4)

We here provide a detailed introduction to the variables in (1.4). t ≥ 0 is the time-
independent variable, x ∈ R is the space-independent variable, the unknown function
θ(t, x) ∈ R represents the angle between the director field n and the z-axis, and the
unknown function u(t, x) ∈ R represents the component of flow velocity u along the
z-axis. See (1.2) for the details. The special physical significance of these unknown
variables comes from the plane shear and Poiseuille flow geometries (assuming direc-
tor stays in the x–z plane). Moreover, the first hyperbolic equation in (1.4) (and also
(1.3)) describes the “crystal” property in nematic liquid crystals since it characterizes
the propagation of the orientation waves in the director field, whereas the second
parabolic equation in (1.4) (and also (1.3)) describes the “liquid” property of the liquid
crystals.

When neglecting the fluid effect in system (1.3), it is obtained the well-known
variational wave equation

νθ t t + γ1θ t − c(θ)(c(θ)θx )x = 0,(1.5)

which was introduced by Hunter and Saxton [22] and had been widely studied under
the positiveness condition of the wave speed c. See works on the singularity formations
of smooth solutions [16], on the existence of dissipative weak solutions [42, 43], and
on the well-posedness of conservative weak solutions [2–5]. One may also consult
the works of the related systems of variational wave equations in [6, 18, 44, 45]. On
the other hand, the elastic coefficients k i (i = 1, 2, 3) may be negative in some cases
physically, for example, the bend elastic constant k3 is negative for the twist-bend
nematic liquid crystals (see, e.g., [1, 12, 36]), so that the wave speed c(⋅) may degenerate
at some time. Moreover, the motion of long waves on a neutral dipole chain in the
continuum limit can also be described by a mixed-type equation similar to (1.5) [52].
In [38], Saxton studied the boundary blowup properties of smooth solutions to the
degenerate equation (1.5) with γ1 = 0 by allowing either k1 or k3 to be zero. In addition,
equation (1.5) with c(θ) = θ and γ1 = 0 is corresponded to the one-dimensional
second sound equation which describes the wave of temperature in superfluids (see
[26, 27]). Under the initial assumption θ(0, x) ≥ δ > 0, they investigated the local well-
posedness and blowup of solutions to the one-dimensional second sound equation.
In [21], Hu and Wang considered the degenerate variational wave equation (1.5) and
discussed the local existence of smooth solutions near the degenerate line.

For the hyperbolic–parabolic coupled system (1.4) with a strictly positive wave
function c, the local existence and uniqueness of smooth solutions to its Cauchy
problem can be obtained from the classical results of the general hyperbolic–parabolic
coupled systems by Li, Yu, and Shen [31]. Moreover, the local classical solutions to
the initial-boundary value problems for the general hyperbolic–parabolic coupled
systems were presented in [32, 33, 47]. The global existence of smooth solutions for the
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initial value problems and initial-boundary value problems to a class of hyperbolic–
parabolic coupled systems were established by Zheng and Shen [48, 49, 51]. For
more relevant results about the hyperbolic–parabolic coupled systems, we refer the
reader to, for example, [17, 28, 39, 41, 50] and the references therein. Furthermore, for
system (1.4), Chen, Huang, and Liu [9] shown the cusp-type singularity formations
of smooth solutions in finite time and established the global existence of Hölder
continuous weak solutions for its Cauchy problem. Recently, Chen, Liu, and Sofiani
[10] generalized the existence results to the general system (1.3). Some relevant studies
for the full Ericksen–Leslie equations (1.1) were presented among others in [23–25].
To the best of our knowledge, studies on the hyperbolic–parabolic coupled systems
with a degenerate wave speed are still very limited and there is no general theory for
these kinds of problems. Based on an estimate of the solution for the heat equation,
we [19] shown that the smooth solution of (1.4) may break down in finite time even
for an arbitrarily small initial energy under the initial condition c(θ(0, x)) ≥ δ > 0.

In this paper, we are concerned with the Cauchy problem for the nonlinear
degenerate hyperbolic–parabolic coupled system (1.4) with initial data given on a line
of parabolicity. More precisely, we consider the local solvability of classical solutions to
(1.4) with the degenerate initial data c(θ(0, x)) = 0. This type of degenerate problem
is very meaningful and interesting in both mathematical theory and physical appli-
cations. This situation corresponds physically to the case that the orientation wave in
the director field has no potential energy initially. At later times, the orientation wave
converts kinetic energy into potential energy due to the coupling effect of director
field and flow field. Exploring this issue may help us better understand the process of
energy conversion. Mathematically, the solvability of degenerate hyperbolic–parabolic
coupled systems is a fundamental problem for coupled systems. Although there have
been many results on the solvability for the strictly hyperbolic–parabolic coupled
systems and the single degenerate hyperbolic equations, they cannot be applied to
the current degenerate hyperbolic–parabolic coupled problem. In the present paper,
we need to overcome the coupling difficulty of degeneracy on variables at different
scales in terms of technology. In addition, it is also very valuable to investigate how
the unknown function of parabolic equation will be affected by the degeneracy of the
hyperbolic equation.

For the convenience of calculation, we discuss the special wave speed c(θ) = θ
here, and a similar result for the general wave speed c(⋅) with ∣c′(⋅)∣ ≥ c0 > 0 can be
established by the mean value theorem in the derivation process. By introducing a new
variable v(t, x)

v(t, x) = ∫
x

−∞
u(t, z) dz,(1.6)

and hence vt = ux + θ t , system (1.4) can be rewritten as in terms of (θ , v)

{ θ t t + θ t − θ(θθx )x = −vt ,
vt − vxx = θ t .(1.7)

We study the Cauchy problem to (1.7) with the following initial data:

θ(0, x) = 0, θ t(0, x) = θ0(x), v(0, x) = v0(x).(1.8)
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From (1.8), the wave speed is equal to zero on the initial line, then the hyperbolic
equation in (1.7) is degenerate at t = 0. We emphasize that this degenerate Cauchy
problem is not trivial or easy, and it cannot be solved by applying the classical method
for the strictly hyperbolic–parabolic coupled systems (e.g., [31]). The main reason
is that the corresponding system is not a continuously differentiable system by the
degeneracy. Moreover, due to the coupling of hyperbolicity and parabolicity, this
degenerate Cauchy problem can also not be solved directly from the previous strategy
of studying degenerate hyperbolic equations (e.g., [20, 21, 46]) since the scales of the
hyperbolic and parabolic equations are different. In the present paper, we solve the
degenerate Cauchy problem (1.7), (1.8) by the fixed point iteration pattern in two
steps. First, we introduce a suitable function space for the variable v, and establish
the existence of classical solutions for the degenerate hyperbolic system in a partial
hodograph coordinate plane. Here, due to the regularity of variable v, the approach
of solving the current degenerate hyperbolic problem, different from the method in
previous papers [20, 21, 46], is inspired by the work done by Protter [37] for studying
the well-posedness of the Cauchy problem to the second-order linear degenerate
hyperbolic equation. We solve the quasilinear degenerate hyperbolic problem and
derive the uniform estimates of solutions near the parabolic degenerating line in the
partial hodograph plane. By transforming the smooth solution back to the original
coordinate variables, we obtain the information of variable θ and its corresponding
estimates. Second, we use the fundamental solution of one-dimensional heat equation
to express the variable v and then establish its series of estimates based on the
information of θ. The uniform convergence of the iterative sequence generated by this
pattern is verified in the selected space for a sufficiently small time.

The main conclusion of this paper can be stated as follows.

Theorem 1.1 Suppose that the functions θ0(x) and v0(x) satisfy

θ0(x) ∈ C3 , v0(x) ∈ C4 ,
∣θ0(x)∣ ≥ θ > 0, ∣θ( j)

0 ∣ < ∞ ( j = 0, . . . , 3), ∣v( j)
0 ∣ < ∞ ( j = 0, . . . , 4),

(1.9)

for all x ∈ R and some positive constant θ. Then there exists a constant δ > 0 such that the
degenerate Cauchy problem (1.7), (1.8) admits a unique classical solution on [0, δ] × R.

We comment that the technique developed in the paper can be applied to study the
more general hyperbolic–parabolic coupled systems, e.g., system (1.3). With a choice
of a suitable space for the unknown variable u, one can obtain the function θ and
its properties near the degenerate line by solving the degenerate hyperbolic equation
based on almost the same process. Subsequently, we may utilize the parametrix
method [15] to construct the iterative sequence for the variable u and then show
that it is uniformly convergent in the selected function space. The detailed process
is relatively complicated and will be considered in the future.

The rest of the paper is organized as follows. In Section 2, we reformulate the
problem in terms of new dependent variables and then restate the main result.
Section 3 is devoted to solving the degenerate hyperbolic problem for a given variable
v in a suitable function space. In Section 3.1, we introduce a partial hodograph
coordinate system to transform the hyperbolic equation into a new system with a
transparent singularity-regularity structure. In Section 3.2, we construct an iterative
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sequence generated by the new problem in the partial hodograph plane. Sections
3.3 and 3.4 are devoted to, respectively, establish a series of lemmas for the iterative
sequence and show the existence and uniqueness of smooth solutions for the new
problem. The smooth solution is converted in the partial hodograph plane to that
in the original physical plane in Section 3.5. In Section 4, we explore the local
existence and uniqueness of classical solutions for the hyperbolic–parabolic coupled
problem. In Section 4.1, we present the preliminary results for the one-dimensional
heat equation. Section 4.2 is devoted to constructing an iterative sequence for the
parabolic equation and verifying that it belongs to the selected function space. In
Sections 4.3–4.5, we establish a series of properties for the iterative sequence and its
derivatives in the selected function space, including the regularity and convergence of
the iterative sequence. Finally, in Section 4.6, we complete the proof of Theorem 1.1.

2 Reformulation of the problem and the main result

In this section, we reformulate the problem by introducing a series of new dependent
variables and then restate the main result in terms of these variables. We discuss the
case θ0(x) ≥ θ > 0; the other case θ0(x) ≤ −θ < 0 is analogous.

To handle the term vt in the first equation of (1.7), we introduce

R = θ t + θθx + v , S = θ t − θθx + v .(2.1)

Thus,

θ t = R + S
2

− v , θx = R − S
2θ

.(2.2)

In terms of variables (v , R, S , θ), system (1.7) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − vxx = R + S
2

− v ,

Rt − θRx = R + S − 2v
4θ

(R − S) − R + S
2

+ v − θvx ,

St + θSx = R + S − 2v
4θ

(S − R) − R + S
2

+ v + θvx ,

θ t = R + S
2

− v .

(2.3)

Corresponding to (1.8), the initial conditions of (2.3) are

v(0, x) = v0(x), R(0, x) = S(0, x) = θ0(x) + v0(x), θ(0, x) = 0.(2.4)

Furthermore, we introduce the following variables (ṽ , R̃, S̃) to homogenize the
initial data:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṽ(t, x) = v(t, x) − v0(x),
R̃(t, x) = R(t, x) − [θ0(x) + v0(x)] + θ(t, x),
S̃(t, x) = S(t, x) − [θ0(x) + v0(x)] + θ(t, x).

(2.5)
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Then one has by (2.3) and (2.4)

ṽ(0, x) = R̃(0, x) = S̃(0, x) = θ(0, x) = 0,
R̃t(0, x) = S̃t(0, x) = 0.

(2.6)

Here, the homogeneous initial values of (R̃t , S̃t) come from the equations of (R, S)
in (2.3) and the fact R−S

2θ ∣
t=0

= θx ∣t=0 = 0. By a direct calculation, we can obtain a new

system in terms of the variables (ṽ , R̃, S̃ , θ) as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽt − ṽxx = R̃ + S̃
2

− θ − ṽ + θ0 + v′′0 ,

R̃t − θR̃x = R̃ + S̃ − 2ṽ + 2θ0

4θ
(R̃ − S̃) − (R̃ − S̃) + θθ′0 − θṽx ,

S̃t + θS̃x = R̃ + S̃ − 2ṽ + 2θ0

4θ
(S̃ − R̃) + (R̃ − S̃) − θθ′0 + θṽx ,

θ t = R̃ + S̃
2

− θ − ṽ + θ0 .

(2.7)

For the singular Cauchy problem (2.7), (2.6), we have the following.

Theorem 2.1 Assume that the functions v0(x) and θ0(x) satisfy (1.9) and

0 < θ ≤ θ0(x) ≤ θ ,(2.8)

for all x ∈ R and two positive constants θ , θ. Then there exists a constant δ > 0 such that
the singular Cauchy problem (2.7), (2.6) has a unique classical solution on [0, δ] × R.
Moreover, the solution (ṽ , R̃, S̃ , θ)(t, x) satisfies

∣ṽ(t, x)∣, ∣ṽx (t, x)∣ ≤ M̂θ(t, x), ∣R̃(t, x)∣, ∣S̃(t, x)∣ ≤ M̃θ2(t, x),
1
2

θt ≤ θ(t, x) ≤ 2θt,
(2.9)

for any (t, x) ∈ [0, δ] × R, where M̂ and M̃ are two positive constants.

We shall use the iteration method to show Theorem 2.1, from which and (2.5) one
establishes the existence of classical solutions for the Cauchy problem (2.3), (2.4). Then
Theorem 1.1 can be achieved by the relations in (2.1).

Here, we present the results of our choices of the constants M̃ , M̂, and δ for the
reader first, which come from the construction process in Sections 3 and 4. Denote

θ0 = max { max
x∈R

∣θ′0(x)∣, max
x∈R

∣θ′′0 (x)∣, max
x∈R

∣θ′′′0 (x)∣},

K = max {1, 2
θ

, 4
θ2 , 8

θ3 , θ0 , 2θ0

θ
, 4θ0

θ2 , 8θ
2
0

θ2 },

K̂ = max {1, max
x∈R

∣θ0(x) + v′′0 (x)∣, max
x∈R

∣θ′0(x) + v′′′0 (x)∣,

maxx∈R ∣θ′′0 (x) + v′′′′0 (x)∣}.

(2.10)
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It is noted that K and K̂ are constants depending only on θ, θ, the C3 norms of θ0(x),
and the C4 norms of v0(x). Moreover, we choose

M = 16K ≥ 16,

M̂0 = max {32K̂ , 12M2(1 + θ)2 , 32θ(C2,1 + 2C3,1/2 + C3,0)},

M̃ = 3M , M̂ = 2
θ

M̂0 ,

(2.11)

and

δ̃ = min { 1
16M

, 1
16KM̂0

, 1
M̂2

0
}, δ = min { δ̃

2θ
, 1

M̂0
, θ2

16M̂0θ
}.(2.12)

In (2.11), C j,β( j ≥ 1, β ≥ 0) are positive constants that make the following inequality
valid:

∣∣x∣β ∂ j

∂x j exp ( − x2

4t
)∣ ≤ C j,β t−

j−β
2 exp ( − x2

16t
),(2.13)

which come from the estimates for the fundamental solution of the heat equation.

3 The degenerate hyperbolic problem

In this section, we choose a suitable function space for the variable ṽ and then solve
the degenerate hyperbolic problem for the variables (R̃, S̃ , θ)(t, x).

Set

Σ(δ0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṽ(t, x)
��������������

ṽ(t, x) ∈ C1 , ṽx (t, x) ∈ C1 , ∀ (t, x) ∈ [0, δ0] × R

∣ṽ∣ ≤ M̂0 t, ∣ṽx ∣ ≤ M̂0 t
∣ṽt ∣ ≤ M̂0 , ∣ṽx t ∣ ≤ M̂0 , ∣ṽxx ∣ ≤ M̂0

√
t

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,(3.1)

where M̂0 is a positive constant which will be determined in Section 4, and δ0 is an
arbitrary positive number which may be assumed to be 1. Let ṽ be any element in Σ(1)
and denote w(t, x) = ṽx (t, x) ∈ C1. We consider the degenerate hyperbolic problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃t − θR̃x = R̃ + S̃ − 2ṽ + 2θ0

4θ
(R̃ − S̃) − (R̃ − S̃) + θθ′0 − θw ,

S̃t + θS̃x = R̃ + S̃ − 2ṽ + 2θ0

4θ
(S̃ − R̃) + (R̃ − S̃) − θθ′0 + θw ,

θ t = R̃ + S̃
2

− θ − ṽ + θ0 ,

(3.2)

with the homogeneous initial conditions

R̃(0, x) = S̃(0, x) = θ(0, x) = R̃t(0, x) = S̃t(0, x) = 0.(3.3)

For the Cauchy problem (3.2), (3.3), we have the following theorem.

Theorem 3.1 Let the conditions in Theorem 2.1 hold. Then there exists a constant δ > 0
such that the Cauchy problem (3.2), (3.3) has a unique classical solution on [0, δ] × R.
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Moreover, the solution (R̃, S̃ , θ)(t, x) satisfies

∣R̃(t, x)∣, ∣S̃(t, x)∣ ≤ M̃θ2(t, x), 1
2

θt ≤ θ(t, x) ≤ 2θt,(3.4)

for any (t, x) ∈ [0, δ] × R, where M̃ is a positive constant.

We show Theorem 3.1 by transforming the problem into a partial hodograph plane
and then returning the solution to the original physical plane.

3.1 The problem in a partial hodograph plane

We introduce the new independent variables

τ = θ(t, x), y = x .(3.5)

It is easy to calculate the Jacobian of this transformation

J ∶= ∂(τ, y)
∂(t, x) = τt yx − τx yt = θ t = R̃ + S̃

2
− τ − ṽ + θ0 ,

which, together with (3.1) and (3.3), gives J∣t=0 = θ0 ≥ θ > 0. Furthermore, it acquires
that

∂t = ( R̃ + S̃
2

− θ − ṽ + θ0)∂τ , ∂x = R̃ − S̃
2τ

∂τ + ∂y .(3.6)

From system (3.2) and the relations in (3.6), we can obtain a closed quasilinear
hyperbolic system in terms of (R̃, S̃ , t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃τ − τ
f+S̃ R̃y = R̃−S̃

2τ + 1
f+S̃ ⋅ (R̃−S̃)2

4τ − R̃−S̃
f+S̃ + θ′0

f+S̃ τ − w(t , y)
f+S̃ τ,

S̃τ + τ
f+R̃ S̃y = S̃−R̃

2τ + 1
f+R̃ ⋅ (R̃−S̃)2

4τ + R̃−S̃
f+R̃ − θ′0

f+R̃ τ + w(t , y)
f+R̃ τ,

tτ = 1
R̃+S̃

2 −τ−ṽ(t , y)+θ0(y)
,

(3.7)

where f = θ0(y) − ṽ(t, y) − τ. Obviously, system (3.7) has a clear regularity-
singularity structure. The initial values of (R̃, S̃ , t) are

R̃(0, y) = S̃(0, y) = t(0, y) = 0.(3.8)

It is easily seen that the three eigenvalues of system (3.7) are

λ− = − τ
f + S̃

, λ+ = τ
f + R̃

, λ0 = 0.(3.9)

Moreover, the three characteristics passing through a point (ξ, η) are defined by

⎧⎪⎪⎨⎪⎪⎩

dy±(τ; ξ, η)
dτ

= λ±(τ, y, t, R̃, S̃)(τ, y±(τ; ξ, η)),
y±(ξ; ξ, η) = η,

y0(τ; ξ, η) = η.(3.10)
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Suppose that M̃ is a sufficiently large positive constant determined later. We first
choose a sufficiently small positive constant δ̃1 ≤ 1 such that

δ̃1 ≤ 1
2

θ , M̃ ⋅ δ̃1 ≤ 1, (2 + 2M̂0

θ
)δ̃1 ≤ 1

2
θ .(3.11)

We use the notation Σ̃(δ̃1) to denote the function class which incorporates all con-
tinuously vector functions F = (R̃, S̃ , t)T ∶ [0, δ̃1] × R → R

3 satisfying the following
properties:

(P1) ∶ (R̃, S̃ , t)(τ, y) are continuous on [0, δ̃1] × R;
(P2) ∶ (R̃, S̃ , t)(0, y) = 0, ∀ y ∈ R;
(P3) ∶ ∣R̃(t, y)∣, ∣S̃(t, y)∣ ≤ M̃τ2 , τ

2θ
≤ t(τ, y) ≤ 2τ

θ
≤ 1,

for all (τ, y) ∈ [0, δ̃1] × R.

(3.12)

If (R̃, S̃ , t) is an arbitrary element in Σ̃(δ̃1), we see by (3.11) and (3.12) that

f + R̃ =θ0(y) − ṽ(t, y) − τ + R̃ ≥ θ − M̂0 t − τ − ∣R̃∣

≥θ − M̂0 ⋅ 2τ
θ

− τ − M̃τ2 ≥ θ − ( 2M̂0

θ
+ 1 + M̃δ̃1)τ ≥ 1

2
θ(3.13)

and

f + R̃ =θ0(y) − ṽ(t, y) − τ + R̃ ≤ θ + M̂0 t + τ + ∣R̃∣

≤ θ + M̂0 ⋅ 2τ
θ

+ τ + M̃τ2

≤ θ + ( 2M̂0

θ
+ 1 + M̃δ̃1)τ ≤ θ + 1

2
θ ≤ 2θ .(3.14)

Similarly, one has

1
2

θ ≤ f + S̃ ≤ 2θ(3.15)

and

1
2

θ ≤ R̃ + S̃
2

− τ − ṽ(t, y) + θ0(y) ≤ θ + 1
2

θ ≤ 2θ .(3.16)

Furthermore, we have by (3.9) and (3.13)–(3.15)

τ
2θ

≤ −λ− , λ+ ≤ 2τ
θ

,(3.17)

from which and (3.10) one achieves

∣y+(τ; ξ, η) − y−(τ; ξ, η)∣ ≤ 2 ∫
ξ

0

2τ
θ

dτ = 2
θ

ξ2 .(3.18)
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3.2 The iterative sequence

For any (ξ, η) ∈ [0.δ̃1] × R, integrating the differential system (3.7) along the char-
acteristic curves y = y i (τ; ξ, η) (i = ±, 0) defined in (3.10), we utilize the boundary
conditions (3.8) to gain a system of integral equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃(ξ, η) = ∫
ξ

0
{ R̃ − S̃

2τ
+ A ⋅ (R̃ − S̃)2

4τ

−A(R̃ − S̃) + Aθ′0τ − Aw(t, y)τ}(τ, y−(τ; ξ, η)) dτ,

S̃(ξ, η) = ∫
ξ

0
{ S̃ − R̃

2τ
+ B ⋅ (R̃ − S̃)2

4τ

+B(R̃ − S̃) − Bθ′0τ + Bw(t, y)τ}(τ, y+(τ; ξ, η)) dτ,

t(ξ, η) = ∫
ξ

0
C(τ, y0(τ; ξ, η)) dτ,

(3.19)

where

A = 1
f + S̃

, B = 1
f + R̃

, C = 1
R̃+S̃

2 − τ − ṽ(t, y) + θ0(y)
.(3.20)

One can apply the integral system (3.19) to construct the iterative sequences. For
any (τ, y) ∈ [0, δ̃1] × R, set

R̃(0)(τ, y) = S̃(0)(τ, y) = 0, t(0)(τ, y) = τ
2θ

,(3.21)

from which we define the characteristic curves y = y(0)i (τ) =∶ y(0)i (τ; ξ, η) (i = ±, 0)
for τ ∈ [0, ξ] as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dy(0)± (τ)
dτ

= λ±(τ, y, t(0) , R̃(0) , S̃(0))(τ, y(0)± (τ)),

y(0)± (ξ) = η,
y(0)0 (τ) = η.(3.22)

Thus, the functions (R̃(1) , S̃(1) , t(1))(τ, y) can be defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃(1)(ξ, η) = ∫
ξ

0
{ R̃(0) − S̃(0)

2τ
+ A(0) ⋅ (R̃(0) − S̃(0))2

4τ

−A(0)(R̃(0) − S̃(0)) + A(0)θ′0τ − A(0)w(t(0) , y)τ}(τ, y(0)− (τ)) dτ,

S̃(1)(ξ, η) = ∫
ξ

0
{ S̃(0) − R̃(0)

2τ
+ B(0) ⋅ (R̃(0) − S̃(0))2

4τ

+B(0)(R̃(0) − S̃(0)) − B(0)θ′0τ + B(0)w(t(0) , y)τ}(τ, y(0)+ (τ)) dτ,

t(1)(ξ, η) = ∫
ξ

0
C(0)(τ, y(0)0 (τ)) dτ,

(3.23)
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where

A(0) = 1
f (0) + S̃(0)

, B(0) = 1
f (0) + R̃(0)

,

C(0) = 1
R̃(0)+S̃(0)

2 − τ − ṽ(t(0) , y) + θ0(y)
,

and f (0) = θ0(y) − ṽ(t(0) , y) − τ. After obtaining the functions
(R̃(k) , S̃(k) , t(k))(τ, y), one gets the characteristic curves y = y(k)i (τ) =∶
y(k)i (τ; ξ, η) (i = ±, 0) by solving the following ODE equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dy(k)± (τ)
dτ

= λ±(τ, y, t(k) , R̃(k) , S̃(k))(τ, y(k)± (τ)),

y(k)± (ξ) = η,
y(k)0 (τ) = η.(3.24)

Hence, we determine the functions (R̃(k+1) , S̃(k+1) , t(k+1))(τ, y) by the following
relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃(k+1)(ξ, η) = ∫
ξ

0
{ R̃(k) − S̃(k)

2τ
+ A(k) ⋅ (R̃(k) − S̃(k))2

4τ

−A(k)(R̃(k) − S̃(k)) + A(k)θ′0τ − A(k)w(t(k) , y)τ}(τ, y(k)− (τ)) dτ,

S̃(k+1)(ξ, η) = ∫
ξ

0
{ S̃(k) − R̃(k)

2τ
+ B(k) ⋅ (R̃(k) − S̃(k))2

4τ

+B(k)(R̃(k) − S̃(k)) − B(k)θ′0τ + B(k)w(t(k) , y)τ}(τ, y(k)+ (τ)) dτ,

t(k+1)(ξ, η) = ∫
ξ

0
C(k)(τ, y(k)0 (τ)) dτ,

(3.25)

where

A(k) = 1
f (k) + S̃(k)

, B(k) = 1
f (k) + R̃(k)

,

C(k) = 1
R̃(k)+S̃(k)

2 − τ − ṽ(t(k) , y) + θ0(y)
,

and f (k) = θ0(y) − ṽ(t(k) , y) − τ.
We next choose the constants M̃ and δ̃ ≤ δ̃1 to verify the uniform convergence of

the sequences (R̃(k) , S̃(k) , t(k))(τ, y).

3.3 Several lemmas

It first follows by the detailed expressions of A, B, C in (3.20) that

AS̃ = −A2 , BR̃ = −B2 , CR̃ = CS̃ = − 1
2

C2 ,
At = A2ṽt(t, y), Ay = −A2[θ′0 − w(t, y)], Bt = B2ṽt(t, y),
By = −B2[θ′0 − w(t, y)], Ct = C2ṽt(t, y), Cy = C2[w(t, y) − θ′0].

(3.26)
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If (R̃, S̃ , t)(τ, y) ∈ Σ̃(δ̃1), we have by (3.13)–(3.16) and (3.26)

∣A∣, ∣B∣ ≤ 2
θ

, 1
2θ

≤ C ≤ 2
θ

, ∣AS̃ ∣, ∣BR̃ ∣, ∣CR̃ ∣, ∣CS̃ ∣ ≤ ( 2
θ

)
2

,

∣At ∣, ∣Bt ∣, ∣Ct ∣ ≤ ( 2
θ

)
2

M̂0 , ∣Ay ∣, ∣By ∣, ∣Cy ∣ ≤ ( 2
θ

)
2

(∣θ′0∣ + 2
θ

M̂0τ).
(3.27)

Denote θ0 = max{maxz∈R ∣θ′0(z)∣, maxz∈R ∣θ′′0 (z)∣, maxz∈R ∣θ′′′0 (z)∣} and

K = max {1, 2
θ

, 4
θ2 , 8

θ3 , θ 1 , 2θ0

θ
, 4θ0

θ2 , 8θ
2
0

θ2 },(3.28)

which along with (3.27) give

∣A∣, ∣B∣, ∣Aθ′0∣, ∣Bθ′0∣, ∣AS̃ ∣, ∣BR̃ ∣, ∣CR̃ ∣, ∣CS̃ ∣ ≤ K ,
∣At ∣, ∣Bt ∣, ∣Ct ∣ ≤ KM̂0 , ∣Aw∣, ∣Bw∣ ≤ KM̂0τ,

∣Ay ∣, ∣By ∣, ∣Cy ∣, ∣(Aθ′0)y ∣, ∣(Bθ′0)y ∣ ≤ K(1 + M̂0τ).
(3.29)

We now choose M̃ , M, and δ̃ satisfying

M̃ = 3M , M = 16K , δ̃ = min { 1
16M

, 1
16KM̂0

, 1
M̂2

0
} ≤ δ̃1 ,(3.30)

such that there hold

Mδ̃ ≤ 1
16

, KM̂0 δ̃ ≤ 1
16

, M̂0

√
δ̃ ≤ 1, eMδ̃2

≤ exp { 1
64

} ≤ 16
15

.(3.31)

Hence, if (R̃, S̃ , t)(τ, y) ∈ Σ̃(δ̃), one obtains

1
2θ

≤ C ≤ 2
θ

, δ̃∣At ∣, δ̃∣Bt ∣, δ̃∣Ct ∣ ≤ 1
16

, ∣Aw∣, ∣Bw∣ ≤ K ≤ M
16

,

∣A∣, ∣B∣, ∣Aθ′0∣, ∣Bθ′0∣, ∣AS̃ ∣, ∣BR̃ ∣, ∣CR̃ ∣, ∣CS̃ ∣ ≤ K ≤ M
16

,

∣Ay ∣, ∣By ∣, ∣Cy ∣, ∣(Aθ′0)y ∣, ∣(Bθ′0)y ∣ ≤ 2K ≤ M
8

.

(3.32)

Thanks to (3.31) and (3.32), we have the following lemma.

Lemma 3.1 Let the sequences (R̃(k) , S̃(k) , t(k)) be defined in (3.25). For all k ≥ 1, the
following inequalities

∣R̃(k)(ξ, η)∣, ∣S̃(k)(ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j

, ξ
2θ

≤ t(k)(ξ, η) ≤ 2ξ
θ

,

∣R̃(k)(ξ, η) − S̃(k)(ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j(3.33)

hold in [0, δ̃] × R.
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Proof We show this lemma by the standard argument of induction. That is, we first
check that each inequality in (3.33) is true for n = 1, then assume that they all hold for
n = k and establish (3.33) for n = k + 1.

Obviously, the functions (R̃(0) , S̃(0) , t(0))(ξ, η) defined in (3.21) are in Σ̃(δ̃), then
we find by (3.32) that

1
2θ

≤ C(0) ≤ 2
θ

, ∣I(0)∣, ∣I(0)θ′0∣, ∣I(0)w(t(0) , y)∣ ≤ M
16

,(3.34)

for I = A, B. It concludes by (3.23) and (3.34) that

∣R̃(1)(ξ, η)∣ ≤ ∫
ξ

0
{∣A(0)θ′0∣τ + ∣A(0)w(t(0) , y)∣τ} dτ

≤ ∫
ξ

0

M
8

τ dτ = M
16

ξ2 ≤ Mξ2
1

∑
j=0

( 2
3

)
j

.(3.35)

The estimate (3.35) is also true for S̃(1)(ξ, η). For the variable t(1)(ξ, η), one arrives at

1
2θ

ξ ≤ t(1)(ξ, η) = ∫
ξ

0
C(0)(τ, y(0)0 (τ)) dτ ≤ 2

θ
ξ.(3.36)

Furthermore, applying (3.23) and (3.34) again acquires

∣R̃(1)(ξ, η) − S̃(1)(ξ, η)∣

≤ ∫
ξ

0
{∣A(0)θ′0∣τ + ∣A(0)w(t(0) , y)∣τ + ∣B(0)θ′0∣τ + ∣B(0)w(t(0) , y)∣τ} dτ

≤ ∫
ξ

0

M
4

τ dτ = M
8

ξ2 ≤ Mξ2
1

∑
j=0

( 2
3

)
j

.(3.37)

We combine (3.35)–(3.37) to achieve (3.33) for n = 1. In addition, the functions
(R̃(1) , S̃(1) , t(1))(ξ, η) satisfy

∣R̃(1)(ξ, η)∣, ∣S̃(1)(ξ, η)∣ ≤ 3Mξ2 = M̃ξ2 , 1
2θ

ξ ≤ t(1)(ξ, η) ≤ 2
θ

ξ,(3.38)

which means that (R̃(1) , S̃(1) , t(1))(ξ, η) ∈ Σ̃(δ̃).
Suppose that all inequalities in (3.33) hold for n = k. Thus,

∣R̃(k)(ξ, η)∣, ∣S̃(k)(ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j

≤ 3Mξ2 = M̃ξ2 ,(3.39)

from which we see that (R̃(k) , S̃(k) , t(k))(ξ, η) ∈ Σ̃(δ̃). Therefore, one has by (3.32)

1
2θ

≤ C(k) ≤ 2
θ

, ∣I(k)∣, ∣I(k)θ′0∣, ∣I(k)w(t(k) , y)∣ ≤ M
16

,(3.40)
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for I = A, B. In view of (3.25) and (3.40), we employ the induction assumptions to
obtain

∣R̃(k+1)(ξ, η)∣ ≤ ∫
ξ

0
{ 1

2
Mτ

k
∑
j=0

( 2
3

)
j

+ M
16

⋅ 1
4

(M
k

∑
j=0

( 2
3

)
j

)
2

τ3

+ M
16

⋅ Mτ2
k

∑
j=0

( 2
3

)
j

+ M
16

τ + M
16

τ} dτ

≤ Mξ2{ 1
16

+ ( 1
4

+ 3(Mδ̃)2

256
+ Mδ̃

48
)

k
∑
j=0

( 2
3

)
j

}

≤ Mξ2{1 + 2
3

⋅
k

∑
j=0

( 2
3

)
j

} = Mξ2
k+1
∑
j=0

( 2
3

)
j

.(3.41)

The above estimate (3.41) also holds for S̃(k+1)(ξ, η). Moreover, it is easy to find by
(3.40) that

1
2θ

ξ ≤ t(k+1)(ξ, η) = ∫
ξ

0
C(k)(τ, y(k)0 (τ)) dτ ≤ 2

θ
ξ.(3.42)

For the term ∣R̃(k+1)(ξ, η) − S̃(k+1)(ξ, η)∣, we proceed by using (3.25) and (3.40) again

∣R̃(k+1)(ξ, η) − S̃(k+1)(ξ, η)∣

≤ ∫
ξ

0
{Mτ

k
∑
j=0

( 2
3

)
j

+ M
16

⋅ 1
2

(M
k

∑
j=0

( 2
3

)
j

)
2

τ3

+ M
16

⋅ Mτ2
k

∑
j=0

( 2
3

)
j

+ M
4

τ} dτ

≤ Mξ2{ 1
8

+ ( 1
2

+ 3
128

+ 1
48

)
k

∑
j=0

( 2
3

)
j

} ≤ Mξ2
k+1
∑
j=0

( 2
3

)
j

.(3.43)

Combining (3.41)–(3.43) ends the proof of the lemma. ∎

By virtue of Lemma 3.1, the functions (R̃(k) , S̃(k) , t(k))(ξ, η) are in the
space Σ̃(δ̃) for each k ≥ 0. Thus, the estimates in (3.32) are true for the func-
tions (R̃(k) , S̃(k) , t(k)) (k ≥ 0). To derive the uniform convergence of the iter-
ative sequences (R̃(k) , S̃(k) , t(k)), one needs the properties of the sequences
(R̃(k)η , S̃(k)η , t(k)η )(ξ, η). We differentiate system (3.25) with respect to η to calculate

R̃(k+1)
η (ξ, η) = ∫

ξ

0
{

R̃(k)y − S̃(k)y

2τ
+ A(k) ⋅

(R̃(k) − S̃(k))(R̃(k)y − S̃(k)y )
2τ

− A(k)(R̃(k)y − S̃(k)y ) + A(k)11 A(k)
S̃

S̃(k)y + [A(k)11 A(k)t − A(k)wt τ]t(k)y

+ A(k)11 A(k)y + A(k)(θ′′0 − wy)τ} ∂y(k)− (τ)
∂η

(τ, y(k)− (τ)) dτ,(EQ.a)
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where

A(k)11 = (R̃(k) − S̃(k))2

4τ
− (R̃(k) − S̃(k)) + θ′0τ − w(t(k) , y)τ,

A(k)
S̃

= −(A(k))2 , A(k)t = (A(k))2ṽt(t(k) , y),
A(k)y = −(A(k))2[θ′0 − w(t(k) , y)],

(3.44)

S̃(k+1)
η (ξ, η) = ∫

ξ

0
{

S̃(k)y − R̃(k)y

2τ
+ B(k) ⋅

(R̃(k) − S̃(k))(R̃(k)y − S̃(k)y )
2τ

+ B(k)(R̃(k)y − S̃(k)y ) + B(k)11 B(k)
R̃

R̃(k)y + [B(k)11 A(k)t + B(k)wt τ]t(k)y

+ B(k)11 B(k)y − B(k)(θ′′0 − wy)τ} ∂y(k)+ (τ)
∂η

(τ, y(k)+ (τ)) dτ,(EQ.b)

where

B(k)11 = (R̃(k) − S̃(k))2

4τ
+ (R̃(k) − S̃(k)) − θ′0τ + w(t(k) , y)τ,

B(k)
R̃

= −(B(k))2 , B(k)t = (B(k))2ṽt(t(k) , y),
B(k)y = −(B(k))2[θ′0 − w(t(k) , y)],

(3.45)

and

t(k+1)
η (ξ, η) = ∫

ξ

0
{C(k)

R̃
R̃(k)y + C(k)

S̃
S̃(k)y + C(k)t t(k)y + C(k)y }(τ, η) dτ,(EQ.c)

where

C(k)
R̃

= C(k)
S̃

= − 1
2

(C(k))2 ,

C(k)t = (C(k))2ṽt(t(k) , y), C(k)y = (C(k))2[w(t(k) , y) − θ′0].
(3.46)

The functions ∂ y(k)
± (τ)
∂η in (EQ.a) and (EQ.b) are

∂y(k)±
∂η

(τ) = exp { ∫
τ

ξ

∂λ(k)±
∂y

(s, y(k)± (s)) ds},(3.47)

where

∂λ(k)−
∂y

= −s[A(k)
S̃

S̃(k)y + A(k)t t(k)y + A(k)y ],

∂λ(k)+
∂y

= s[B(k)
R̃

R̃(k)y + B(k)t t(k)y + B(k)y ].
(3.48)

Due to (R̃(k) , S̃(k) , t(k)) ∈ Σ̃(δ̃), for k ≥ 1, it suggests by Lemma 3.1 and (3.27),
(3.30), and (3.32) that
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∣A(k)11 ∣, ∣B(k)11 ∣ ≤ 9
4

M2τ3 + 3
2

Mτ2 + (∣θ′0∣ + ∣w∣)τ

≤ 4Mτ2 + (∣θ′0∣ + 2
θ

M̂0 δ̃)τ,(3.49)

and then

∣A(k)11 A(k)
S̃

∣ ≤ 4Mτ2 ⋅ M
16

+ ( 2
θ

)
2

⋅ (∣θ′0∣ + 2
θ

M̂0 δ̃)τ ≤ M2

4
τ2 + M

8
τ,

∣A(k)11 A(k)t − A(k)wt τ∣ ≤ {4Mτ2 + (∣θ′0∣ + 2
θ

M̂0 δ̃)τ} ⋅ ( 2
θ

)
2

M̂0 + 2
θ

M̂0τ

≤ M̂0τ{ 2
θ

+ 16Mτ
θ2 + ( 2

θ
)

2

(∣θ′0∣ + 2
θ

M̂0 δ̃)} ≤ 4KM̂0 δ̃ ≤ 1
4

,

∣A(k)11 A(k)y ∣ ≤ {4Mτ2 + (∣θ′0∣ + 2
θ

M̂0 δ̃)τ}( 2
θ

)
2

(∣θ′0∣ + 2
θ

M̂0 δ̃)

≤ 4Mτ2 ⋅ M
8

+ M
8

τ ≤ M
4

τ,

∣A(k)(θ′′0 − wy)∣ ≤ 2
θ

(∣θ′′0 ∣ + M̂0

√
δ̃) ≤ M

8
.

(3.50)

We obtain analogously

∣B(k)11 B(k)
R̃

∣ ≤ M2

4
τ2 + M

8
τ, ∣B(k)11 B(k)t + B(k)wt τ∣ ≤ 1

4
,

∣B(k)11 B(k)y ∣ ≤ M
4

τ, ∣B(k)(θ′′0 − wy)∣ ≤ M
8

.
(3.51)

Furthermore, there also hold

∣C(k)
R̃

∣, ∣C(k)
S̃

∣ ≤ M
16

, ∣C(k)t ∣ ≤ KM̂0 , ∣C(k)y ∣ ≤ M
8

,(3.52)

and

∣ ∂λ(k)±
∂y

∣ ≤ s{ M
16

(∣R̃(k)y ∣ + ∣S̃(k)y ∣) + KM̂0∣t(k)y ∣ + M
8

}.(3.53)

For the sequences (R̃(k)η , S̃(k)η , t(k)η )(ξ, η), we have the following lemma.

Lemma 3.2 For all k ≥ 1, the following inequalities

∣R̃(k)η (ξ, η)∣, ∣S̃(k)η (ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j

, ∣t(k)η (ξ, η)∣ ≤ Mξ
k

∑
j=0

( 2
3

)
j

,

∣R̃(k)η (ξ, η) − S̃(k)η (ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j

(3.54)

hold in [0, δ̃] × R.
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Proof The proof is also based on the standard argument of induction. According to

(R̃(0) , S̃(0) , t(0))(ξ, η) ∈ Σ̃(δ̃),

we get by (3.53) and (3.47)

∣ ∂λ(0)±
∂y

∣ ≤ s ⋅ M
8

, ∣ ∂y(0)±
∂η

(τ)∣ ≤ exp { ∫
ξ

0

M
8

s ds} ≤ exp ( Mξ2

16
).(3.55)

One combines (EQ.a), (3.50), and (3.55) to acquire

∣R̃(1)η (ξ, η)∣ ≤ ∫
ξ

0
{∣A(0)11 A(0)y ∣ + ∣A(0)(θ′′0 − wy)∣τ}∣ ∂y(0)− (τ)

∂η
∣ dτ

≤ ∫
ξ

0
{ M

4
τ + M

8
τ} exp ( Mξ2

16
) dτ ≤ Mξ2 ⋅ 3

16
exp ( Mδ̃2

16
)

≤ Mξ2
1

∑
j=0

( 2
3

)
j

.(3.56)

The estimate in (3.56) is also valid for the function S̃(1)η (ξ, η). For the function
t(1)η (ξ, η), it concludes by (EQ.c) and (3.52) that

∣t(1)η (ξ, η)∣ ≤ ∫
ξ

0
∣C(0)y ∣(τ, η) dτ ≤ ∫

ξ

0

M
8

dτ ≤ Mξ
1

∑
j=0

( 2
3

)
j

.(3.57)

Moreover, for the term ∣R̃(1)η (ξ, η) − S̃(1)η (ξ, η)∣, it is easy to check that

∣R̃(1)η (ξ, η) − S̃(1)η (ξ, η)∣ ≤ Mξ2 ⋅ 3
8

exp ( Mδ̃2

16
) ≤ Mξ2

1
∑
j=0

( 2
3

)
j

,(3.58)

which along with (3.56) and (3.57) give (3.54) for n = 1.
Let all the inequalities in (3.54) hold for n = k. Then

∣R̃(k)y ∣, ∣S̃(k)y ∣ ≤ 3Mξ2 , ∣t(k)y ∣ ≤ 3Mξ.(3.59)

Combining (3.53), (3.47), and (3.59) yields

∣ ∂λ(k)±
∂y

∣ ≤ s{ M
16

⋅ 6Ms2 + KM̂0 ⋅ 3Ms + M
8

}(3.60)

and then

∣ ∂y(k)±
∂η

(τ)∣ ≤ exp { ∫
ξ

0
s( M

16
⋅ 6Ms2 + KM̂0 ⋅ 3Ms + M

8
) ds}

≤ exp {Mδ̃2( Mδ̃2

8
+ KM̂0 δ̃ + 1

16
)} ≤ eMδ̃2

.(3.61)
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Utilizing the induction assumptions, we have by (EQ.a), (3.50), and (3.61)

∣R̃(k+1)
η (ξ, η)∣ ≤ ∫

ξ

0
{ 1

2
Mτ

k
∑
j=0

( 2
3

)
j

+ M
16

⋅ 3Mτ
2

⋅ Mτ2
k

∑
j=0

( 2
3

)
j

+ M
16

⋅ Mτ2
k

∑
j=0

( 2
3

)
j

+ ( M2τ2

4
+ Mτ

8
) ⋅ Mτ2

k
∑
j=0

( 2
3

)
j

+ 1
4

⋅ Mτ
k

∑
j=0

( 2
3

)
j

+ M
4

τ + M
8

τ}eMδ̃2
dτ

≤ Mξ2{ 3
16

+ ( 1
4

+ (Mδ̃)2

32
+ Mδ̃

32
+ ( (Mδ̃)2

4
+ Mδ̃

8
) ⋅ δ̃

3
+ 1

8
)

k
∑
j=0

( 2
3

)
j

}eMδ̃2

≤ Mξ2{ 15
32

+ [ 1
4

+ (Mδ̃)2

32
+ Mδ̃

32
+ ( (Mδ̃)2

4
+ Mδ̃

8
) ⋅ δ̃

3
+ 1

32
]

k
∑
j=0

( 2
3

)
j

}eMδ̃2

≤ Mξ2{ 15
32

+ [ 9
32

+ 1
32 × 16

+ 1
32 × 4

+ ( 1
4 × 16

+ 1
8 × 4

) ⋅ 1
3

]
k

∑
j=0

( 2
3

)
j

}eMδ̃2

≤ Mξ2{ 15
32

eMδ̃2
+ ( 5

16
eMδ̃2

)
k

∑
j=0

( 2
3

)
j

} ≤ Mξ2
k+1
∑
j=0

( 2
3

)
j

.

(3.62)

The above estimate also holds for the function S̃(k+1)
η (ξ, η). For the term

∣R̃(k+1)
η (ξ, η) − S̃(k+1)

η (ξ, η)∣, we can perform the process as in (3.62) to obtain

∣R̃(k+1)
η (ξ, η) − S̃(k+1)

η (ξ, η)∣ ≤ Mξ2{ 15
16

eMδ̃2
+ 5

8
eMδ̃2 k

∑
j=0

( 2
3

)
j

},(3.63)

which, together with the fact 15eMδ̃2 ≤ 16 by (3.31), leads to

∣R̃(k+1)
η (ξ, η) − S̃(k+1)

η (ξ, η)∣ ≤ Mξ2
k+1
∑
j=0

( 2
3

)
j

.(3.64)

For the function t(k+1)
η (ξ, η), it follows by (EQ.c), (3.52), and the induction assump-

tions that

∣t(k+1)
η (ξ, η)∣ ≤ ∫

ξ

0
{ M

16
⋅ Mτ2

k
∑
j=0

( 2
3

)
j

× 2 + KM̂0 ⋅ Mτ
k

∑
j=0

( 2
3

)
j

+ M
8

} dτ

= Mξ{ 1
8

+ ( Mδ̃2

24
+ KM̂0 δ̃

2
)

k
∑
j=0

( 2
3

)
j

}

≤ Mξ{1 + ( 1
24

+ 1
2

)
k

∑
j=0

( 2
3

)
j

} ≤ Mξ
k+1
∑
j=0

( 2
3

)
j

.(3.65)

We combine (3.62), (3.64), and (3.65) to complete the proof of the lemma. ∎
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By means of Lemmas 3.1 and 3.2, one achieves the following lemma.

Lemma 3.3 For all k ≥ 0, the following inequalities

∣R̃(k+1)(ξ, η) − R̃(k)(ξ, η)∣ ≤ Mξ2( 2
3

)
k

,

∣S̃(k+1)(ξ, η) − S̃(k)(ξ, η)∣ ≤ Mξ2( 2
3

)
k

,

∣t(k+1)(ξ, η) − t(k)(ξ, η)∣ ≤ Mξ( 2
3

)
k

(3.66)

hold in [0, δ̃] × R.

Proof We use again the argument of induction to verify the lemma. It is obvious to
see by the functions (R̃(0) , S̃(0) , t(0))(ξ, η) in (3.21) and (3.33) that the inequalities in
(3.66) are valid for n = 1. Suppose that each inequality in (3.66) holds for n ≤ k − 1. We
shall show that they are true for n = k.

We first estimate the term ∣t(k+1)(ξ, η) − t(k)(ξ, η)∣. In view of (3.25) and (3.32),
we apply the induction assumptions and the fact yk

0 (τ) ≡ η to find that

∣t(k+1)(ξ, η) − t(k)(ξ, η)∣ ≤ ∫
ξ

0
∣C(k)(τ, η) − C(k−1)(τ, η)∣ dτ

≤ ∫
ξ

0
{∣CR̃ ∣ ⋅ ∣R̃(k)(τ, η) − R̃(k−1)(τ, η)∣ + ∣CS̃ ∣ ⋅ ∣S̃(k)(τ, η) − S̃(k−1)(τ, η)∣

+ ∣Ct ∣ ⋅ ∣t(k)(τ, η) − t(k−1)(τ, η)∣} dτ

≤ ∫
ξ

0
{ M

16
⋅ Mτ2( 2

3
)

k−1

× 2 + 1
16δ̃

⋅ Mτ( 2
3

)
k−1

} dτ

≤ ( Mδ̃2

24
+ 1

32
) ⋅ Mξ( 2

3
)

k−1

≤ Mξ( 2
3

)
k

.(3.67)

To derive the difference between R̃(k+1)(ξ, η) and R̃(k)(ξ, η), we need to first
obtain the estimate of ∣y(k)− (τ) − y(k−1)

− (τ)∣. By virtue of (3.24), it suggests that for
τ ∈ [0, ξ],

y(k)− (τ) − ∫
ξ

τ

s
f (k) + S̃(k)

(s, y(k)− (s)) ds

=η = y(k−1)
− (τ) − ∫

ξ

τ

s
f (k−1) + S̃(k−1)

(s, y(k−1)
− (s)) ds,(3.68)

from which we see by Lemma 3.1 and (3.15) that

∣y(k)− (τ) − y(k−1)
− (τ)∣ ≤ ∫

ξ

τ

T(k)1 + T(k)2 + T(k)3

∣ f (k) + S̃(k)∣ ⋅ ∣ f (k−1) + S̃(k−1)∣
⋅ s ds

≤ 4
θ2 ∫

ξ

0
(T(k)1 + T(k)2 + T(k)3 )s ds,(3.69)
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where

T(k)1 = ∣θ0(y(k)− (s)) − θ0(y(k−1)
− (s))∣,

T(k)2 = ∣S̃(k)(s, y(k)− (s)) − S̃(k−1)(s, y(k−1)
− (s))∣,

T(k)3 = ∣ṽ(t(k)(s, y(k)− (s)), y(k)− (s)) − ṽ(t(k−1)(s, y(k−1)
− (s)), y(k−1)

− (s))∣.
(3.70)

For the term T(k)1 , one easily finds by the mean value theorem that

T(k)1 ≤ max ∣θ′0∣ ⋅ ∣y(k)− (s) − y(k−1)
− (s)∣ ≤ θ0∣y(k)− (s) − y(k−1)

− (s)∣.(3.71)

For the term T(k)2 , we have by Lemma 3.2 and the induction assumptions

T(k)2 ≤ ∣S̃(k)(s, y(k)− (s)) − S̃(k)(s, y(k−1)
− (s))∣

+ ∣S̃(k)(s, y(k−1)
− (s)) − S̃(k−1)(s, y(k−1)

− (s))∣

≤ 3Ms2∣y(k)− (s) − y(k−1)
− (s)∣ + Ms2( 2

3
)

k−1

.(3.72)

Similarly, it concludes that for the term T(k)3 ,

T(k)3 ≤ ∣ṽ(t(k)(s, y(k)− (s)), y(k)− (s)) − ṽ(t(k)(s, y(k)− (s)), y(k−1)
− (s))∣

+ ∣ṽ(t(k)(s, y(k)− (s)), y(k−1)
− (s)) − ṽ(t(k−1)(s, y(k−1)

− (s)), y(k−1)
− (s))∣

≤ M̂0 t(k)(s, y(k)− (s)) ⋅ ∣y(k)− (s) − y(k−1)
− (s)∣

+ M̂0{∣t(k)(s, y(k)− (s)) − t(k)(s, y(k−1)
− (s))∣

+ ∣t(k)(s, y(k−1)
− (s)) − t(k−1)(s, y(k−1)

− (s))∣}

≤ M̂0
2s
θ

⋅ ∣y(k)− (s) − y(k−1)
− (s)∣

+ M̂0{3Ms ⋅ ∣y(k)− (s) − y(k−1)
− (s)∣ + Ms( 2

3
)

k−1

}

=( 2M̂0s
θ

+ 3M̂0Ms)∣y(k)− (s) − y(k−1)
− (s)∣ + M̂0Ms( 2

3
)

k−1

.(3.73)

Putting (3.71)–(3.73) into (3.69) yields for τ ∈ [0, ξ],

∣y(k)− (τ) − y(k−1)
− (τ)∣

≤ 4
θ2 ∫

ξ

0
{(θ0 + 3Ms2 + 2M̂0s

θ
+ 3M̂0Ms)∣y(k)− (s) − y(k−1)

− (s)∣

+ (Ms2 + M̂0Ms)( 2
3

)
k−1

} ⋅ s ds

≤ ∫
ξ

0
{(Kδ̃ + 3KMδ̃3 + KM̂0 δ̃2 + 3KM̂0Mδ̃2)∣y(k)− (s) − y(k−1)

− (s)∣
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+ 2KM̂0Ms2( 2
3

)
k−1

} ds

≤ ∫
ξ

0

1
4

∣y(k)− (s) − y(k−1)
− (s)∣ ds + + 2

3
KM̂0Mξ3( 2

3
)

k−1

.(3.74)

Denote

d(k)− = max
τ∈[0,ξ]

∣y(k)− (τ) − y(k−1)
− (τ)∣.

Then we obtain by (3.74)

d(k)− ≤ 1
4

d(k)− + 2
3

KM̂0Mξ3( 2
3

)
k−1

,

which indicates that

d(k)− ≤ KM̂0Mξ3( 2
3

)
k−1

.(3.75)

Analogously, one gets

max
τ∈[0,ξ]

∣y(k)+ (τ) − y(k−1)
+ (τ)∣ ≤ KM̂0Mξ3( 2

3
)

k−1

.(3.76)

We now estimate the difference between R̃(k+1)(ξ, η) and R̃(k)(ξ, η). Applying
(3.25) gives

∣R̃(k+1)(ξ, η) − R̃(k)(ξ, η)∣

≤ ∫
ξ

0
{T(k)4 + T(k)5 + T(k)6 + (T(k)7 + T(k)8 )τ} dτ,(3.77)

where

T(k)4 = ∣ R̃(k) − S̃(k)

2τ
(τ, y(k)− (τ)) − R̃(k−1) − S̃(k−1)

2τ
(τ, y(k−1)

− (τ))∣,

T(k)5 = ∣A(k) (R̃(k) − S̃(k))2

4τ
(τ, y(k)− (τ))

−A(k−1) (R̃(k−1) − S̃(k−1))2

4τ
(τ, y(k−1)

− (τ))∣,

T(k)6 = ∣A(k)(R̃(k) − S̃(k))(τ, y(k)− (τ))

−A(k−1)(R̃(k−1) − S̃(k−1))(τ, y(k−1)
− (τ))∣,

T(k)7 = ∣A(k)θ′0(τ, y(k)− (τ)) − A(k−1)θ′0(τ, y(k−1)
− (τ))∣,

T(k)8 = ∣A(k)w(t(k) , y)(τ, y(k)− (τ)) − A(k−1)w(t(k−1) , y)(τ, y(k−1)
− (τ))∣.

(3.78)
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Thanks to Lemma 3.2 and (3.75), one employs the induction assumptions to arrive at

T(k)4 ≤ ∣R̃(k)(τ, y(k)− (τ)) − R̃(k−1)(τ, y(k−1)
− (τ))∣

2τ

+ ∣S̃(k)(τ, y(k)− (τ)) − S̃(k−1)(τ, y(k−1)
− (τ))∣

2τ

≤ 3Mτd(k)− + Mτ( 2
3

)
k−1

≤ (1 + 3KM̂0Mδ̃3)Mτ( 2
3

)
k−1

≤ 97
96

Mτ( 2
3

)
k−1

.(3.79)

Recalling the expressions of A(k) in (3.25) and T(k)1,2,3 in (3.70) achieves

∣A(k)(τ, y(k)− (τ)) − A(k−1)(τ, y(k−1)
− (τ))∣ ≤ 4

θ2 (T(k)1 + T(k)2 + T(k)3 )

≤ 4
θ2 {(θ0 + 3Mξ2 + 2M̂0 ξ

θ
+ 3M̂0Mξ)d(k)− + (Mξ2 + M̂0Mξ)( 2

3
)

k−1

}

≤ 4
θ2 {(θ0 + 3Mδ̃2 + 2M̂0 δ̃

θ
+ 3M̂0Mδ̃) ⋅ KM̂0 δ̃2 + δ̃ + M̂0}Mξ( 2

3
)

k−1

≤ 4
θ2 (1 + M̂0)Mξ( 2

3
)

k−1

≤ 2KM̂0Mξ( 2
3

)
k−1

,(3.80)

by the choice of δ̃ in (3.31). Therefore, we can use Lemmas 3.1 and 3.2, the induction
assumptions, (3.75), and (3.80) to estimate the terms T(k)5,6,7,8. In detail, for the term
T(k)5 , we have

T(k)5 ≤ ∣A(k) − A(k−1)∣ ⋅ (R̃(k) − S̃(k))2

4τ
+ ∣A(k−1)∣

×
∣(R̃(k) − S̃(k))2(τ, y(k)− (τ)) − (R̃(k−1) − S̃(k−1))2(τ, y(k−1)

− (τ))∣
4τ

≤ 2KM̂0Mξ( 2
3

)
k−1

⋅ (3Mτ)2

4τ
+ M

16
⋅ 1

4τ
⋅ 6Mτ2 ⋅ 2τT(k)4

≤ 5KM̂0M3 δ̃τ3( 2
3

)
k−1

+ 3
16

(1 + 3KM̂0Mδ̃3)M3τ3( 2
3

)
k−1

≤ (5KM̂0 δ̃ + 3
16

+ 9
16

KM̂0Mδ̃3)M3τ3( 2
3

)
k−1

≤ M3τ3( 2
3

)
k−1

.(3.81)

For the term T(k)6 , one obtains
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T(k)6 ≤ ∣A(k) − A(k−1)∣ ⋅ ∣R̃(k) − S̃(k)∣ + ∣A(k−1)∣ ⋅ 2τT(k)4

≤ 2KM̂0Mξ( 2
3

)
k−1

⋅ 3Mτ2 + M2

8
⋅ τ2(1 + 3KM̂0Mδ̃3)( 2

3
)

k−1

≤ (6KM̂0 δ̃ + 1
8

+ 3
16

KM̂0Mδ̃3)M2τ2( 2
3

)
k−1

≤ M2τ2( 2
3

)
k−1

.(3.82)

For the terms T(k)7 and T(k)8 , we also acquire

T(k)7 ≤ ∣A(k) − A(k−1)∣ ⋅ ∣θ′0∣ + ∣A(k−1)∣ ⋅ ∣θ′0(y(k)− (τ)) − θ′0(y(k−1)
− (τ))∣

≤ 4
θ2 (1 + M̂0)Mδ̃( 2

3
)

k−1

⋅ θ0 + M
16

⋅ θ0 ⋅ d(k)−

≤ 2KM̂0Mδ̃( 2
3

)
k−1

+ M
16

⋅ θ0 ⋅ KM̂0Mδ̃3( 2
3

)
k−1

=(2KM̂0 δ̃ + (Mδ̃) ⋅ (θ0 δ̃)
16

⋅ (KM̂0 δ̃))M( 2
3

)
k−1

≤ 13
96

M( 2
3

)
k−1

(3.83)

and

T(k)8 ≤ ∣A(k) − A(k−1)∣ ⋅ ∣w(t(k) , y(k)− (τ))∣

+ ∣A(k−1)∣ ⋅ ∣w(t(k) , y(k)− (τ)) − w(t(k−1) , y(k−1)
− (τ))∣

≤ 2KM̂0Mδ̃( 2
3

)
k−1

⋅ M̂0 t(k)(τ, y(k)− (τ))

+ K ⋅ {M̂0∣t(k)(τ, y(k)− (τ)) − t(k−1)(τ, y(k−1)
− (τ))∣ + M̂0d(k)− }

≤ 2KM̂0Mδ̃( 2
3

)
k−1

⋅ M̂0 ⋅ 2τ
θ

+ KM̂0{(∣t(k)y ∣ + 1)d(k)− + Mτ( 2
3

)
k−1

}

≤ {2(KM̂0 δ̃)2 + 2(KM̂0 δ̃)2 δ̃ + KM̂0 δ̃}M( 2
3

)
k−1

≤ 7
96

M( 2
3

)
k−1

.(3.84)

Here, the facts M̂0 ≥ 1, 16Mδ̃ ≤ 1, and 16KM0 δ̃ ≤ 1 are used in the above estimation
processes.

We now insert (3.79) and (3.81)–(3.84) into (3.77) to gain

∣R̃(k+1)(ξ, η) − R̃(k)(ξ, η)∣ ≤ ∫
ξ

0
{ 97

96
Mτ( 2

3
)

k−1

+ M3τ3( 2
3

)
k−1

+ M2τ2( 2
3

)
k−1

+ 5
24

Mτ( 2
3

)
k−1

} dτ

≤ { 97
192

+ 1
4

(Mδ̃)2 + 1
3

(Mδ̃) + 5
48

}Mξ2( 2
3

)
k−1
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≤ { 97
192

+ 1
4 × 162 + 1

48
+ 5

48
}Mξ2( 2

3
)

k−1

< 122
192

Mξ2( 2
3

)
k−1

< Mξ2( 2
3

)
k

.(3.85)

It is easily checked that the estimate (3.85) is also valid for the term ∣S̃(k+1)(ξ, η) −
S̃(k)(ξ, η)∣. The proof of the lemma is finished. ∎

3.4 The existence and uniqueness of solutions

According to Lemma 3.3, it is known that the sequences (R̃(k) , S̃(k) , t(k))(τ, y) are
uniformly convergent. We denote the limit functions by (R̃, S̃ , t)(τ, y) which are obvi-
ously continuous. Furthermore, by means of Lemma 3.1, the functions (R̃, S̃ , t)(τ, y)
satisfy

∣R̃(τ, y)∣, ∣S̃(τ, y)∣ ≤ 3Mτ2 = M̃τ2 , τ
2θ

≤ t(τ, y) ≤ 2τ
θ

,

∣R̃(τ, y) − S̃(τ, y)∣ ≤ 3Mτ2 = M̃τ2 ,
(3.86)

for any (τ, y) ∈ [0, δ̃] × R. In addition, it is clear that the functions (R̃, S̃ , t)(τ, y)
satisfy the integral system (3.19) and the boundary conditions

R̃(0, y) = S̃(0, y) = t(0, y) = 0.(3.87)

Thus, we have (R̃, S̃ , t) ∈ Σ̃(δ̃).
Next, we show that the functions (R̃, S̃ , t)(τ, y) possess first-order continuous

derivatives with respect to y. To move forward, one differentiates (3.19) with respect
to η to deduce the following linear system of integral equations:

R̃η(ξ, η) = ∫
ξ

0
{

R̃y − S̃y

2τ
+ A ⋅

(R̃ − S̃)(R̃y − S̃y)
2τ

−A(R̃y − S̃y) + A11AS̃ S̃y + [A11At − Awt τ]ty

+A11Ay + A(θ′′0 − wy)τ} ∂y−(τ)
∂η

(τ, y−(τ)) dτ,

(EQ.a1)

S̃η(ξ, η) = ∫
ξ

0
{

S̃y − R̃y

2τ
+ B ⋅

(R̃ − S̃)(R̃y − S̃y)
2τ

+B(R̃y − S̃y) + B11BR̃ R̃y + [B11At + Bwt τ]ty

+B11By − B(θ′′0 − wy)τ} ∂y+(τ)
∂η

(τ, y+(τ)) dτ,

(EQ.b1)

tη(ξ, η) = ∫
ξ

0
{CR̃ R̃y + CS̃ S̃y + Ct ty + Cy}(τ, η) dτ.(EQ.c1)
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Here, the coefficient functions in (EQ.a1)–(EQ.c1) are given in (EQ.a)–(EQ.c) but with
the limit functions (R̃, S̃ , t) replacing (R̃(k) , S̃(k) , t(k)). Set

(R̃(0)η , S̃(0)η , t(0)η )(ξ, η) = 0,(3.88)

and construct the iterative sequences (R̃(k)η , S̃(k)η , t(k)η )(ξ, η) by the integral system
(EQ.a1)–(EQ.c1) as follows:

R̃(k+1)
η (ξ, η) = ∫

ξ

0
{

R̃(k)y − S̃(k)y

2τ
+ A

(R̃ − S̃)(R̃(k)y − S̃(k)y )
2τ

− A(R̃(k)y − S̃(k)y ) + A11AS̃ S̃(k)y + [A11At − Awt τ]t(k)y

+ A11Ay + A(θ′′0 − wy)τ} ∂y(k)− (τ)
∂η

(τ, y−(τ)) dτ,(EQ.a2)

S̃(k+1)
η (ξ, η) = ∫

ξ

0
{

S̃(k)y − R̃(k)y

2τ
+ B

(R̃ − S̃)(R̃(k)y − S̃(k)y )
2τ

+ B(R̃(k)y − S̃(k)y ) + B11BR̃ R̃(k)y + [B11At + Bwt τ]t(k)y

+ B11By − B(θ′′0 − wy)τ} ∂y(k)+ (τ)
∂η

(τ, y+(τ)) dτ,(EQ.b2)

t(k+1)
η (ξ, η) = ∫

ξ

0
{CR̃ R̃(k)y + CS̃ S̃(k)y + Ct t(k)y + Cy}(τ, η) dτ,(EQ.c2)

where
∂y(k)±

∂η
(τ) = exp { ∫

τ

ξ

∂λ(k)±
∂y

(s, y±(s)) ds},(3.89)

and ∂λ(k)−
∂y

= −s[AS̃ S̃(k)y + At t(k)y + Ay],

∂λ(k)+
∂y

= s[BR̃ R̃(k)y + Bt t(k)y + By].
(3.90)

Since the limit functions (R̃, S̃ , t)(τ, y) are in the space Σ̃(δ̃), we see that the
coefficients of system (EQ.a2) and (EQ.c2) still satisfy the estimates in (3.50)–(3.53).
Then we have the following.

Lemma 3.4 The sequences (R̃(k)η , S̃(k)η , t(k)η ) defined by system (EQ.a2) and (EQ.c2)
satisfy the following inequalities:

∣R̃(k)η (ξ, η)∣, ∣S̃(k)η (ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j

, ∣t(k)η (ξ, η)∣ ≤ Mξ
k

∑
j=0

( 2
3

)
j

,

∣R̃(k)η (ξ, η) − S̃(k)η (ξ, η)∣ ≤ Mξ2
k

∑
j=0

( 2
3

)
j

,
(3.91)

for all k ≥ 1 and any (ξ, η) ∈ [0, δ̃] × R.
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Proof We omit the proof here since the process is exactly the same as that of
Lemma 3.2. ∎

It concludes by (3.91) that

∣R̃(k)η (ξ, η)∣, ∣S̃(k)η (ξ, η)∣ ≤ 3Mξ2 , ∣t(k)η (ξ, η)∣ ≤ 3Mξ,(3.92)

which together with (3.89) and (3.90) and the estimates in (3.50)–(3.53) give

∣ ∂λ(k)±
∂y

∣ ≤ s( M
16

⋅ 3Ms2 + 1
16δ̃

⋅ 3Ms + M
8

) ≤ Ms,

∣ ∂y(k)±
∂η

∣ ≤ exp { ∫
ξ

0
∣ ∂λ(k)±

∂y
(s, y±(s))∣ ds} ≤ eM ξ2

,
(3.93)

and then

∣ ∂y(k)±
∂η

(τ) − ∂y(k−1)
±

∂η
(τ)∣ ≤ eM ξ2

⋅ ∫
ξ

0
∣ ∂λ(k)±

∂y
− ∂λ(k−1)

±

∂y
∣ ds

≤ eMδ̃2

∫
ξ

0
s{ M

16
T(k)9 + 1

16δ̃
∣t(k)y − t(k−1)

y ∣} ds,(3.94)

where

T(k)9 = ∣R̃(k)y − R̃(k−1)
y ∣ + ∣S̃(k)y − S̃(k−1)

y ∣.

By utilizing Lemma 3.4 and (3.93) and (3.94), we have the following lemma.

Lemma 3.5 Let the functions (R̃(k)η , S̃(k)η , t(k)η ) be defined by the iterative system
(EQ.a2) and (EQ.c2). Then, for all k ≥ 0, the following inequalities

∣R̃(k+1)
η (ξ, η) − R̃(k)η (ξ, η)∣ ≤ Mξ2( 2

3
)

k

,

∣S̃(k+1)
η (ξ, η) − S̃(k)η (ξ, η)∣ ≤ Mξ2( 2

3
)

k

,

∣t(k+1)
η (ξ, η) − t(k)η (ξ, η)∣ ≤ Mξ( 2

3
)

k

(3.95)

hold in [0, δ̃] × R.

Proof The proof of the lemma is still based on the inductive method. It is obvious
by Lemma 3.4 that all inequalities in (3.95) are true for k = 0. We assume that each
inequality in (3.95) holds for n = k − 1 and then verify all of them valid for n = k.

For the term ∣t(k+1)
η (ξ, η) − t(k)η (ξ, η)∣, one obtains by (EQ.c2), (3.52), and the

induction assumptions

∣t(k+1)
η (ξ, η) − t(k)η (ξ, η)∣ ≤ ∫

ξ

0
{∣CR̃ ∣ ⋅ ∣R̃(k)y − R̃(k−1)

y ∣

+ ∣CS̃ ∣ ⋅ ∣S̃(k)y − S̃(k−1)
y ∣ + ∣Ct ∣ ⋅ ∣t(k)y − t(k−1)

y ∣} dτ
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≤ ∫
ξ

0
{ M

16
⋅ Mτ2( 2

3
)

k−1

+ M
16

⋅ Mτ2( 2
3

)
k−1

+ KM̂0 ⋅ Mτ( 2
3

)
k−1

} dτ

≤ ( Mδ̃2

24
+ KM̂0 δ̃

2
)Mξ( 2

3
)

k−1

≤ Mξ( 2
3

)
k

.(3.96)

For the term ∣R̃(k+1)
η (ξ, η) − R̃(k)η (ξ, η)∣, one gets by (EQ.a2)

∣R̃(k+1)
η (ξ, η) − R̃(k)η (ξ, η)∣

≤ ∫
ξ

0
{T(k)10 ∣ ∂y(k)− (τ)

∂η
∣ + T(k)11 ∣ ∂y(k)− (τ)

∂η
− ∂y(k−1)

− (τ)
∂η

∣} dτ,(3.97)

where

T(k)10 = T(k)9
2τ

+ ∣A∣ ∣R̃ − S̃∣ ⋅ T(k)9
2τ

+ ∣A∣T(k)9

+ ∣A11AS̃ ∣ ⋅ ∣S̃(k)y − S̃(k−1)
y ∣ + ∣A11At − Awt τ∣ ⋅ ∣t(k)y − t(k−1)

y ∣,(3.98)

T(k)11 =
∣R̃(k−1)

y − S̃(k−1)
y ∣

2τ
+ ∣A∣

∣R̃ − S̃∣ ⋅ ∣R̃(k−1)
y − S̃(k−1)

y ∣
2τ

+ ∣A∣ ⋅ ∣R̃(k−1)
y − S̃(k−1)

y ∣ + ∣A11AS̃ ∣ ⋅ ∣S̃(k−1)
y ∣

+ ∣A11At − Awt τ∣ ⋅ ∣t(k−1)
y ∣ + ∣A11Ay ∣ + ∣A(θ′′0 − wy)∣τ.(3.99)

Recalling the estimates in (3.50) yields

∣A11AS̃ ∣ ≤ M2

4
τ2 + M

8
τ, ∣A11At − Awt τ∣ ≤ 1

4
,

∣A11Ay ∣ ≤ M
4

τ, ∣A(θ′′0 − wy)∣ ≤ M
8

,
(3.100)

which, together with (3.86), (3.91), (3.98)–(3.99), and the induction assumptions,
arrive at

T(k)10 ≤ 1
2τ

⋅ 2Mτ2( 2
3

)
k−1

+ M
16

⋅ 3Mτ2

2τ
⋅ 2Mτ2( 2

3
)

k−1

+ M2

8
τ2( 2

3
)

k−1

+ ( M2

4
τ2 + M

8
τ) ⋅ Mτ2( 2

3
)

k−1

+ 1
4

⋅ Mτ( 2
3

)
k−1

≤ ( 5
4

+ 1
2

(Mδ̃)2 + 1
4

(Mδ̃))Mτ( 2
3

)
k−1

< 41
32

Mτ( 2
3

)
k−1

(3.101)

and

T(k)11 ≤ 3Mτ2

2τ
+ M

16
⋅ 3Mτ2 ⋅ 3Mτ2

2τ
+ M

16
⋅ 3Mτ2
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+ ( M2

4
τ2 + M

8
τ) ⋅ 3Mτ2 + 1

4
⋅ 3Mτ + M

4
τ + M

8
τ

≤ ( 21
8

+ 17
32

(Mδ̃)2 + 7
32

(Mδ̃))Mτ ≤ 3Mτ.(3.102)

Moreover, it suggests by (3.94) and the induction assumptions that

∣ ∂y(k)− (τ)
∂η

− ∂y(k−1)
− (τ)

∂η
∣

≤ eMδ̃2

∫
ξ

0
s{ M

16
⋅ 2Ms2( 2

3
)

k−1

+ 1
16δ̃

⋅ Ms( 2
3

)
k−1

} ds

≤ eMδ̃2
Mξ2( 2

3
)

k−1

.(3.103)

Putting (3.101)–(3.103) into (3.97) and using (3.93) leads to

∣R̃(k+1)
η (ξ, η) − R̃(k)η (ξ, η)∣

≤ ∫
ξ

0
{ 41

32
Mτ( 2

3
)

k−1

⋅ eMδ̃2
+ 3Mτ ⋅ eMδ̃2

Mξ2( 2
3

)
k−1

} dτ

≤ ( 41
64

+ 3
2

Mδ̃2)eMδ̃2
Mξ2( 2

3
)

k−1

≤ 21
32

e1/64 Mξ2( 2
3

)
k−1

< Mξ2( 2
3

)
k

,(3.104)

by the fact e1/64 < 64/63. The estimate of the term ∣S̃(k+1)
η (ξ, η) − S̃(k)η (ξ, η)∣ can be

derived similar to (3.104). The proof of the lemma is complete. ∎

According to Lemmas 3.4 and 3.5, we know that the sequences
(R̃(k)η , S̃(k)η , t(k)η )(ξ, η) are uniformly convergent, which means that the functions
(R̃η , S̃η , tη)(ξ, η) are continuous in [0, δ̃] × R. Furthermore, one also has by (3.91)

∣R̃η(ξ, η)∣, ∣S̃η(ξ, η)∣ ≤ 3Mξ2 , ∣tη(ξ, η)∣ ≤ 3Mξ,
∣R̃η(ξ, η) − S̃η(ξ, η)∣ ≤ 3Mξ2 .

(3.105)

In addition, we differentiate equations (3.19) with respect to ξ to gain

R̃ξ(ξ, η) = R̃ − S̃
2ξ

+ A ⋅ (R̃ − S̃)2

4ξ
− A(R̃ − S̃) + Aθ′0 ξ − Aw(t, y)ξ

+ ∫
ξ

0
{

R̃y − S̃y

2τ
+ A

(R̃ − S̃)(R̃y − S̃y)
2τ

− A(R̃y − S̃y) + A11AS̃ S̃y

+ [A11At − Awt τ]ty + A11Ay + A(θ′′0 − wy)τ} ∂y−(τ)
∂ξ

(τ, y−(τ)) dτ,(3.106)
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S̃ξ(ξ, η) = S̃ − R̃
2ξ

+ B ⋅ (R̃ − S̃)2

4ξ
+ B(R̃ − S̃) − Bθ′0 ξ + Bw(t, y)ξ

+ ∫
ξ

0
{

S̃y − R̃y

2τ
+ B

(R̃ − S̃)(R̃y − S̃y)
2τ

+ B(R̃y − S̃y) + B11BR̃ R̃y

+ [B11Bt + Bwt τ]ty + B11By − B(θ′′0 − wy)τ} ∂y+(τ)
∂ξ

(τ, y+(τ)) dτ,(3.107)

and

tξ(ξ, η) = C(ξ, η).(3.108)

The terms ∂ξ y±(τ) in (3.106) and (3.107) are given by

∂y±(τ)
∂ξ

= −λ±
∂y±(τ)

∂η
= −λ± exp { ∫

τ

ξ

∂λ±
∂y

(s, y±(s)) ds}.(3.109)

In view of the expressions of R̃ξ and S̃ξ in (3.106) and (3.107), we employ the estimates
in (3.86) and (3.105) to find that the functions (R̃τ , S̃τ , tτ)(τ, y) are continuous in
[0, δ̃] × R and satisfy

R̃τ(0, y) = S̃τ(0, y) = 0.(3.110)

All in all, the functions (R̃, S̃ , t)(τ, y) satisfy the integral equations (3.19) and the
homogeneous initial conditions (3.87) and (3.110), and they also own the required
differentiability properties. Therefore, they are a smooth solution to the singular
problem (3.7), (3.8).

In order to verify the uniqueness, we suppose that (R̃a , S̃a , ta)(τ, y) and
(R̃b , S̃b , tb)(τ, y) are two smooth solutions of the problem (3.7), (3.8) and consider
their difference. Denote X = R̃a − R̃b , Y = S̃a − S̃b , and T = ta − tb . By (3.7), one
derives the equations for (X , Y , T) as follows:

Xτ − Aa τXy = (Aa − Ab)τR̃by + X − Y
2τ

+ { (R̃a − S̃a)2

4τ
− (R̃a − S̃a) + θ′0τ − w(ta , y)}(Aa − Ab)

+ Ab{ (Ra − Sa + Rb − Sb)
4τ

(X − Y) − (X − Y) − [w(ta , y) − w(tb , y)]},(3.111)

Yτ + Ba τYy = −(Ba − Bb)τS̃by + Y − X
2τ

+ { (R̃a − S̃a)2

4τ
+ (R̃a − S̃a) − θ′0τ + w(ta , y)}(Ba − Bb)

+ Bb{ (Ra − Sa + Rb − Sb)
4τ

(X − Y) + (X − Y) + [w(ta , y) − w(tb , y)]},(3.112)

https://doi.org/10.4153/S0008414X23000640 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000640


The solvability for a nonlinear degenerate hyperbolic–parabolic coupled system 1853

and

Tτ = Ca − Cb ,(3.113)

where

A i = 1
f i + S̃ i

, B i = 1
f i + R̃ i

, C i = 1
R̃ i+S̃ i

2 − τ − ṽ(t i , y) + θ0(y)
,

and f i = θ0(y) − ṽ(t i , y) − τ for i = a, b. Performing a direct calculation gets

Aa − Ab = − Aa Ab{[ṽ(ta , y) − ṽ(tb , y)] + Y},
Ba − Bb = − Ba Bb{[ṽ(ta , y) − ṽ(tb , y)] + X},

Ca − Cb = − 1
2

CaCb{X + Y − 2[ṽ(ta , y) − ṽ(tb , y)]}.

Integrating (3.111)–(3.113) from 0 to ξ and utilizing the estimates (3.86) and (3.105)
and the mean value theorem, we can find that the functions (X , Y , T) satisfy a
homogeneous integral inequality system as the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣X(ξ, η)∣ ≤ ∫
ξ

0
{ ∣X − Y ∣

2τ
+ M∗(∣X∣ + ∣Y ∣ + ∣T ∣)} dτ,

∣Y(ξ, η)∣ ≤ ∫
ξ

0
{ ∣X − Y ∣

2τ
+ M∗(∣X∣ + ∣Y ∣ + ∣T ∣)} dτ,

∣T(ξ, η)∣ ≤ ∫
ξ

0
M∗(∣X∣ + ∣Y ∣ + ∣T ∣) dτ,

(3.114)

for some positive constant M∗. One repeats the insertion of the right side of (3.114) to
see that the functions (X , Y , T) must satisfy

∣X∣, ∣Y ∣, ∣T ∣ ≤ M∗( 2
3

)
�

,

for arbitrary integer � ≥ 1 and some positive constant M∗. This implies that X(τ, y) =
Y(τ, y) = T(τ, y) ≡ 0. Hence, the smooth solution of the singular initial value prob-
lem (3.7), (3.8) is unique.

3.5 The problem in the original plane

Based on the unique smooth solution (R̃, S̃ , t)(τ, y) of problem (3.7), (3.8) obtained
in Section 3.4, we establish the existence and uniqueness of smooth solutions for the
initial value problem (3.2), (3.3) in this subsection.

By virtue of (3.86), we know that the functions (R̃, S̃ , t)(τ, y) are in the space Σ̃(δ̃),
from which and (3.16) one acquires

0 < 1
2

θ ≤ R̃(τ, y) + S̃(τ, y)
2

− τ − ṽ(t(τ, y), y) + θ0(y) ≤ 2θ ,(3.115)

https://doi.org/10.4153/S0008414X23000640 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000640


1854 Y. Hu

for (τ, y) ∈ [0, δ̃] × R. Then we can use (3.5) and (3.7) to construct the functions (t, x)
as follows:

x = y, t = t(τ, y) = ∫
τ

0

1
R̃(s , y)+S̃(s , y)

2 − s − ṽ(t(s, y), y) + θ0(y)
ds,(3.116)

for any (τ, y) ∈ [0, δ̃] × R. Obviously, by (3.115), the mapping (τ, y) ↦ (t, x) is global
one-to-one in the region [0, δ̃] × R. Now, set

δ = δ̃
2θ

.(3.117)

Then, for any point (t∗ , x∗) ∈ [0, δ] × R, we see that there exists a unique correspond-
ing point (τ∗ , y∗) ∈ [0, δ̃] × R such that

x∗ = y∗ , t∗ = t(τ∗ , y∗).(3.118)

Thus, one can define the functions (θ , R̃, S̃)(t, x) as follows:

θ(t∗ , x∗) = τ∗ , R̃(t∗ , x∗) = R̃(τ∗ , y∗), S̃(t∗ , x∗) = S̃(τ∗ , y∗).(3.119)

In sum, we have obtained the functions (θ , R̃, S̃)(t, x) in the region [0, δ] × R.
We next verify that the functions defined in (3.119) satisfy the initial value condi-

tions (3.3) and equations (3.2). By means of (3.86) and (3.119), one concludes

∣R̃(t, x)∣, ∣S̃(t, x)∣ ≤ 3Mτ2 = 3Mθ2 , 1
2

θt ≤ θ(t, x) ≤ 2θt,(3.120)

from which we get θ(0, x) = R̃(0, x) = S̃(0, x) = 0. Moreover, we calculate

R̃t(t, x) = R̃τ(τ, y)τt

= R̃τ(τ, y)( R̃(τ , y)+S̃(τ , y)
2 − τ − ṽ(t(τ, y), y) + θ0(y)),

S̃t(t, x) = S̃τ(τ, y)τt

= S̃τ(τ, y)( R̃(τ , y)+S̃(τ , y)
2 − τ − ṽ(t(τ, y), y) + θ0(y)),

(3.121)

which along with (3.105) and (3.115) achieve R̃t(0, x) = S̃t(0, x) = 0. Thus, the func-
tions (θ , R̃, S̃)(t, x) satisfy the initial value conditions (3.3). Furthermore, we apply
the fact τx = (R̃ − S̃)/2τ by (3.6) to arrive at

R̃x = R̃ − S̃
2τ

R̃τ + R̃y ,

which combined with (3.121) and (3.7) leads to

R̃t − θR̃x = ( R̃(τ, y) + S̃(τ, y)
2

− τ − ṽ(t(τ, y), y) + θ0(y))R̃τ

− τ ⋅ ( R̃ − S̃
2τ

R̃τ + R̃y)
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=(S̃ − τ − ṽ + θ0)R̃τ − τR̃y = (S̃ + f )(R̃τ − τ
S̃ + f

R̃y)

=(S̃ + f )( R̃ − S̃
2τ

+ 1
f + S̃

⋅ (R̃ − S̃)2

4τ
− R̃ − S̃

f + S̃
+ θ′0

f + S̃
τ − w(t, y)

f + S̃
τ)

= (S̃ + f )(R̃ − S̃)
2τ

+ (R̃ − S̃)2

4τ
− (R̃ − S̃) + θ′0τ − w(t, y)τ

= 2(S̃ + f )(R̃ − S̃) + (R̃ − S̃)2

4θ
− (R̃ − S̃) + θ′0θ − w(t, x)θ

= R̃ + S̃ − 2ṽ + 2θ0

4θ
(R̃ − S̃) − (R̃ − S̃) + θθ′0 − θw ,(3.122)

which is the desired equation for R̃ in (3.2). One can check the other equations in (3.2)
in a similar way. The inequalities in (3.4) come from (3.120). Therefore, the proof of
Theorem 3.1 is completed.

In addition, we check that the following relation holds:

θx = R̃ − S̃
2θ

.(3.123)

To show (3.123), we set Φ = R̃ − S̃ − 2θθx and apply (3.2) to compute

∂tΦ = R̃t − S̃t − 2θ t θx − 2θθ tx

=[R̃t − θR̃x ] − [S̃t + θS̃x ] − 2( R̃ + S̃
2

− θ − ṽ + θ0)θx

− 2θ(−θx − ṽx + θ′0)

= R̃ + S̃ − 2ṽ + 2θ0

2θ
(R̃ − S̃) − (R̃ − S̃) − [R̃ + S̃ − 2θ − 2ṽ + 2θ0]θx + 2θθx

= [R̃ + S̃ − 2ṽ + 2θ0 − 4θ]t
2θ

⋅ Φ
t

.(3.124)

Recalling (3.17) gives

∣ [R̃ + S̃ − 2ṽ + 2θ0 − 4θ]t
2θ

∣ ≤ 24Mθt2 + M̂0 t + 2θ + 8θt
θ

< ∞,

which, along with (3.124) and the initial condition (Φ/t)∣t=0 = 0, arrives at Φ ≡ 0.
Hence, the relation (3.123) holds.
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Finally, for later applications, we summarize some properties for the functions
(θ , R̃, S̃)(t, x) in the region [0, δ] × R

∣R̃(t, x)∣, ∣S̃(t, x)∣ ≤ 3Mθ2 ≤ 12Mθ
2
t2 , 1

2
θt ≤ θ(t, x) ≤ 2θt,

∣R̃(t, x) − S̃(t, x)∣ ≤ 3Mθ2 ≤ 12Mθ
2
t2 ,

∣R̃t(t, x)∣, ∣S̃t(t, x)∣ ≤ 8Mθ
2
t, ∣θ t(t, x)∣ ≤ 2θ ,

∣R̃x (t, x)∣, ∣S̃x (t, x)∣ ≤ 24M2θ
2
t2 , ∣θx (t, x)∣ ≤ 3Mθt,

∣θxx (t, x)∣ ≤ 3
2

Mθ + 9
4

M2θ ≤ 3M2θ ≤ 6M2θt.

(3.125)

Here, we used the following estimates:

τ = θ(t, x) ≤ 2θt, ∣θx (t, x)∣ = ∣ R̃ − S̃
2τ

∣ ≤ 3
2

Mτ,

∣θ t(t, x)∣ = ∣ R̃ + S̃
2

− τ − ṽ + θ0∣ ≤ 3Mτ2 + τ + M̂0 ⋅ 2
θ

τ + θ ≤ 2θ ,

∣R̃t(t, x)∣ ≤ ∣R̃τ ∣ ⋅ ∣θ t ∣, ∣S̃t(t, x)∣ ≤ ∣S̃τ ∣ ⋅ ∣θ t ∣,

∣R̃x (t, x)∣ ≤ 3
2

Mτ ⋅ ∣R̃τ ∣ + ∣R̃y ∣, ∣S̃x (t, x)∣ ≤ 3
2

Mτ ⋅ ∣S̃τ ∣ + ∣S̃y ∣,

and

∣R̃τ ∣ ≤ ∣A∣τ∣R̃y ∣ + ∣R̃ − S̃∣
2τ

+ ∣A∣ ∣R̃ − S̃∣2
4τ

+ ∣A∣
2

∣R̃ − S̃∣ + ∣Aθ′0∣τ + ∣Aw∣τ

≤ M
16

τ ⋅ 3Mτ2 + 3Mτ
2

+ M
16

⋅ 9M2τ3

4
+ M

32
⋅ 3Mτ2 + M

16
⋅ τ + M

16
⋅ τ

≤ Mτ{ 3Mδ̃2

16
+ 3

2
+ 9(Mδ̃)2

64
+ Mδ̃

32
+ 1

8
} ≤ 2Mτ.

4 The hyperbolic–parabolic coupled problem

In this section, we show Theorem 2.1 and then obtain Theorem 1.1 based on the
results established in Section 3. The strategy is to solve the parabolic equation in
(2.7) to construct an iterative sequence for the variable ṽ and then verify the uniform
convergence of the iterative sequence.

4.1 Preliminary results for heat equation

We first introduce some known results for the heat equation. These results can be
found in the many excellent texts (see, e.g., [14]). Let b(t, x) ∈ C1 be a function defined
in the region [0, δ] × R. Here, the positive number δ is given in Theorem 3.1. Consider
the following initial value problem for the heat equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ṽ
∂t

− ∂2ṽ
∂x2 = b(t, x),

ṽ(t, x)∣t=0 = 0.
(4.1)
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We know that the fundamental solution of the heat equation is

G(t, x) = 1√
4πt

exp { − x2

4t
},(4.2)

that is, G(t, x) satisfies

∂G
∂t

− ∂2G
∂x2 = 0, with G(0, x) = δ0(x),(4.3)

where δ0(x) is the Dirac function at x = 0. Thus, the smooth solution of problem (4.1)
can be expressed by the fundamental solution

ṽ(t, x) = ∫
t

0
∫
R

G(t − ς, x − z)b(ς, z) dzdς

= ∫
t

0
∫
R

G(t − ς, z)b(ς, x − z) dzdς.
(4.4)

Furthermore, the functions ṽx , ṽt , ṽxx , and ṽx t can also be stated as follows:

ṽx (t, x) = ∫
t

0
∫
R

∂G(t − ς, x − z)
∂x

b(ς, z) dzdς

= ∫
t

0
∫
R

∂G(ς, z)
∂z

b(t − ς, x − z) dzdς

= ∫
t

0
∫
R

∂G(t − ς, z)
∂z

b(ς, x − z) dzdς

= ∫
t

0
∫
R

G(t − ς, z)bx (ς, x − z) dzdς,

(4.5)

ṽt(t, x) = ∫
t

0
∫
R

G(t − ς, z)bς(ς, x − z) dzdς + ∫
R

G(t, z)b(0, x − z) dz,(4.6)

ṽxx (t, x) = ∫
t

0
∫
R

∂G(t − ς, z)
∂z

bx (ς, x − z) dzdς,

= ∫
t

0
∫
R

∂2G(t − ς, x − z)
∂x2 [b(ς, z) − b(ς, x)] dzdς,

(4.7)

and

ṽx t(t, x) = ∫
t

0
∫
R

∂G(t − ς, z)
∂z

bς(ς, x − z) dzdς + ∫
R

G(t, z)bx (0, x − z) dz.

(4.8)

We set

Hσ (t, x) = 1√
4π

t−
σ
2 exp { − x2

16t
}.(4.9)

Then one has

∫
t

0
∫
R

Hσ (t − ς, z) dzdς = 4
3 − σ

t
3−σ

2 for σ < 3,(4.10)
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and

∫
t

t−γ
∫
R

Hσ (t − ς, z) dzdς = 4
3 − σ

γ
3−σ

2 for σ < 3 and 0 < γ ≤ t,

∫
t1−γ

0
∫
R

Hσ (t − ς, z) dzdς ≤ 4
σ − 3

γ
3−σ

2 for σ > 3 and 0 < γ ≤ t1 ≤ t.
(4.11)

The results in (4.9)–(4.11) can be found in [31]. Thus, we obtain for σ = 1, 2,

∫
t

0
∫
R

H1(t − ς, z) dzdς = 2t, ∫
t

0
∫
R

H2(t − ς, z) dzdς = 4
√

t.(4.12)

In addition, it is clear that the following inequality holds

zβ exp { − z
4

} ≤ Cβ exp { − z
16

},(4.13)

for z ≥ 0, where β ≥ 0 is an arbitrary number and Cβ is a positive constant depending
only on β. Then, by (4.2), (4.9), and (4.13), one acquires

G(t − ς, z) ≤ H1(t − ς, z), ∣∂zG(t − ς, z)∣ ≤ H2(t − ς, z),(4.14)

and

∣∣z∣β ∂ jG(t − ς, z)
∂z j ∣ ≤ C j,β H j+1−β(t − ς, z),(4.15)

where C j,β( j ≥ 1) are positive constants depending only on β. The inequalities in (4.15)
can also be found in [31]. Making use of (4.12) and (4.14), we gain

∫
t

0
∫
R

∣G(t − ς, z)∣ dzdς ≤ 2t, ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ dzdς ≤ 4
√

t.(4.16)

4.2 The iterative sequence for the heat equation

For any (t, x) ∈ [0, δ] × R, we set

ṽ(0)(t, x) ≡ 0,

which obviously satisfies ṽ(0) ∈ Σ(δ). Here, the space Σ(δ) is defined in (3.1) but with
the number δ replacing δ0. In view of the results in Section 3, one concludes the
functions (R̃(0) , S̃(0) , θ(0))(t, x) for (t, x) ∈ [0, δ] × R. According to (4.4), we define
the function ṽ(1)(t, x) in the region [0, δ] × R as

ṽ(1)(t, x) = ∫
t

0
∫
R

G(t − ς, x − z)b(0)(ς, z) dzdς

= ∫
t

0
∫
R

G(t − ς, z)b(0)(ς, x − z) dzdς,(4.17)

where

b(0)(t, x) = R̃(0)(t, x) + S̃(0)(t, x)
2

− θ(0)(t, x) − ṽ(0)(t, x) + θ0(x) + v′′0 (x).
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After determining the function ṽ(k)(t, x) in [0, δ] × R, one can achieve the functions
(R̃(k) , S̃(k) , θ(k))(t, x) based on the results in Section 3. Then we define the function
ṽ(k+1)(t, x) in the region [0, δ] × R by the following relation:

ṽ(k+1)(t, x) = ∫
t

0
∫
R

G(t − ς, x − z)b(k)(ς, z) dzdς

= ∫
t

0
∫
R

G(t − ς, z)b(k)(ς, x − z) dzdς,(4.18)

where

b(k)(t, x) = R̃(k)(t, x) + S̃(k)(t, x)
2

− θ(k)(t, x) − ṽ(k)(t, x) + θ0(x) + v′′0 (x).

Therefore, we have constructed an iterative sequence {ṽ(k)(t, x)}.
Denote

K̂ = max {1, max
x∈R

∣θ0(x) + v′′0 (x)∣, max
x∈R

∣θ′0(x) + v′′′0 (x)∣,

max
x∈R

∣θ′′0 (x) + v′′′′0 (x)∣},(4.19)

which originates from the last two terms in the expression of b(k). Set

M̂0 = max {32K̂ , 12M2(1 + θ)2 , 32θ(C2,1 + 2C3,1/2 + C3,0)},

δ = min {δ, 1
M̂0

, θ2

16M̂0θ
}.

(4.20)

Here, the constant M ≥ 16 is given in (3.30), which depends only on θ and the C3 norm
of θ0(y), δ is defined in (3.117), and C j,β are presented in (4.15). Then we see by (3.125)
that if ṽ(t, x) ∈ Σ(δ),

∣R̃(t, x)∣, ∣S̃(t, x)∣ ≤ 3Mθ2 ≤ M̂0 t2 , 1
2

θt ≤ θ(t, x) ≤ 2θt ≤ 1
32

M̂0 t,

∣R̃(t, x) − S̃(t, x)∣ ≤ 3Mθ2 ≤ M̂0 t2 , ∣θ t(t, x)∣ ≤ 1
32

M̂0 ,

∣R̃t(t, x)∣, ∣S̃t(t, x)∣ ≤ M̂0 t, ∣R̃x (t, x)∣, ∣S̃x (t, x)∣ ≤ 6M2θ2 ≤ M̂0 t2 ,

∣θx (t, x)∣ ≤ 3
2

Mθ ≤ 1
4

M̂0 t, ∣θxx (t, x)∣ ≤ 3M2θ ≤ 1
4

M̂0 t.

(4.21)

For the sequence {ṽ(k)(t, x)}, we have the following lemma.
Lemma 4.1 For all k ≥ 0, there hold ṽ(k)(t, x) ∈ Σ(δ), that is, the functions
ṽ(k)(t, x)(k = 1, 2, . . .) satisfy ṽ(k)(t, x) ∈ C1 , ṽ(k)x (t, x) ∈ C1, and ∀ (t, x) ∈ [0, δ] ×
R

∣ṽ(k)(t, x)∣, ∣ṽ(k)x (t, x)∣ ≤ M̂0 t, ∣ṽ(k)t (t, x)∣ ≤ M̂0 ,
∣ṽ(k)x t (t, x)∣ ≤ M̂0 , ∣ṽ(k)xx (t, x)∣ ≤ M̂0

√
t.

(4.22)

Proof We mainly verify that all the inequalities in (4.22) are true for any k ≥ 0. The
proof is also based on the argument of induction.
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Due to ṽ(0) ≡ 0 ∈ Σ(δ), we see by (4.21) that the functions (R̃(0) , S̃(0) , θ(0))(t, x)
satisfy

∣R̃(0)(t, x)∣, ∣S̃(0)(t, x)∣ ≤ M̂0 t2 , 1
2

θt ≤ θ(0)(t, x) ≤ 1
32

M̂0 t,

∣R̃(0)(t, x) − S̃(0)(t, x)∣ ≤ M̂0 t2 , ∣θ(0)t (t, x)∣ ≤ 1
32

M̂0 , ∣θ(0)x (t, x)∣ ≤ 1
4

M̂0 t,

∣R̃(0)t (t, x)∣, ∣S̃(0)t (t, x)∣ ≤ M̂0 t, ∣R̃(0)x (t, x)∣, ∣S̃(0)x (t, x)∣ ≤ M̂0 t2 ,

(4.23)

from which we find that

∣b(0)(t, x)∣

≤ ∣R̃(0)(t, x)∣ + ∣S̃(0)(t, x)∣
2

+ ∣θ(0)(t, x)∣ + ∣ṽ(0)(t, x)∣ + ∣θ0(x) + v′′0 (x)∣

≤ M̂0 t2 + 1
32

M̂0 t + 0 + K̂ ≤ M̂0δ2 + 1
32

M̂0δ + 1
16

M̂0 ≤ 1
4

M̂0(4.24)

and

∣b(0)x (t, x)∣

≤ ∣R̃(0)x (t, x)∣ + ∣S̃(0)x (t, x)∣
2

+ ∣θ(0)x (t, x)∣ + ∣ṽ(0)x (t, x)∣ + ∣θ′0(x) + v′′′0 (x)∣

≤ 1
2

M̂0δ2 + 1
4

M̂0δ + 0 + K̂ ≤ 1
4

M̂0 ,(4.25)

∣b(0)t (t, x)∣ ≤ ∣R̃(0)t (t, x)∣ + ∣S̃(0)t (t, x)∣
2

+ ∣θ(0)t (t, x)∣ + ∣ṽ(0)t (t, x)∣

≤ M̂0δ + 2θ + 0 ≤ 3θ ≤ 3
32

M̂0 ≤ 1
4

M̂0 .(4.26)

One combines (4.17) and (4.5)–(4.8) and utilizes (4.24)–(4.26) to arrive at

∣ṽ(1)(t, x)∣ ≤ ∫
t

0
∫
R

∣G(t − ς, z)∣ ⋅ ∣b(0)∣ dzdς ≤ 1
4

M̂0 ∫
t

0
∫
R

∣G(t − ς, z)∣ dzdς,

∣ṽ(1)x (t, x)∣ ≤ ∫
t

0
∫
R

∣G(t − ς, z)∣ ⋅ ∣b(0)x ∣ dzdς ≤ 1
4

M̂0 ∫
t

0
∫
R

∣G(t − ς, z)∣ dzdς,

∣ṽ(1)t (t, x)∣ ≤ ∫
t

0
∫
R

∣G(t − ς, z)∣ ⋅ ∣b(0)ς ∣ dzdς + ∫
R

∣G(t, z)∣ ⋅ ∣b(0)(0, x − z)∣ dz

≤ 1
4

M̂0 ∫
t

0
∫
R

∣G(t − ς, z)∣ dzdς + 1
4

M̂0 ∫
R

∣G(t, z)∣ dz,

(4.27)
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and

∣ṽ(1)xx (t, x)∣ ≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ ⋅ ∣b(0)x ∣ dzdς

≤ 1
4

M̂0 ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ dzdς,

∣ṽ(1)x t (t, x)∣ ≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ ⋅ ∣b(0)ς ∣ dzdς

+ ∫
R

∣G(t, z)∣ ⋅ ∣b(0)x (0, x − z)∣ dz

≤ 1
4

M̂0 ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ dzdς + 1
4

M̂0 ∫
R

∣G(t, z)∣ dz.

(4.28)

Making use of (4.16), (4.27), and (4.28), we get

∣ṽ(1)(t, x)∣, ∣ṽ(1)x (t, x)∣ ≤ 1
4

M̂0 ⋅ 2t = 1
2

M̂0 t ≤ M̂0 t,

∣ṽ(1)t (t, x)∣ ≤ 1
4

M̂0 ⋅ 2t + 1
4

M̂0 ⋅ 2 ≤ 1
2

(1 + δ)M̂0 ≤ M̂0 ,

∣ṽ(1)xx (t, x)∣ ≤ 1
4

M̂0 ⋅ 4
√

t = M̂0
√

t,

∣ṽ(1)x t (t, x)∣ ≤ 1
4

M̂0 ⋅ 4
√

t + 1
4

M̂0 ⋅ 2 = 1
2

(1 + 2
√

δ)M̂0 ≤ M̂0 ,

(4.29)

from which we gain that (4.22) holds for k = 1.
Assume that ṽ(k)(t, x) ∈ Σ(δ), that is, (4.22) is true for n = k. Thanks to (4.21), the

functions (R̃(k) , S̃(k) , θ(k))(t, x) obtained in Section 3 satisfy

∣R̃(k)(t, x)∣, ∣S̃(k)(t, x)∣ ≤ M̂0 t2 , 1
2

θt ≤ θ(k)(t, x) ≤ 1
32

M̂0 t,

∣θ(k)t (t, x)∣ ≤ 1
32

M̂0 , ∣R̃(k)(t, x) − S̃(k)(t, x)∣ ≤ M̂0 t2 ,

∣θ(k)x (t, x)∣ ≤ 1
4

M̂0 t, ∣θ(k)xx (t, x)∣ ≤ 1
4

M̂0 t,

∣R̃(k)t (t, x)∣, ∣S̃(k)t (t, x)∣ ≤ M̂0 t, ∣R̃(k)x (t, x)∣, ∣S̃(k)x (t, x)∣ ≤ M̂0 t2 .

(4.30)

It suggests by (4.30) and the induction assumptions that

∣b(k)(t, x)∣ ≤ M̂0δ2 + 1
32

M̂0δ + M̂0δ + K̂ ≤ 1
4

M̂0 ,

∣b(k)x (t, x)∣ ≤ 1
2

M̂2
0δ2 + 1

4
M̂0δ + M̂0δ + K̂ ≤ 1

4
M̂0 ,

∣b(k)t (t, x)∣ ≤ M̂0δ + 2θ + M̂0 ≤ 3θ + M̂0 ≤ 5
4

M̂0 .

(4.31)
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Thus, by applying (4.18), (4.5)–(4.8), (4.16), and (4.31), one achieves

∣ṽ(k+1)(t, x)∣ ≤ ∫
t

0
∫
R

∣G(t − ς, z)∣ ⋅ ∣b(k)∣ dzdς ≤ 1
4

M̂0 ⋅ 2t ≤ M̂0 t,

∣ṽ(k+1)
x (t, x)∣ ≤ ∫

t

0
∫
R

∣G(t − ς, z)∣ ⋅ ∣b(k)x ∣ dzdς ≤ 1
4

M̂0 ⋅ 2t ≤ M̂0 t,

∣ṽ(k+1)
t (t, x)∣

≤ ∫
t

0
∫
R

∣G(t − ς, z)∣ ⋅ ∣b(k)ς ∣ dzdς + ∫
R

∣G(t, z)∣ ⋅ ∣b(k)(0, x − z)∣ dz

≤ 5
4

M̂0 ⋅ 2t + 1
4

M̂0 ⋅ 2 ≤ ( 5
2

δ + 1
2

)M̂0 ≤ ( 5
64

+ 1
2

)M̂0 ≤ M̂0 ,

(4.32)

and

∣ṽ(k+1)
xx (t, x)∣ ≤ ∫

t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ ⋅ ∣b(k)x ∣ dzdς ≤ M̂0
√

t,

∣ṽ(k+1)
x t (t, x)∣

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ ⋅ ∣b(k)ς ∣ dzdς + ∫
R

∣G(t, z)∣ ⋅ ∣b(k)x (0, x − z)∣ dz

≤ 5
4

M̂0 ⋅ 4
√

t + 1
4

M̂0 ⋅ 2 ≤ (5
√

δ + 1
2

)M̂0 ≤ M̂0 .

(4.33)

From (4.32) and (4.33), we acquire ṽ(k+1)(t, x) ∈ Σ(δ) and then complete the proof of
the lemma. ∎

By virtue of Lemma 4.1 and (4.21), we find that for any k ≥ 0 and (t, x) ∈ [0, δ] × R,

∣R̃(k)(t, x)∣, ∣S̃(k)(t, x)∣ ≤ 3M(θ(k))2 ≤ M̂0 t2 ,
1
2

θt ≤ θ(k)(t, x) ≤ 2θt ≤ 1
32

M̂0 t,

∣R̃(k)(t, x) − S̃(k)(t, x)∣ ≤ 3M(θ(k))2 ≤ M̂0 t2 , ∣θ(k)t (t, x)∣ ≤ 1
32

M̂0 ,

∣R̃(k)t (t, x)∣, ∣S̃(k)t (t, x)∣ ≤ M̂0 t,
∣R̃(k)x (t, x)∣, ∣S̃(k)x (t, x)∣ ≤ 6M2(θ(k))2 ≤ M̂0 t2 ,

∣θ(k)x (t, x)∣ ≤ 3
2

Mθ(k) ≤ 1
4

M̂0 t, ∣θ(k)xx (t, x)∣ ≤ 3M2θ(k) ≤ 1
4

M̂0 t.

(4.34)

Furthermore, the function ṽ(k)xx (t, x) owns the following regularity.

Lemma 4.2 For any k ≥ 0, the function ṽ(k)xx (t, x) is uniformly α-Hölder continuous
with respect to x, that is, there exists a positive constant Ĉα independent of k such that
for any two points (t, x1) and (t, x2) in [0, δ] × R, there hold for α ∈ (0, 1)

∣ṽ(k)xx (t, x1) − ṽ(k)xx (t, x2)∣ ≤ Ĉα ∣x1 − x2∣α .(4.35)
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Proof The proof of the lemma is similar to that of Lemma 3.3 in [31], but we list it
here for the sake of completeness. By means of (4.7) and (4.18), we see that

ṽ(k+1)
xx (t, x) = ∫

t

0
∫
R

∂2G(t − ς, x − z)
∂x2 [b(k)(ς, z) − b(k)(ς, x)] dzdς,(4.36)

and then for any x1 < x2,

ṽ(k+1)
xx (t, x1) − ṽ(k+1)

xx (t, x2)

= ∫
t

0
∫
R

∂2G(t − ς, x1 − z)
∂x2 [b(k)(ς, z) − b(k)(ς, x1)] dzdς

− ∫
t

0
∫
R

∂2G(t − ς, x2 − z)
∂x2 [b(k)(ς, z) − b(k)(ς, x2)] dzdς.(4.37)

Denote γ = (x2 − x1)2. The proof is divided into two cases: γ > t and γ ≤ t.
If γ > t, we use (4.31), (4.15) with β = 1, and (4.12) to estimate (4.37) directly

∣ṽ(k+1)
xx (t, x1) − ṽ(k+1)

xx (t, x2)∣ ≤ ∫
t

0
∫
R

∣ ∂2G(t − ς, x1 − z)
∂x2 ∣ ⋅ ∣b(k)x ∣ ⋅ ∣z − x1∣ dzdς

+ ∫
t

0
∫
R

∣ ∂2G(t − ς, x2 − z)
∂x2 ∣ ⋅ ∣b(k)x ∣ ⋅ ∣z − x2∣ dzdς

≤ 1
2

M̂0 ∫
t

0
∫
R

C2,1H2(t − ς, z) dzdς

≤ 2M̂0C2,1δ
1−α

2 t
α
2 ≤ 2M̂0C2,1∣x2 − x1∣α .

(4.38)

If γ ≤ t, the relation (4.37) can be rewritten as

ṽ(k+1)
xx (t, x1) − ṽ(k+1)

xx (t, x2) = I(k)1 + I(k)2 + I(k)3 + I(k)4 ,(4.39)

where

I(k)1 = ∫
t

t−γ
∫
R

∂2G(t − ς, x1 − z)
∂x2 [b(k)(ς, z) − b(k)(ς, x1)] dzdς,

I(k)2 = − ∫
t

t−γ
∫
R

∂2G(t − ς, x2 − z)
∂x2 [b(k)(ς, z) − b(k)(ς, x2)] dzdς,

I(k)3 = ∫
t−γ

0
∫
R

∂2G(t − ς, x2 − z)
∂x2 [b(k)(ς, x2) − b(k)(ς, x1)] dzdς,

I(k)4 = ∫
t−γ

0
∫
R

( ∂2G(t − ς, x1 − z)
∂x2 − ∂2G(t − ς, x2 − z)

∂x2 )

×[b(k)(ς, z) − b(k)(ς, x1)] dzdς.

For the term I(k)1 , it concludes by (4.31), (4.15) with β = 1, and (4.11) that
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∣I(k)1 ∣ ≤ ∫
t

t−γ
∫
R

∣ ∂2G(t − ς, x1 − z)
∂x2 ∣ ⋅ ∣b(k)x ∣ ⋅ ∣z − x1∣ dzdς

≤ 1
4

M̂0 ∫
t

t−γ
∫
R

C2,1H2(t − ς, z) dzdς = M̂0C2,1γ
1
2

≤ M̂0C2,1δ
1−α

2 ∣x1 − x2∣α ≤ M̂0C2,1∣x1 − x2∣α .(4.40)

The estimate (4.40) also holds for the term I(k)2 . Furthermore, one acquires by the
integration by parts that I(k)3 = 0. For the term I(k)4 , we use (4.31), (4.15), and (4.11)
again to find

∣I(k)4 ∣ = ∣ ∫
x2

x1
∫

t−γ

0
∫
R

∂3G(t − ς, x − z)
∂x3 [b(k)(ς, z) − b(k)(ς, x1)] dzdςdx∣

≤ ∫
x2

x1
∫

t−γ

0
∫
R

∣ ∂3G(t − ς, x − z)
∂x3 ∣ ⋅ 1

2
M̂0 ⋅ ∣z − x1∣α dzdςdx

≤ 1
2

M̂0 ∫
x2

x1
∫

t−γ

0
∫
R

∣ ∂3G(t − ς, x − z)
∂x3 ∣(∣z − x∣α + ∣x − x1∣α) dzdςdx

≤ 1
2

M̂0 ∫
x2

x1
∫

t−γ

0
∫
R

{C3,α H4−α(t − ς, z)

+ C3,0∣x − x1∣α H4(t − ς, z)} dzdςdx

≤ 1
2

M̂0{C3,α ∣x2 − x1∣ ⋅ 4
(4 − α) − 3

γ
3−(4−α)

2

+ C3,0∣x2 − x1∣1+α ⋅ 4
4 − 3

γ
3−4

2 }

= 2M̂0( C3,α

1 − α
+ C3,0)∣x2 − x1∣α .(4.41)

Substituting (4.40) and (4.41) into (4.39) yields

∣ṽ(k+1)
xx (t, x1) − ṽ(k+1)

xx (t, x2)∣ ≤ 2M̂0(C2,1 + C3,α

1 − α
+ C3,0)∣x2 − x1∣α .(4.42)

We denote

Ĉα = 2M̂0(C2,1 + C3,α

1 − α
+ C3,0),

and combine (4.38) and (4.42) to achieve

∣ṽ(k+1)
xx (t, x1) − ṽ(k+1)

xx (t, x2)∣ ≤ Ĉα ∣x1 − x2∣α ,(4.43)

which is the desired inequality (4.35). ∎

Remark 1 The restriction α < 1 in Lemma 4.2 is only used in the derivation of (4.41).
Based on Lemma 4.2, we shall show that the functions ṽ(k)xx (t, x)(k = 1, 2, . . .) are
uniformly Lipschitz continuous with respect to x by improving the regularity of b(k)x .
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4.3 The convergence of the iterative sequence (I)

In order to establish the uniform convergence of the iterative sequence {ṽ(k)(t, x)},
we need to derive its series of properties in the space Σ(δ).

By direct calculations, one applies (4.18) and (4.5) to get

∣ṽ(k+1)(t, x) − ṽ(k)(t, x)∣

≤ ∫
t

0
∫
R

G(t − ς, z){ 1
2

(T(k)12 + T(k)13 ) + T(k)14 + T(k)15 }(ς, x − z) dzdς(4.44)

and

∣ṽ(k+1)
x (t, x) − ṽ(k)x (t, x)∣ ≤ ∫

t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣

× { 1
2

(T(k)12 + T13)(k) + T(k)14 + T(k)15 }(ς, x − z) dzdς,(4.45)

where

T(k)12 (t, x) =∣R̃(k)(t, x) − R̃(k−1)(t, x)∣, T(k)13 (t, x) = ∣S̃(k)(t, x) − S̃(k−1)(t, x)∣,

T(k)14 (t, x) =∣θ(k)(t, x) − θ(k−1)(t, x)∣, T(k)15 (t, x) = ∣ṽ(k)(t, x) − ṽ(k−1)(t, x)∣.

To estimate T(k)12−14, we first recall (3.2) to gain the equations for
(R̃(k) , S̃(k) , θ(k))(t, x) in [0, δ] × R

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R̃(k)t − θ(k)R̃(k)x = (Ψ(k) − 1)(R̃(k) − S̃(k)) + θ(k)θ′0 − θ(k)ṽ(k)x =∶ F(k)1 (t, x),
S̃(k)t + θ(k)S̃(k)x = (Ψ(k) − 1)(S̃(k) − R̃(k)) − θ(k)θ′0 + θ(k)ṽ(k)x =∶ F(k)2 (t, x),

θ(k)t = R̃(k) + S̃(k)

2
− θ(k) − ṽ(k) + θ1 =∶ F(k)3 (t, x),

(4.46)

where

Ψ(k) = R̃(k) + S̃(k) − 2ṽ(k) + 2θ0

4θ(k)
.(4.47)

It follows by (4.46) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R̃(k) − R̃(k−1))t − θ(k)(R̃(k) − R̃(k−1))x

= F(k)1 − F(k−1)
1 + (θ(k) − θ(k−1))R̃(k−1)

x ,

(S̃(k) − S̃(k−1))t + θ(k)(S̃(k) − S̃(k−1))x

= F(k)2 − F(k−1)
2 − (θ(k) − θ(k−1))S̃(k−1)

x ,

(θ(k) − θ(k−1))t = F(k)3 − F(k−1)
3 ,
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from which one acquires for any (ξ, η) ∈ [0, δ] × R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(k)12 (ξ, η) ≤ ∫
ξ

0
{∣F(k)1 − F(k−1)

1 ∣ + ∣R̃(k−1)
x ∣T(k)14 }(t, x(k)− (t)) dt,

T(k)13 (ξ, η) ≤ ∫
ξ

0
{∣F(k)2 − F(k−1)

2 ∣ + ∣S̃(k−1)
x ∣T(k)14 }(t, x(k)+ (t)) dt,

T(k)14 (ξ, η) ≤ ∫
ξ

0
∣F(k)3 − F(k−1)

3 ∣(t, η) dt,

(4.48)

where x(k)± (t) = x(k)± (t; ξ, η)(t ∈ [0, ξ]) are provided by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx(k)± (t; ξ, η)
dt

= ±θ(k)(t, x(k)± (t; ξ, η)),

x(k)± (ξ; ξ, η) = η.

Performing direct calculations achieves

∣F(k)1 − F(k−1)
1 ∣, ∣F(k)2 − F(k−1)

2 ∣
≤ (∣Ψ(k)∣ + 1)(T(k)12 + T(k)13 ) + ∣θ(k−1)∣T(k)16
+∣R̃(k−1) − S̃(k−1)∣T(k)17 + (∣θ′0∣ + ∣ṽ(k)x ∣)T(k)14 ,

∣F(k)3 − F(k−1)
3 ∣ ≤ 1

2
(T(k)12 + T(k)13 ) + T(k)14 + T(k)15 ,

(4.49)

where

T(k)16 = ∣ṽ(k)x − ṽ(k−1)
x ∣, T(k)17 = ∣Ψ(k) − Ψ(k−1)∣.

Moreover, thanks to (4.34) and Lemma 4.1, we can get a more precise estimate for θ(k)

θ0 − (M̂0 t2 + 1
32

M̂0 t + M̂0 t) ≤ θ(k)t ≤ θ0 + (M̂0 t2 + 1
32

M̂0 t + M̂0 t),

and thus

θ0 − 17
16

M̂0 t ≤ θ(k)t ≤ θ0 + 17
16

M̂0 t,

and then

θ0 t − 17
32

M̂0 t2 ≤ θ(k) ≤ θ0 t + 17
32

M̂0 t2 .(4.50)

It suggests by (4.34) and (4.50) that

∣Ψ(k)∣ ≤ 2θ0 + 2M̂0 t2 + 2M̂0 t
4t{θ0 − 17

32 M̂0 t}
= 1

2t
+

17
32 M̂0 + M̂0 t + M̂0

2(θ0 − M̂0 t)

≤ 1
2t

+ 2M̂0

θ
.(4.51)

Furthermore, for the term T(k)17 , we obtain
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T(k)17 ≤ T(k)12 + T(k)13 + 2T(k)15
4θ(k)

+
∣R̃(k−1) + S̃(k−1) − 2ṽ(k−1) + 2θ0∣

4θ(k)θ(k−1) T(k)14

≤ 1
2θt

(T(k)12 + T(k)13 + 2T(k)15 ) + 2M̂0δ2 + 2M̂0δ + 2θ
θ2 t2

T(k)14

≤ 1
2θt

(T(k)12 + T(k)13 + 2T(k)15 ) + 3θ
θ2 t2

T(k)14 ,(4.52)

by 8M̂0δ ≤ θ < θ. Putting (4.51) and (4.52) into (4.49) and applying (4.34) again yield

∣F(k)1 − F(k−1)
1 ∣ + ∣R̃(k−1)

x ∣T(k)14 , ∣F(k)2 − F(k−1)
2 ∣ + ∣S̃(k−1)

x ∣T(k)14

≤ T(k)12 + T(k)13
2t

+ ( 2M̂0

θ
+ 1 + M̂0δ

2θ
)(T(k)12 + T(k)13 ) + 1

32
M̂0 tT(k)16

+ M̂0 t
θ

T(k)15 + ( 3M̂0θ
θ2 + θ 1 + 1

6
(M̂0δ)2 + M̂0δ)T(k)14

≤ T(k)12 + T(k)13
2t

+ 3M̂0

θ
(T(k)12 + T(k)13 ) + 4M̂0θ

θ2 T(k)14

+ ( M̂0δ
32

+ M̂0δ
θ

)(T(k)15 + T(k)16 )

≤ T(k)12 + T(k)13
2t

+ 1
4δ

(T(k)12 + T(k)13 + T(k)14 ) + 1
4

(T(k)15 + T(k)16 ).(4.53)

We insert (4.53) and (4.49) into (4.48) to see that

T(k)12 (ξ, η), T(k)13 (ξ, η)

≤ ∫
ξ

0
{ T(k)12 + T(k)13

2t
+ 1

4δ
(T(k)12 + T(k)13 + T(k)14 ) + 1

4
(T(k)15 + T(k)16 )} dt(4.54)

and

T(k)14 (ξ, η) ≤ ∫
ξ

0
{(T(k)12 + T(k)13 + T(k)14 ) + T(k)15 }(t, η) dt.(4.55)

Based on (4.54) and (4.55), we can show the following lemma.

Lemma 4.3 For any k ≥ 1 and (ξ, η) ∈ [0, δ] × R, if T(k)15 (ξ, η) and T(k)16 (ξ, η) satisfy

T(k)15 (ξ, η), T(k)16 (ξ, η) ≤ M̂0 ξ( 2
3

)
k−1

,(4.56)

then there hold

T(k)12 (ξ, η), T(k)13 (ξ, η), T(k)14 (ξ, η) ≤ 2M̂0 ξ2( 2
3

)
k−1

.(4.57)
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Proof By (4.34) and the definitions of T(k)12−14 in (4.45), we first find that

T(k)12 (ξ, η), T(k)13 (ξ, η) ≤ 2M̂0 ξ2 , T(k)14 (ξ, η) ≤ 1
16

M̂0 ξ.(4.58)

Substituting (4.58) into (4.55) and utilizing the assumptions in (4.56) give

T(k)14 (ξ, η) ≤ ∫
ξ

0
{4M̂0 t2 + 1

16
M̂0 t + M̂0 t( 2

3
)

k−1

}(t, η) dt

≤ [ 4δ
3

+ 1
32

+ 1
2

( 2
3

)
k−1

]M̂0 ξ2 ≤ 2M̂0 ξ2 .(4.59)

We now put the estimates (4.58) and (4.59) into (4.54) and apply the assumptions
in (4.56) to deduce

T(k)12 (ξ, η), T(k)13 (ξ, η)

≤ ∫
ξ

0
{2M̂0 t + 1

4δ
⋅ 3 ⋅ 2M̂0 t2 + 1

4
⋅ 2M̂0 t( 2

3
)

k−1

} dt

≤ M̂0 ξ2 + 1
2δ

M̂0 ξ3 + 1
4

M̂0 ξ2( 2
3

)
k−1

≤ [ 3
4

⋅ 2 + 1
2

( 2
3

)
k−1

]M̂0 ξ2 .(4.60)

One also has by (4.59)

T(k)14 (ξ, η) ≤ ∫
ξ

0
{6M̂0 t2 + M̂0 t( 2

3
)

k−1

}(t, η) dt

≤ [2δ + 1
2

( 2
3

)
k−1

]M̂0 ξ2 ≤ [ 3
4

⋅ 2 + 1
2

( 2
3

)
k−1

]M̂0 ξ2 .(4.61)

Inserting the estimates of T(k)12−14 in (4.60) and (4.61) into (4.54) and (4.55) and using
the assumptions in (4.56) again arrive at

T(k)12 (ξ, η), T(k)13 (ξ, η)

≤ ∫
ξ

0
{[ 3

4
⋅ 2 + 1

2
( 2

3
)

k−1

]M̂0 t + 3
4δ

[ 3
4

⋅ 2 + 1
2

( 2
3

)
k−1

]M̂0 t2

+ 1
2

M̂0 t( 2
3

)
k−1

} dt

≤ [ 3
4

⋅ 2 + 1
2

( 2
3

)
k−1

] ⋅ 1
2

M̂0 ξ2 + { 3
8

+ 1
8

( 2
3

)
k−1

}M̂0 ξ2 + 1
4

M̂0 ξ2( 2
3

)
k−1

≤ [ 3
4

⋅ 2 + 1
2

( 2
3

)
k−1

] ⋅ 3
4

M̂0 ξ2 + 1
2

M̂0 ξ2( 2
3

)
k−1

=[( 3
4

)
2

⋅ 2 + 1
2

1
∑
j=0

( 3
4

)
j

( 2
3

)
k−1

]M̂0 ξ2(4.62)

https://doi.org/10.4153/S0008414X23000640 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000640


The solvability for a nonlinear degenerate hyperbolic–parabolic coupled system 1869

and

T(k)14 (ξ, η) ≤ ∫
ξ

0
{3 ⋅ [ 3

4
⋅ 2 + 1

2
( 2

3
)

k−1

]M̂0 t2 + M̂0 t( 2
3

)
k−1

} dt

=[ 3
4

⋅ 2 + 1
2

( 2
3

)
k−1

]M̂0 ξ3 + 1
2

M̂0 ξ2( 2
3

)
k−1

≤ [( 3
4

)
2

⋅ 2 + 1
2

1
∑
j=0

( 3
4

)
j

( 2
3

)
k−1

]M̂0 ξ2 .(4.63)

We next repeatedly substitute the new obtained estimates of T(k)12−14 into (4.54) and
(4.55) to get for arbitrary integer � ≥ 1,

T(k)12 (ξ, η), T(k)13 (ξ, η), T(k)14 (ξ, η)

≤ [( 3
4

)
�

⋅ 2 + 1
2

�

∑
j=0

( 3
4

)
j

( 2
3

)
k−1

]M̂0 ξ2 .(4.64)

It follows by the arbitrariness of � that

T(k)12 (ξ, η), T(k)13 (ξ, η), T(k)14 (ξ, η)

≤ 1
2

∞

∑
j=0

( 3
4

)
j

( 2
3

)
k−1

M̂0 ξ2 ≤ 2M̂0 ξ2( 2
3

)
k−1

,(4.65)

which finishes the proof of the lemma. ∎
By virtue of Lemma 4.3 and (4.44) and (4.45), we can achieve the following lemma.

Lemma 4.4 Let the iterative sequence {ṽ(k)} be defined by (4.18). Then, for all k ≥ 0,
the following inequalities

∣ṽ(k+1)(t, x) − ṽ(k)(t, x)∣, ∣ṽ(k+1)
x (t, x) − ṽ(k)x (t, x)∣ ≤ M̂0 t( 2

3
)

k

(4.66)

hold for (t, x) ∈ [0, δ] × R.

Proof We show the lemma by using the argument of induction again. Obviously, the
results of Lemma 4.1 and the fact ṽ(0)(t, x) ≡ 0 indicate that (4.66) is valid for k = 0.

Now, suppose that all inequalities in (4.66) are true for n = k. Recalling the
definitions of T(k)15 and T(k)16 , the induction assumptions mean that

T(k)15 (t, x) = ∣ṽ(k)(t, x) − ṽ(k−1)(t, x)∣ ≤ M̂0 t( 2
3

)
k−1

,

T(k)16 (t, x) = ∣ṽ(k)x (t, x) − ṽ(k−1)
x (t, x)∣ ≤ M̂0 t( 2

3
)

k−1

,
(4.67)

from which and Lemma 4.3 one has

T(k)12 (t, x), T(k)13 (t, x), T(k)14 (t, x) ≤ 2M̂0 t2( 2
3

)
k−1

,(4.68)
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for any (t, x) ∈ [0, δ] × R. Inserting (4.67) and (4.68) into (4.44) and (4.45) and
making use of (4.16) give

∣ṽ(k+1)(t, x) − ṽ(k)(t, x)∣

≤ ∫
t

0
∫
R

G(t − ς, z){4M̂0ς2( 2
3

)
k−1

+ M̂0ς( 2
3

)
k−1

}(ς, x − z) dzdς

≤ (4t2 + t)M̂0( 2
3

)
k−1

∫
t

0
∫
R

G(t − ς, z) dzdς

≤ (4t2 + t)M̂0( 2
3

)
k−1

⋅ 2t ≤ (8δ2 + 2δ)M̂0 t( 2
3

)
k−1

≤ M̂0 t( 2
3

)
k

(4.69)

and

∣ṽ(k+1)
x (t, x) − ṽ(k)x (t, x)∣

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{4M̂0ς2( 2
3

)
k−1

+ M̂0ς( 2
3

)
k−1

}(ς, x − z) dzdς

≤ (4t2 + t)M̂0( 2
3

)
k−1

∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ dzdς

≤ (4t2 + t)M̂0( 2
3

)
k−1

⋅ 4
√

t ≤ (16δ
√

δ + 4
√

δ)M̂0 t( 2
3

)
k−1

≤ M̂0 t( 2
3

)
k

,(4.70)

by the choice of δ in (4.20). We combine (4.69) and (4.70) to complete the proof of
the lemma. ∎

4.4 The improved regularity of the iterative sequence

In this subsection, we improve the regularity of the function ṽ(k)xx (t, x) with
respect to x, which will be used to establish the uniform convergence of sequences
{(ṽ(k)t , ṽ(k)x t , ṽ(k)xx )(t, x)} in the space Σ(δ).

Integrating system (4.46) along the characteristic curves x(k)i (t)(i = ±, 0) and
differentiating the resulting with respect to η, we deduce for any (ξ, η) ∈ [0, δ] × R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃(k)η (ξ, η) = ∫
ξ

0

∂F(k)1
∂x

⋅ ∂x(k)−
∂η

(t, x(k)− (t)) dt,

S̃(k)η (ξ, η) = ∫
ξ

0

∂F(k)2
∂x

⋅ ∂x(k)+
∂η

(t, x(k)+ (t)) dt,

θ(k)η (ξ, η) = ∫
ξ

0

∂F(k)3
∂η

(t, η) dt,

(4.71)
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where x(k)± (t) = x(k)± (t; ξ, η) are determined by (4.48), and

∂x(k)±
∂η

= exp { ∫
t

ξ
θ(k)x (s, x(k)± (s)) ds}.(4.72)

From (4.71), one obtains for any (ξ, η1), (ξ, η2) ∈ [0, δ] × R,

I(k)5 ∶= ∣R̃(k)η (ξ, η1) − R̃(k)η (ξ, η2)∣ ≤ ∫
ξ

0
I(k)7 ∣ ∂x(k)−

∂η
∣ + I(k)8 ∣ ∂F(k)1

∂x
∣ dt,

I(k)6 ∶= ∣S̃(k)η (ξ, η1) − S̃(k)η (ξ, η2)∣ ≤ ∫
ξ

0
I(k)9 ∣ ∂x(k)+

∂η
∣ + I(k)10 ∣ ∂F(k)2

∂x
∣ dt,

(4.73)

where

I(k)7 = ∣ ∂F(k)1
∂x

(t, x(k)− (t; ξ, η1)) − ∂F(k)1
∂x

(t, x(k)− (t; ξ, η2))∣,

I(k)8 = ∣ ∂x(k)−
∂η

(t, x(k)− (t; ξ, η1)) − ∂x(k)−
∂η

(t, x(k)− (t; ξ, η2))∣,

I(k)9 = ∣ ∂F(k)2
∂x

(t, x(k)+ (t; ξ, η1)) − ∂F(k)2
∂x

(t, x(k)+ (t; ξ, η2))∣,

I(k)10 = ∣ ∂x(k)+
∂η

(t, x(k)+ (t; ξ, η1)) − ∂x(k)+
∂η

(t, x(k)+ (t; ξ, η2))∣.

We point out by the estimate θ(k)ηη in (4.34) that there is no need to consider the
difference between θ(k)η (ξ, η1) and θ(k)η (ξ, η2). One performs direct calculations and
uses (4.34) and (4.72) to achieve

∣ ∂x(k)±
∂η

∣ ≤ exp ( ∫
ξ

0

1
4

M̂0s ds) ≤ eM̂0 δ2
(4.74)

and

∣ ∂x(k)±
∂η

(t, x(k)± (t; ξ, η1)) − ∂x(k)±
∂η

(t, x(k)± (t; ξ, η2))∣

≤ exp ( ∫
ξ

0

1
4

M̂0s ds) ∫
ξ

t
∣θ(k)xx ∣ ⋅ ∣x(k)± (s; ξ, η1) − x(k)± (s; ξ, η2)∣ ds

≤ 1
4

eM̂0 δ2
MM̂0 ξ2D(k)± ,(4.75)

where

D(k)± = max
t∈[0,ξ]

∣x(k)± (t; ξ, η1) − x(k)± (t; ξ, η2)∣.

Recalling the definitions of x(k)± (t; ξ, η) in (4.48) and utilizing (4.34) get
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∣x(k)± (t; ξ, η1) − x(k)± (t; ξ, η2)∣

≤ ∣η1 − η2∣ + ∫
ξ

t
∣θ(k)(s, x(k)± (s; ξ, η1)) − θ(k)(s, x(k)± (s; ξ, η2))∣ ds

≤ ∣η1 − η2∣ + ∫
ξ

t
∣θ(k)x ∣ ⋅ ∣x(k)± (s; ξ, η1) − x(k)± (s; ξ, η2)∣ ds

≤ ∣η1 − η2∣ + 1
8

M̂0 ξ2D(k)± ,

for any t ∈ [0, ξ], from which one finds that

D(k)± ≤ 2∣η1 − η2∣.(4.76)

We put (4.76) into (4.75) to gain

I(k)8 , I(k)10 ≤ 1
2

eM̂0 δ2
MM̂0 ξ2∣η1 − η2∣ ≤ 1

12
M̂2

0 ξ2∣η1 − η2∣.(4.77)

Moreover, by applying (4.20), (4.34), (4.51), and Lemma 4.1, one computes

∣ ∂F(k)1
∂x

∣, ∣ ∂F(k)2
∂x

∣ ≤ ∣Ψ(k)∣(∣R̃(k)x − S̃(k)x ∣ + ∣(R̃(k) − S̃(k))θ(k)x ∣
θ(k)

)

+ ∣R̃(k)x − S̃(k)x ∣ + ∣ R̃(k)x + S̃(k)x − 2ṽ(k)x + 2θ′0
4θ(k)

(R̃(k) − S̃(k))∣

+ ∣θ(k)x ∣∣θ′0 + ṽ(k)x ∣ + θ(k)∣θ′′0 − ṽ(k)xx ∣

≤ ( 1
2t

+ 2M̂0

θ
)(2M̂0 t2 + 2 ⋅ (3Mθt)2) + 2M̂0 t2 + 2M̂0 t + 2θ 1

2
⋅ 3Mθt

+ 2M̂0 t2 + 3Mθt(θ0 + M̂0 t) + 2θt(θ0 + M̂0
√

t)

≤ ( 1
2

+ 2M̂0δ
θ

)(2M̂0 t + 18
12

M̂0 t) + 3
16

M2θt + 2δM̂0 t

+ 3Mθt( 1
16

M + M̂0δ) + 2θt( 1
16

M + M̂0
√

δ)

≤ ( 1
2

+ 1
8

)4M̂0 t + 1
16

M̂0 t + 1
16

M̂0 t + 3M̂0 t
8 × 12

+ M̂0 t
8 × 16

+ 1
8

M̂0 t

≤ 3M̂0 t.(4.78)

To estimate I(k)7 , we rewrite the term F(k)1x as

∂F(k)1
∂x

= (Ψ(k) − 1)(R̃(k)x − S̃(k)x ) + 1
2

θ(k)x (R̃(k)x + S̃(k)x ) − θ(k)ṽ(k)xx + I(k)11 ,(4.79)

where Ψ(k) is defined in (4.47) and

I(k)11 = −2Ψ(k)(θ(k)x )2 + θ(k)θ′′0 + 2θ(k)x θ′0 − 2θ(k)x ṽ(k)x .

Here, we used the relation θ(k)x = (R̃(k) − S̃(k))/2θ(k) by (3.123). Note that the term
I(k)11 is differentiable with respect to x. Doing a direct calculation and employing (4.20),
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(4.34), (4.51), and Lemma 4.1 arrive at

∣Ψ(k)x ∣ ≤ ∣ R̃(k)x + S̃(k)x − 2ṽ(k)x + 2θ′0
4θ(k)

∣ + ∣Ψ(k)∣ ⋅ ∣ θ(k)x

θ(k)
∣

≤ 2M0 t2 + 2M0 t + 2θ0

4 ⋅ 1
2 θt

+ ( 1
2t

+ 2M̂0

θ
) ⋅ 3

2
M

≤ 1
t

( M̂0δ2

θ
+ M̂0δ

θ
+ θ0

θ
+ 3

4
M + 3M̂0δ

θ
M) ≤ 2M

t
≤ M̂0

8t
(4.80)

and

∣ ∂I(k)11
∂x

∣ = ∣ − 2Ψ(k)x (θ(k)x )2 − 4Ψ(k)θ(k)x θ(k)xx + θ(k)θ′′′0

+ 3θ(k)x θ′′0 + 2θ(k)xx θ′0 − 2θ(k)xx ṽ(k)x − 2θ(k)x ṽ(k)xx ∣

≤ 4M
t

(3Mθt)2 + 4( 1
2t

+ 2M̂0

θ
) ⋅ 3Mθt ⋅ 6M2θt + 1

32
M̂0θ0 t

+ 9θ0Mθt + 6θ0M2θt + 12M2θM̂0 t2 + 6MθM̂0 t
√

t

≤ 72M3θ
2
t + 16M̂0δ

θ
⋅ 9M3θ

2
t + 1

32
M̂0θ1 t + 15θ1M2θt + 18M2θM̂0 t

√
t

≤ 1
8

M̂2
0 t + 1

64
M̂2

0 t + 1
162 M̂2

0 t + 1
24

M̂2
0 t + 1

24
M̂2

0 t ≤ 1
4

M̂2
0 t,(4.81)

by the choice M̂0 ≥ 24M2θ in (4.20). We combine (4.79)–(4.81) and apply (4.34),
(4.76), and Lemmas 4.1 and 4.2 to achieve

I(k)7 ≤ (∣Ψ(k)∣ + 1 + 1
2

∣θ(k)x ∣)(I(k)5 + I(k)6 )

+ ∣θ(k)∣ ⋅ ∣ṽ(k)xx (t, x(k)− (t; ξ, η1)) − ṽ(k)xx (t, x(k)− (t; ξ, η2))∣

+ ∣Ψ(k)(t, x(k)− (t; ξ, η1)) − Ψ(k)(t, x(k)− (t; ξ, η2))∣ ⋅ ∣R̃(k)x − S̃(k)x ∣

+ 1
2

∣θ(k)x (t, x(k)− (t; ξ, η1)) − θ(k)x (t, x(k)− (t; ξ, η2))∣ ⋅ ∣R̃(k)x + S̃(k)x ∣

+ ∣θ(k)(t, x(k)− (t; ξ, η1)) − θ(k)(t, x(k)− (t; ξ, η2))∣ ⋅ ∣ṽ(k)xx ∣

+ ∣I(k)11 (t, x(k)− (t; ξ, η1)) − I(k)11 (t, x(k)− (t; ξ, η2))∣

≤ ( 1
2t

+ 3M̂0

θ
)(I(k)5 + I(k)6 ) + 2θĈ1/2 t

√
∣η1 − η2∣

+ ( 1
4

M̂2
0 t + 1

2
M̂2

0 t3 + 1
2

M̂2
0 t

√
t + 1

2
M̂2

0 t)∣η1 − η2∣.(4.82)
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Here, we chosen α = 1
2 in Lemma 4.2 and then

2θĈ1/2 = 4θM̂0(C2,1 + 2C3, 1
2

+ C3,0) ≤ 1
8

M̂2
0 .

If ∣η1 − η2∣ ≤ 1, then one obtains by (4.82)

I(k)7 , I(k)9 ≤ ( 1
2t

+ 3M̂0

θ
)(I(k)5 + I(k)6 ) + M̂2

0 t
√

∣η1 − η2∣

≤ 3
4t

(I(k)5 + I(k)6 ) + M̂2
0 t

√
∣η1 − η2∣.(4.83)

Now, we put (4.74), (4.77), (4.78), and (4.83) into (4.73) to find that if ∣η1 − η2∣ ≤ 1,

I(k)5 , I(k)6 ≤ ∫
ξ

0
{ 3

4t
eM̂0 δ2

(I(k)5 + I(k)6 ) + (eM̂0 δ2
+ 1

4
M̂0δ2)M̂2

0 t
√

∣η1 − η2∣} dt

≤ ∫
ξ

0

4
5t

(I(k)5 + I(k)6 ) dt + 1
2

( 16
15

+ 1
4

M̂0δ2)M̂2
0 ξ2

√
∣η1 − η2∣

≤ ∫
ξ

0

4
5t

(I(k)5 + I(k)6 ) dt + M̂2
0 ξ2

√
∣η1 − η2∣,(4.84)

by the fact 15eM̂0 δ2 ≤ 16.
In view of (4.84), we have the following lemma.

Lemma 4.5 The functions R̃(k)x (t, x), S̃(k)x (t, x), and ṽ(k)xx (t, x)(k = 0, 1, . . .) are
uniformly Lipschitz continuous with respect to x. More precisely, there hold for any k ≥ 0
and any two points (t, x1), (t, x2) ∈ [0, δ] × R,

∣R̃(k)x (t, x1) − R̃(k)x (t, x2)∣, ∣S̃(k)x (t, x1) − S̃(k)x (t, x2)∣ ≤ 5M̂2
0 t2∣x1 − x2∣,

∣ṽ(k)xx (t, x1) − ṽ(k)xx (t, x2)∣ ≤ M̂0 t
1
4 ∣x1 − x2∣.

(4.85)

Proof We first show that the functions R̃(k)η (ξ, η) and S̃(k)η (ξ, η)(k = 0, 1, . . .) are
uniformly 1/2-Hölder continuous with respect to η. For any two numbers η1 , η2, if
∣η1 − η2∣ > 1, then one acquires by (4.34)

∣R̃(k)η (ξ, η1) − R̃(k)η (ξ, η2)∣, ∣S̃(k)η (ξ, η1) − S̃(k)η (ξ, η2)∣

≤ 2M̂0 ξ2 ≤ 2M̂0 ξ2
√

∣η1 − η2∣.(4.86)

If ∣η1 − η2∣ ≤ 1, then the inequality (4.84) is valid. Due to the definitions of I(k)5 and
I(k)6 in (4.73), we get

I(k)5 , I(k)6 ≤ 2M̂0 ξ2 ≤ M̂2
0 ξ2 .

Inserting the above into (4.84) leads to

I(k)5 , I(k)6 ≤ ∫
ξ

0

4
5

⋅ 2M̂2
0 t dt + M̂2

0 ξ2
√

∣η1 − η2∣

≤ 4
5

M̂2
0 ξ2 + M̂2

0 ξ2
√

∣η1 − η2∣.(4.87)
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We put (4.87) into (4.84) again to arrive at

I(k)5 , I(k)6 ≤ ( 4
5

)
2

M̂2
0 ξ2 +

1
∑
j=0

( 4
5

)
j

M̂2
0 ξ2

√
∣η1 − η2∣.(4.88)

Repeating the above insertion process yields

I(k)5 , I(k)6 ≤
∞

∑
j=0

( 4
5

)
j

M̂2
0 ξ2

√
∣η1 − η2∣ = 5M̂2

0 ξ2
√

∣η1 − η2∣.(4.89)

One combines (4.86) and (4.89) to achieve for any (ξ, η1), (ξ, η2) ∈ [0, δ] × R,

∣R̃(k)η (ξ, η1) − R̃(k)η (ξ, η2)∣, ∣S̃(k)η (ξ, η1) − S̃(k)η (ξ, η2)∣

≤ 5M̂2
0 ξ2

√
∣η1 − η2∣.(4.90)

Next, we prove that ṽ(k)xx (t, x)(k = 0, 1, . . .) are uniformly Lipschitz continuous
with respect to x. Recalling (4.7) and (4.18) gives

ṽ(k)xx (t, x) = ∫
t

0
∫
R

∂G(t − ς, x − z)
∂x

b(k)x (ς, z) dzdς,(4.91)

from which one has

∂
∂x

ṽ(k)xx (t, x) = ∫
t

0
∫
R

∂2G(t − ς, x − z)
∂x2 b(k)x (ς, z) dzdς

= ∫
t

0
∫
R

∂2G(t − ς, x − z)
∂x2 [b(k)x (ς, z) − b(k)x (ς, x)] dzdς.(4.92)

Here, the term b(k)x is

b(k)x (t, x) = R̃(k)x (t, x) + S̃(k)x (t, x)
2

− θ(k)x (t, x)

− ṽ(k)x (t, x) + θ′0(x) + v′′′0 (x),(4.93)

which satisfies by (4.34) and (4.90)

∣b(k)x (t, x1) − b(k)x (t, x2)∣

≤
√

2∣θ(k)x ∣ ⋅
√

∣θ(k)xx ∣ ⋅ ∣x1 − x2∣ +
√

2∣ṽ(k)x ∣ ⋅
√

∣ṽ(k)xx ∣ ⋅ ∣x1 − x2∣

+ 5M̂2
0 t2

√
∣x1 − x2∣ +

√
2∣θ′0(x) + v′′′0 (x)∣ ⋅

√
∣θ′′0 (x) + v′′′′0 (x)∣ ⋅ ∣x1 − x2∣

≤ (5M̂2
0δ2 +

√
2

4
M̂0δ +

√
2M̂0δ

3
4 + 2K̂)

√
∣x1 − x2∣

≤ 1
8

M̂0
√

∣x1 − x2∣.(4.94)

Putting (4.94) into (4.92) and making use of (4.10) yield
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∣ ∂
∂x

ṽ(k)xx (t, x)∣ ≤ 1
8

M̂0 ∫
t

0
∫
R

∣ ∂2G(t − ς, x − z)
∂x2 ∣ ⋅

√
∣x − z∣ dzdς

≤ 1
8

M̂0 ∫
t

0
∫
R

H 5
2
(t − ς, z) dzdς = 1

8
M̂0 ⋅ 4

3 − 5
2

t
3− 5

2
2 = M̂0 t

1
4 ,(4.95)

which implies that the function ṽ(k)xx (t, x) satisfies

∣ṽ(k)xx (t, x1) − ṽ(k)xx (t, x2)∣ ≤ M̂0 t
1
4 ∣x1 − x2∣.(4.96)

Finally, we verify that the functions R̃(k)η (ξ, η) and S̃(k)η (ξ, η)(k = 0, 1, . . .) are
uniformly Lipschitz continuous with respect to η. By using (4.96), we re-estimate the
terms I(k)7 and I(k)9 in (4.82) and (4.83) to see that for ∣η1 − η2∣ ≤ 1,

I(k)7 , I(k)9 ≤ ( 1
2t

+ 3M̂0

θ
)(I(k)5 + I(k)6 ) + 1

32
M̂0 t ⋅ M̂0 t

1
4 ∣η1 − η2∣

+ ( 1
4

M̂2
0 t + 1

2
M̂2

0 t3 + 1
2

M̂2
0 t

√
t + 1

2
M̂2

0 t)∣η1 − η2∣

≤ 3
4t

(I(k)5 + I(k)6 ) + M̂2
0 t∣η1 − η2∣,(4.97)

from which the terms I(k)5 and I(k)6 in (4.84) can be improved to

I(k)5 , I(k)6 ≤ ∫
ξ

0

4
5t

(I(k)5 + I(k)6 ) dt + M̂2
0 ξ2∣η1 − η2∣.(4.98)

Based on (4.98), one employs the same argument as (4.89) to gain

I(k)5 , I(k)6 ≤
∞

∑
j=0

( 4
5

)
j

M̂2
0 ξ2∣η1 − η2∣ = 5M̂2

0 ξ2∣η1 − η2∣,(4.99)

for ∣η1 − η2∣ ≤ 1. Combining (4.90), (4.99), and (4.96) finishes the proof of the lemma.
∎

4.5 The convergence of the iterative sequence (II)

In this subsection, we continue the discussion of Section 4.3 to establish the properties
for the sequences {(ṽ(k)t , ṽ(k)x t , ṽ(k)xx )(t, x)} in the space Σ(δ).

We first apply (4.18), (4.6)–(4.8), and (4.34) to deduce

∣ṽ(k+1)
t (t, x) − ṽ(k)t (t, x)∣

≤ ∫
t

0
∫
R

G(t − ς, z){ 1
2

(T(k)18 + T(k)19 ) + T(k)20 + T(k)21 }(ς, x − z) dzdς,(4.100)

∣ṽ(k+1)
x t (t, x) − ṽ(k)x t (t, x)∣

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{ 1
2

(T(k)18 + T(k)19 ) + T(k)20 + T(k)21 }(ς, x − z) dzdς(4.101)
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and

∣ṽ(k+1)
xx (t, x) − ṽ(k)xx (t, x)∣

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{ 1
2

(T(k)22 + T(k)23 ) + T(k)24 + T(k)16 }(ς, x − z) dzdς,(4.102)

where

T(k)18 (t, x) =∣R̃(k)t (t, x) − R̃(k−1)
t (t, x)∣, T(k)19 (t, x) = ∣S̃(k)t (t, x) − S̃(k−1)

t (t, x)∣,

T(k)20 (t, x) =∣θ(k)t (t, x) − θ(k−1)
t (t, x)∣, T(k)21 (t, x) = ∣ṽ(k)t (t, x) − ṽ(k−1)

t (t, x)∣,

T(k)22 (t, x) =∣R̃(k)x (t, x) − R̃(k−1)
x (t, x)∣, T(k)23 (t, x) = ∣S̃(k)x (t, x) − S̃(k−1)

x (t, x)∣,

T(k)24 (t, x) =∣θ(k)x (t, x) − θ(k−1)
x (t, x)∣.

Recalling the system (4.46) arrives at

T(k)18 (t, x) ≤ ∣F(k)1 − F(k−1)
1 ∣ + ∣θ(k)R̃(k)x − θ(k−1)R̃(k−1)

x ∣
≤ ∣F(k)1 − F(k−1)

1 ∣ + ∣θ(k)∣T(k)22 + ∣R̃(k−1)
x ∣T(k)14 ,

T(k)19 (t, x) ≤ ∣F(k)2 − F(k−1)
2 ∣ + ∣θ(k)S̃(k)x − θ(k−1)S̃(k−1)

x ∣
≤ ∣F(k)2 − F(k−1)

2 ∣ + ∣θ(k)∣T(k)23 + ∣S̃(k−1)
x ∣T(k)14 ,

T(k)20 (t, x) = ∣F(k)3 − F(k−1)
3 ∣,

(4.103)

from which and (4.53) and (4.49), we get

T(k)18 (t, x) ≤ T(k)12 + T(k)13
2t

+ 1
4δ

(T(k)12 + T(k)13 + T(k)14 )

+ 1
4

(T(k)15 + T(k)16 ) + ∣θ(k)∣T(k)22 ,

T(k)19 (t, x) ≤ T(k)12 + T(k)13
2t

+ 1
4δ

(T(k)12 + T(k)13 + T(k)14 )

+ 1
4

(T(k)15 + T(k)16 ) + ∣θ(k)∣T(k)23 ,

T(k)20 (t, x) ≤ 1
2

(T(k)12 + T(k)13 ) + T(k)14 + T(k)15 .

(4.104)

One utilizes Lemmas 4.3 and 4.4, (4.104), and (4.34) to acquire

T(k)18 (t, x) ≤ 4M̂0 t( 2
3

)
k−1

+ M̂0 t
32

T(k)22 ,

T(k)19 (t, x) ≤ 4M̂0 t( 2
3

)
k−1

+ M̂0 t
32

T(k)23 ,

T(k)20 (t, x) ≤ (4δ + 1)M̂0 t( 2
3

)
k−1

≤ 2M̂0 t( 2
3

)
k−1

,

T(k)16 (t, x) ≤ M̂0 t( 2
3 )

k−1

.

(4.105)
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We have by putting (4.105) into (4.100) and (4.102)

∣ṽ(k+1)
t (t, x) − ṽ(k)t (t, x)∣ ≤ ∫

t

0
∫
R

G(t − ς, z){6M̂0ς( 2
3

)
k−1

+T(k)21 + M̂0ς
64

(T(k)22 + T(k)23 )}(ς, x − z) dzdς,

∣ṽ(k+1)
x t (t, x) − ṽ(k)x t (t, x)∣ ≤ ∫

t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{6M̂0ς( 2
3

)
k−1

+T(k)21 + M̂0ς
64

(T(k)22 + T(k)23 )}(ς, x − z) dzdς,

∣ṽ(k+1)
xx (t, x) − ṽ(k)xx (t, x)∣ ≤ ∫

t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{2M̂0ς( 2
3

)
k−1

+ 1
2

(T(k)22 + T(k)23 ) + T(k)24 }(ς, x − z) dzdς.

(4.106)

In order to proceed with the verification, it is necessary to estimate the terms
T(k)22,23,24 . Recalling system (4.71) leads to

T(k)22 (ξ, η) ≤ ∫
ξ

0
{T(k)25 ∣ ∂x(k)−

∂η
∣ + ∣ ∂F(k−1)

1
∂x

∣T(k)28 } dt,

T(k)23 (ξ, η) ≤ ∫
ξ

0
{T(k)26 ∣ ∂x(k)+

∂η
∣ + ∣ ∂F(k−1)

2
∂x

∣T(k)29 } dt,

T(k)24 (ξ, η) ≤ ∫
ξ

0
T(k)27 dt,

(4.107)

where

T(k)25 = ∣ ∂F(k)1
∂x

(t, x(k)− (t)) − ∂F(k−1)
1
∂x

(t, x(k−1)
− (t))∣,

T(k)26 = ∣ ∂F(k)2
∂x

(t, x(k)− (t)) − ∂F(k−1)
2
∂x

(t, x(k−1)
− (t))∣,

T(k)27 = ∣ ∂F(k)3
∂η

(t, η) − ∂F(k−1)
3
∂η

(t, η)∣,

T(k)28 = ∣ ∂x(k)−
∂η

(t, x(k)− (t)) − ∂x(k−1)
−

∂η
(t, x(k−1)

− (t))∣,

T(k)29 = ∣ ∂x(k)+
∂η

(t, x(k)+ (t)) − ∂x(k−1)
+

∂η
(t, x(k−1)

+ (t))∣.

We first remember (4.74) and (4.78) to obtain

∣ ∂x(k)±
∂η

∣ ≤ eM̂0 δ2
, ∣ ∂F(k−1)

1
∂x

∣, ∣ ∂F(k−1)
2
∂x

∣ ≤ 3M̂0 t.(4.108)
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Next, we are going to estimate the terms T(k)25−29. For the term T(k)27 , it follows directly
by Lemma 4.4 that

T(k)27 =∣(
R̃(k)η + S̃(k)η

2
− θ(k)η − ṽ(k)η + θ′0)

− (
R̃(k−1)

η + S̃(k−1)
η

2
− θ(k−1)

η − ṽ(k−1)
η + θ′0)∣

≤ T(k)22 (t, η) + T(k)23 (t, η)
2

+ T(k)24 (t, η) + ∣ṽ(k)η (t, η) − ṽ(k−1)
η (t, η)∣

≤ T(k)22 (t, η) + T(k)23 (t, η)
2

+ T(k)24 (t, η) + M̂0 t( 2
3

)
k−1

.(4.109)

For the terms T(k)28−29, one recalls the definitions of ∂η x(k)± in (4.72) to achieve

T(k)28 , T(k)29 ≤ eM̂0 δ2
∣ ∫

ξ

t
(θ(k)x (s, x(k)± (s)) − θ(k−1)

x (s, x(k−1)
± (s))) ds∣

≤ eM̂0 δ2

∫
ξ

0
{T(k)24 (s, x(k)± (s)) + ∣θ(k−1)

x (s, x(k)± (s)) − θ(k−1)
x (s, x(k−1)

± (s))∣} ds

≤ eM̂0 δ2

∫
ξ

0
{T(k)24 (s, x(k)± (s)) + ∣θ(k−1)

xx ∣ ⋅ ∣x(k)± (s) − x(k−1)
± (s)∣} ds.

(4.110)

Moreover, it concludes by the definitions of x(k)± (t; ξ, η) in (4.48) that

x(k)± (t) ± ∫
ξ

t
θ(k)(s, x(k)± (s; ξ, η)) ds

=η = x(k−1)
± (t) ± ∫

ξ

t
θ(k−1)(s, x(k−1)

± (s; ξ, η)) ds,

from which and (4.34) and Lemma 4.3 one has

∣x(k)± (t) − x(k−1)
± (t)∣ ≤ ∫

ξ

0
∣θ(k)(s, x(k)± (s)) − θ(k−1)(s, x(k−1)

± (s))∣ ds

≤ ∫
ξ

0
{T(k)14 (s, x(k)± (s)) + ∣θ(k−1)

x ∣ ⋅ ∣x(k)± (s) − x(k−1)
± (s)∣} ds

≤ ∫
ξ

0
{2M̂0s2( 2

3
)

k−1

+ 1
4

M̂0s∣x(k)± (s) − x(k−1)
± (s)∣} ds.(4.111)

Thus, we find by (4.111) that

Δ(k)± ∶= max
t∈[0,ξ]

∣x(k)± (t) − x(k−1)
± (t)∣ ≤ M̂0 ξ3( 2

3
)

k−1

.(4.112)
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Putting (4.112) into (4.110) and using (4.34) again yield

T(k)28 , T(k)29 ≤ eM̂0 δ2

∫
ξ

0
{T(k)24 (s, x(k)± (s)) + 1

4
M̂0s ⋅ Δ(k)± } ds

≤ eM̂0 δ2

∫
ξ

0
T(k)24 (s, x(k)± (s)) ds + 1

4
M̂2

0 ξ5( 2
3

)
k−1

.(4.113)

Finally, we estimate T(k)25 by re-expressing it as

T(k)25 ≤ ∣ ∂F(k)1
∂x

(t, x(k)− (t)) − ∂F(k−1)
1
∂x

(t, x(k)− (t))∣

+ ∣ ∂F(k−1)
1
∂x

(t, x(k)− (t)) − ∂F(k−1)
1
∂x

(t, x(k−1)
− (t))∣

=∶T(k)30 + T(k−1)
31 .(4.114)

Recalling the expression of ∂x F(k)1 in (4.79) and making use of (4.34) and (4.51) arrive
at

T(k)30 ≤ (∣Ψ(k)∣ + 1 + 1
2

∣θ(k)x ∣)(T(k)22 + T(k)23 ) + 1
2

∣R̃(k−1)
x + S̃(k−1)

x ∣T(k)24

+ ∣R̃(k−1)
x − S̃(k−1)

x ∣ ⋅ ∣Ψ(k) − Ψ(k−1)∣ + ∣θ(k)∣ ⋅ ∣ṽ(k)xx − ṽ(k−1)
xx ∣

+ ∣ṽ(k−1)
xx ∣ ⋅ ∣θ(k) − θ(k−1)∣ + ∣I(k)11 − I(k−1)

11 ∣

≤ ( 1
2t

+ 2M̂0

θ
+ 1 + 1

8
M̂0 t)(T(k)22 + T(k)23 ) + 2M̂0 t2∣Ψ(k) − Ψ(k−1)∣

+ M̂0 t2T(k)24 + 2θt∣ṽ(k)xx − ṽ(k−1)
xx ∣ + M̂0

√
tT(k)14 + ∣I(k)11 − I(k−1)

11 ∣.(4.115)

By the expressions of Ψ(k) in (4.47) and I(k)11 in (4.79), we employ Lemmas 4.3 and 4.4
and (4.22), (4.34), and (4.51) again to gain

∣Ψ(k) − Ψ(k−1)∣

=∣ R̃(k) + S̃(k) − 2ṽ(k) + 2θ0

4θ(k)
− R̃(k−1) + S̃(k−1) − 2ṽ(k−1) + 2θ0

4θ(k−1) ∣

≤ T(k)12 + T(k)13 + 2T(k)15
4θ(k)

+ ∣Ψ(k−1)∣ T(k)14
θ(k)

≤
4M̂0 t2( 2

3
)

k−1

+ 2M̂0 t( 2
3

)
k−1

2θt
+ ( 1

2t
+ 2M̂0

θ
)

2M̂0 t2( 2
3

)
k−1

1
2 θt

≤ ( 3 + 2δ
θ

+ 8M̂0δ
θ2 )M̂0( 2

3
)

k−1

≤ 4
θ

M̂0( 2
3

)
k−1

(4.116)
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and

∣I(k)11 − I(k−1)
11 ∣ ≤ 2∣θ(k)x ∣2∣Ψ(k) − Ψ(k−1)∣ + 2∣Ψ(k−1)∣ ⋅ ∣(θ(k)x )2 − (θ(k−1)

x )2∣
+ ∣θ′′0 ∣ ⋅ ∣θ(k) − θ(k−1)∣ + 2(∣θ′0∣ + ∣ṽ(k)x ∣) ⋅ ∣θ(k)x − θ(k−1)

x ∣
+ 2∣θ(k−1)

x ∣ ⋅ ∣ṽ(k)x − ṽ(k−1)
x ∣

≤ 2(3Mθt)2 ⋅ 4
θ

M̂0( 2
3

)
k−1

+ 2( 1
2t

+ 2M̂0

θ
) ⋅ 6MθtT(k)24

+ θ0T(k)14 + 2(θ0 + M̂0 t)T(k)24 + 6Mθt ⋅ T(k)15

≤ 6M̂2
0 t2

θ
( 2

3
)

k−1

+ ( 1
2

+ 2M̂0δ
θ

) M̂0

M
T(k)24 + θ0 ⋅ M̂0 t2( 2

3
)

k−1

+ 2( M
16

+ 1)T(k)24 + 1
4

M̂0 t ⋅ M̂0 t( 2
3

)
k−1

≤ 1
16

M̂0T(k)24 + 3
4

M̂0 t( 2
3

)
k−1

.(4.117)

One inserts (4.116) and (4.117) into (4.115) to get

T(k)30 ≤ ( 1
2t

+ 2M̂0

θ
+ 1 + 1

8
M̂0 t)(T(k)22 + T(k)23 )

+ 2M̂0 t2 ⋅ 4
θ

M̂0( 2
3

)
k−1

+ M̂0 t2T(k)24 + 2θt∣ṽ(k)xx − ṽ(k−1)
xx ∣

+ M̂0
√

t ⋅ M̂0 t2( 2
3

)
k−1

+ 1
16

M̂0T(k)24 + 3
4

M̂0 t( 2
3

)
k−1

≤ ( 1
2t

+ 3M̂0

θ
)(T(k)22 + T(k)23 ) + 1

15
M̂0T(k)24 + 3

2
M̂0 t( 2

3
)

k−1

+ 2θt∣ṽ(k)xx − ṽ(k−1)
xx ∣.(4.118)

In addition, for the term T(k−1)
31 , we also use the expression of ∂x F(k−1)

1 as in (4.79) to
derive

T(k−1)
31 ≤ (∣Ψ(k−1)∣ + 1 + 1

2
∣θ(k−1)

x ∣)

× {∣R̃(k−1)
x (t, x(k)− (t)) − R̃(k−1)

x (t, x(k−1)
− (t))∣

+ ∣S̃(k−1)
x (t, x(k)− (t)) − S̃(k−1)

x (t, x(k−1)
− (t))∣}

+ ∣R̃(k−1)
x − S̃(k−1)

x ∣ ⋅ ∣Ψ(k−1)(t, x(k)− (t)) − Ψ(k−1)(t, x(k−1)
− (t))∣

+ 1
2

∣R̃(k−1)
x + S̃(k−1)

x ∣ ⋅ ∣θ(k−1)
x (t, x(k)− (t)) − θ(k−1)

x (t, x(k−1)
− (t))∣
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+ ∣θ(k−1)∣ ⋅ ∣ṽ(k−1)
xx (t, x(k)− (t)) − ṽ(k−1)

xx (t, x(k−1)
− (t))∣

+ ∣ṽ(k−1)
xx ∣ ⋅ ∣θ(k−1)(t, x(k)− (t)) − θ(k−1)(t, x(k−1)

− (t))∣

+ ∣I(k−1)
11 (t, x(k)− (t)) − I(k−1)

11 (t, x(k−1)
− (t))∣.(4.119)

Thus, it suggests by Lemma 4.5, (4.34), (4.80), (4.81), and (4.112) that

T(k−1)
31 ≤ ( 1

2t
+ 3M̂0

θ
) ⋅ 10M̂2

0 t2Δ(k)± + 2M̂0 t2 ⋅ ∣Ψ(k−1)
x ∣Δ(k)±

+ M̂0 t2 ⋅ ∣θ(k−1)
xx ∣Δ(k)± + 1

32
M̂0 t ⋅ M̂0 t

1
4 Δ(k)±

+ 1
4

M̂0 t ⋅ ∣θ(k−1)
x ∣Δ(k)± + ∣ ∂I(k−1)

11
∂x

∣Δ(k)±

≤ {5M̂2
0 t + 30M̂3

0 t2

θ
+ 2M̂0 t2 ⋅ M̂0

8t
+ M̂0 t2 ⋅ 1

4
M̂0 t

+ 1
32

M̂2
0 tt

1
4 + 1

4
M̂0 t ⋅ 1

4
M̂0 t + 1

4
M̂2

0 t}Δ(k)±

≤ {5 + 30
16

+ 1
4

+ 1
4

δ2 + 1
32

√
δ + 1

16
δ + 1

4
}M̂2

0 t ⋅ M̂0 ξ3( 2
3

)
k−1

≤ 8M̂3
0 ξ3 t( 2

3
)

k−1

≤ 1
4

M̂0 t( 2
3

)
k−1

.(4.120)

One puts (4.118) and (4.120) into (4.114) to deduce

T(k)25 ≤ ( 1
2t

+ 3M̂0

θ
)(T(k)22 + T(k)23 ) + 1

15
M̂0T(k)24 + 7

4
M̂0 t( 2

3
)

k−1

+ 2θt∣ṽ(k)xx − ṽ(k−1)
xx ∣.(4.121)

The above estimate is also true for the term T(k)26 .
We now combine (4.107)–(4.109), (4.113), and (4.121) and apply the fact 15eM̂0 δ2 ≤ 16

to find that

T(k)22 (ξ, η), T(k)23 (ξ, η) ≤ ∫
ξ

0
eM̂0 δ2

{( 1
2t

+ 3M̂0

θ
)(T(k)22 + T(k)23 ) + 1

15
M̂0T(k)24

+ 7
4

M̂0 t( 2
3

)
k−1

+ 2θt∣ṽ(k)xx − ṽ(k−1)
xx ∣} dt

+ ∫
ξ

0
3M̂0 t{eM̂0 δ2

∫
ξ

0
T(k)24 ds + 1

4
M̂2

0 ξ5( 2
3

)
k−1

} dt

≤ 16
15 ∫

ξ

0
( 1

2t
+ 3

16t
)(T(k)22 + T(k)23 ) dt + 16

15
( 1

15
M̂0 + 3

2
M̂0 ξ2) ∫

ξ

0
T(k)24 dt
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+ 4θ ∫
ξ

0
t∣ṽ(k)xx − ṽ(k−1)

xx ∣ dt + ( 14
15

+ M̂2
0 ξ5)M̂0 ξ2( 2

3
)

k−1

≤ ∫
ξ

0
{ 4

5t
(T(k)22 + T(k)23 ) + 1

10
M̂0T(k)24 + 4θt∣ṽ(k)xx − ṽ(k−1)

xx ∣} dt

+ M̂0 ξ2( 2
3

)
k−1

(4.122)

and
T(k)24 (ξ, η) ≤ ∫

ξ

0
{ T(k)22 (t, η) + T(k)23 (t, η)

2
+ T(k)24 (t, η) + M̂0 t( 2

3
)

k−1

} dt

≤ ∫
ξ

0
{ T(k)22 (t, η) + T(k)23 (t, η)

2
+ T(k)24 (t, η)} dt + M̂0 ξ2( 2

3
)

k−1

.(4.123)

Based on (4.122) and (4.123), we have the following lemma.

Lemma 4.6 For any k ≥ 1 and (ξ, η) ∈ [0, δ] × R, if ṽ(k)ηη (ξ, η) satisfies

∣ṽ(k)ηη (ξ, η) − ṽ(k−1)
ηη (ξ, η)∣ ≤ M̂0

√
ξ( 2

3
)

k−1

,(4.124)

then there hold

T(k)22 (ξ, η), T(k)23 (ξ, η), T(k)24 (ξ, η) ≤ 12M̂0 ξ2( 2
3

)
k−1

.(4.125)

Proof The proof of the lemma is similar to that of Lemma 4.3. According to the
definitions of T(k)22−24, we first see by (4.34) that

T(k)22 (ξ, η), T(k)23 (ξ, η) ≤ 2M̂0 ξ2 , T(k)24 (ξ, η) ≤ 1
2

M̂0 ξ,(4.126)

which along with (4.123) gets

T(k)24 (ξ, η) ≤ ∫
ξ

0
{2M̂0 t2 + 1

2
M̂0 t} dt + M̂0 ξ2 ≤ 2M̂0 ξ2 .

Thus,

T(k)22 (ξ, η), T(k)23 (ξ, η), T(k)24 (ξ, η) ≤ 2M̂0 ξ2 .(4.127)

Next, in view of (4.122) and the assumption (4.124), one has

T(k)22 (ξ, η), T(k)23 (ξ, η) ≤ ∫
ξ

0
{ 4

5t
(T(k)22 + T(k)23 ) + 1

10
M̂0T(k)24

+ 4θt ⋅ M̂0
√

t( 2
3

)
k−1

} dt + M̂0 ξ2( 2
3

)
k−1

≤ ∫
ξ

0
{ 4

5t
(T(k)22 + T(k)23 ) + 1

10
M̂0T(k)24 } dt + 2M̂0 ξ2( 2

3
)

k−1

,(4.128)
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by the fact θ
√

δ ≤ 1. We substitute (4.127) into (4.128) and (4.123) to obtain by M̂0δ ≤ 1
that

T(k)22 (ξ, η), T(k)23 (ξ, η) ≤ ∫
ξ

0
{ 4

5t
⋅ 4M̂0 t2 + 1

10
M̂0 ⋅ 2M̂0 t2} dt + 2M̂0 ξ2( 2

3
)

k−1

≤ ( 4
5

+ M̂0δ
30

) ⋅ 2M̂0 ξ2 + 2M̂0 ξ2( 2
3

)
k−1

≤ 5
6

⋅ 2M̂0 ξ2 + 2M̂0 ξ2( 2
3

)
k−1

(4.129)

and

T(k)24 (ξ, η) ≤ ∫
ξ

0
{2M̂0 t2 + 2M̂0 t2} dt + M̂0 ξ2( 2

3
)

k−1

= 4
3

M̂0 ξ3 + M̂0 ξ2( 2
3

)
k−1

≤ 5
6

⋅ 2M̂0 ξ2 + 2M̂0 ξ2( 2
3

)
k−1

.(4.130)

Hence, it follows by (4.129) and (4.130) that

T(k)22 (ξ, η), T(k)23 (ξ, η), T(k)24 (ξ, η) ≤ 2M̂0 ξ2[ 5
6

+ ( 2
3

)
k−1

].(4.131)

Moreover, putting (4.131) into (4.128) and (4.123) again yields

T(k)22 (ξ, η), T(k)23 (ξ, η)

≤ ∫
ξ

0
{ 4

5t
⋅ 4M̂0 t2[ 5

6
+ ( 2

3
)

k−1

] + M̂0

10
⋅ 2M̂0 t2[ 5

6
+ ( 2

3
)

k−1

]} dt

+ 2M̂0 ξ2( 2
3

)
k−1

≤ ( 4
5

+ M̂0δ
30

) ⋅ 2M̂0 ξ2[ 5
6

+ ( 2
3

)
k−1

] + 2M̂0 ξ2( 2
3

)
k−1

≤ 2M̂0 ξ2[( 5
6

)
2

+
1

∑
j=0

( 5
6

)
j

( 2
3

)
k−1

],(4.132)

and

T(k)24 (ξ, η) ≤ ∫
ξ

0
4M̂0 t2[ 5

6
+ ( 2

3
)

k−1

] dt + M̂0 ξ2( 2
3

)
k−1

= 4
3

M̂0 ξ3[ 5
6

+ ( 2
3

)
k−1

] + M̂0 ξ2( 2
3

)
k−1

≤ 2M̂0 ξ2[( 5
6

)
2

+
1

∑
j=0

( 5
6

)
j

( 2
3

)
k−1

].(4.133)

https://doi.org/10.4153/S0008414X23000640 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000640


The solvability for a nonlinear degenerate hyperbolic–parabolic coupled system 1885

One combines (4.132) and (4.133) to acquire

T(k)22 (ξ, η), T(k)23 (ξ, η), T(k)24 (ξ, η)

≤ 2M̂0 ξ2[( 5
6

)
2

+
1

∑
j=0

( 5
6

)
j

( 2
3

)
k−1

].(4.134)

Therefore, by repeating the above process, we can achieve

T(k)22 (ξ, η), T(k)23 (ξ, η), T(k)24 (ξ, η)

≤ 2M̂0 ξ2[( 5
6

)
�

+
�

∑
j=0

( 5
6

)
j

( 2
3

)
k−1

],(4.135)

for arbitrary integer � ≥ 1. Due to the arbitrariness of �, it concludes by (4.135) that

T(k)22 (ξ, η), T(k)23 (ξ, η), T(k)24 (ξ, η)

≤ 2M̂0 ξ2
∞

∑
j=0

( 5
6

)
j

( 2
3

)
k−1

= 12M̂0 ξ2( 2
3

)
k−1

,(4.136)

which ends the proof of the lemma. ∎

By virtue of (4.106) and Lemma 4.6, we have the following lemma.

Lemma 4.7 Let the iterative sequence {ṽ(k)} be defined by (4.18). There hold

∣ṽ(k+1)
t (t, x) − ṽ(k)t (t, x)∣, ∣ṽ(k+1)

x t (t, x) − ṽ(k)x t (t, x)∣ ≤ M̂0( 2
3

)
k

,

∣ṽ(k+1)
xx (t, x) − ṽ(k)xx (t, x)∣ ≤ M̂0

√
t( 2

3
)

k

,
(4.137)

for all k ≥ 0 and (t, x) ∈ [0, δ] × R.

Proof The proof of the lemma is still based on the method of induction. Noting
the initial iterative function ṽ(0)(t, x) ≡ 0, it is easy to see by Lemma 4.1 that all
inequalities in (4.137) are true for k = 0.

Now, assume that (4.137) holds for n = k. Thus,

∣ṽ(k)t (t, x) − ṽ(k−1)
t (t, x)∣, ∣ṽ(k)x t (t, x) − ṽ(k−1)

x t (t, x)∣ ≤ M̂0( 2
3

)
k−1

,

∣ṽ(k)xx (t, x) − ṽ(k−1)
xx (t, x)∣ ≤ M̂0

√
t( 2

3
)

k−1

,
(4.138)

from which and Lemma 4.6 one has for n = k and (t, x) ∈ [0, δ] × R that

T(k)22 (t, x), T(k)23 (t, x), T(k)24 (t, x) ≤ 12M̂0 t2( 2
3

)
k−1

.(4.139)
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We insert (4.139) into (4.106) and apply (4.16) to get

∣ṽ(k+1)
t (t, x) − ṽ(k)t (t, x)∣ ≤ ∫

t

0
∫
R

G(t − ς, z){6M̂0ς( 2
3

)
k−1

+ M̂0( 2
3

)
k−1

+ M̂0ς
64

⋅ 24M̂0ς2( 2
3

)
k−1

} dzdς

≤ ∫
t

0
∫
R

G(t − ς, z) dzdς ⋅ {6M̂0δ + M̂0 + M̂2
0 δ3}( 2

3
)

k−1

≤ 2t ⋅ 3
2

M̂0( 2
3

)
k−1

≤ 3δ ⋅ M̂0( 2
3

)
k−1

≤ M̂0( 2
3

)
k

,(4.140)

∣ṽ(k+1)
x t (t, x) − ṽ(k)x t (t, x)∣ ≤ ∫

t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{6M̂0ς( 2
3

)
k−1

+ M̂0( 2
3

)
k−1

+ M̂0ς
64

⋅ 24M̂0ς2( 2
3

)
k−1

} dzdς

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ dzdς ⋅ {6M̂0δ + M̂0 + M̂2
0δ3}( 2

3
)

k−1

≤ 4
√

t ⋅ 5
4

M̂0( 2
3

)
k−1

≤ 5
√

δ ⋅ M̂0( 2
3

)
k−1

≤ 1
2

⋅ M̂0( 2
3

)
k−1

≤ M̂0( 2
3

)
k

,(4.141)

and

∣ṽ(k+1)
xx (t, x) − ṽ(k)xx (t, x)∣

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣{2M̂0ς( 2
3

)
k−1

+ 24M̂0ς2( 2
3

)
k−1

} dzdς

≤ ∫
t

0
∫
R

∣ ∂G(t − ς, z)
∂z

∣ dzdς ⋅ {2M̂0δ + 24M̂0δ2}( 2
3

)
k−1

≤ 4
√

t ⋅ 3M̂0δ( 2
3

)
k−1

= 12δ ⋅ M̂0
√

t( 2
3

)
k−1

≤ 3
8

⋅ M̂0
√

t( 2
3

)
k−1

≤ M̂0
√

t( 2
3

)
k

.(4.142)

By (4.140)–(4.142), the proof of the lemma is finished. ∎

4.6 The solutions of the hyperbolic–parabolic coupled problem

In this subsection, we complete the proof of Theorem 2.1 and then obtain Theorem 1.1.
Thanks to Lemmas 4.4 and 4.7, one finds that the iterative sequence {ṽ(k)} defined by
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(4.18) satisfies concurrently

∣ṽ(k+1)(t, x) − ṽ(k)(t, x)∣, ∣ṽ(k+1)
x (t, x) − ṽ(k)x (t, x)∣ ≤ M̂0 t( 2

3
)

k

,

∣ṽ(k+1)
t (t, x) − ṽ(k)t (t, x)∣, ∣ṽ(k+1)

x t (t, x) − ṽ(k)x t (t, x)∣ ≤ M̂0( 2
3

)
k

,

∣ṽ(k+1)
xx (t, x) − ṽ(k)xx (t, x)∣ ≤ M̂0

√
t( 2

3
)

k

,

(4.143)

for all k ≥ 0 and (t, x) ∈ [0, δ] × R. It follows by (4.143) that the iterative sequence
{ṽ(k)(t, x)} is uniformly convergent in the space Σ(δ). We denote the limit function
by ṽ(t, x), which satisfies the following properties by Lemma 4.1:

∣ṽ(t, x)∣, ∣ṽx (t, x)∣ ≤ M̂0 t, ∣ṽt(t, x)∣ ≤ M̂0 ,
∣ṽx t(t, x)∣ ≤ M̂0 , ∣ṽxx (t, x)∣ ≤ M̂0

√
t, ∀ (t, x) ∈ [0, δ] × R.(4.144)

From (4.144), we know that the limit function ṽ(t, x) is in the space Σ(δ). Based on
this limit function ṽ(t, x) ∈ Σ(δ), the degenerate hyperbolic problem (3.2), (3.3) is
solved by Section 3 to get the variables (R̃, S̃ , θ)(t, x). It is clear that the functions
(ṽ , R̃, S̃ , θ)(t, x) satisfy the initial value conditions (2.6) and the last three equations
in (2.7). Furthermore, due to the construction of the sequence {ṽ(k)} in (4.18), the
limit function ṽ(t, x) obviously satisfies the integral equation

ṽ(t, x)

= ∫
t

0
∫
R

G(t − ς, x − z){ R̃ + S̃
2

− θ − ṽ + θ0 + v′′0 }(ς, z) dzdς.(4.145)

By combining the integral equation (4.145) and the regularity of ṽ(t, x) in (4.144), we
see that the function ṽ(t, x) satisfies the first differential equation in (2.7). Therefore,
the functions (ṽ , R̃, S̃ , θ)(t, x) are the classical solution to the singular Cauchy prob-
lem (2.7), (2.6). In addition, we set

M̂ = 2
θ

M̂0 , M̃ = 3M ,

then apply (4.144) and Theorem 3.1 to acquire

∣ṽ(t, x)∣ ≤ M̂θ(t, x), ∣R̃(t, x)∣, ∣S̃(t, x)∣ ≤ M̃θ2(t, x),
1
2 θt ≤ θ(t, x) ≤ 2θt,

(4.146)

for any (t, x) ∈ [0, δ] × R, which are the desired inequalities in (2.9). This ends the
existence proof of Theorem 2.1.

Next, we consider the uniqueness by estimating the difference of solutions. Assume
that ṽa , ṽb are any two elements in the space Σ(δ), and (ṽa , R̃a , S̃a , θa)(t, x),
(ṽb , R̃b , S̃b , θb)(t, x) are two solutions of (2.7). Set (v̂ , R̂, Ŝ , θ̂)(t, x) = (ṽa − ṽb , R̃a −
R̃b , S̃a − S̃b , θa − θb)(t, x). Performing direct calculations, the functions (v̂ , R̂, Ŝ , θ̂)

https://doi.org/10.4153/S0008414X23000640 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000640


1888 Y. Hu

satisfy the following homogeneous integral inequality system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣v̂(ξ, η)∣ ≤ ∫
t

0
∫
R

G(ξ − ς, z){ 1
2

(∣R̂∣ + ∣Ŝ∣) + ∣θ̂∣ + ∣v̂∣}(ς, η − z) dzdς,

∣v̂x (ξ, η)∣ ≤ ∫
t

0
∫
R

∣ ∂G(ξ − ς, z)
∂z

∣{ 1
2

(∣R̂∣ + ∣Ŝ∣) + ∣θ̂∣ + ∣v̂∣}(ς, η − z) dzdς,

∣R̂(ξ, η)∣ ≤ ∫
ξ

0
{ ∣R̂∣ + ∣Ŝ∣

2t
+ 1

4δ
(∣R̂∣ + ∣Ŝ∣ + ∣θ̂∣) + 1

4
(∣v̂∣ + ∣v̂x ∣)} dt,

∣Ŝ(ξ, η)∣ ≤ ∫
ξ

0
{ ∣R̂∣ + ∣Ŝ∣

2t
+ 1

4δ
(∣R̂∣ + ∣Ŝ∣ + ∣θ̂∣) + 1

4
(∣v̂∣ + ∣v̂x ∣)} dt,

∣θ̂(ξ, η)∣ ≤ ∫
ξ

0
{∣R̂∣ + ∣Ŝ∣ + ∣θ̂∣ + ∣v̂∣}(t, η) dt.

(4.147)

Here, we omit the derivation process of system (4.147), since it is very similar to that of
equations (4.44) and (4.45), and (4.54) and (4.55). According to the facts ṽa , ṽb ∈ Σ(δ),
one employs (4.144) and (4.34) to achieve that the difference functions (v̂ , R̂, Ŝ , θ̂)
satisfy

∣v̂(t, x)∣, ∣v̂x (t, x)∣ ≤ 2M̂0 t,
∣R̂(t, x)∣, ∣Ŝ(t, x)∣, ∣θ̂(t, x)∣ ≤ 2M̂0 t2 ,

∀ (t, x) ∈ [0, δ] × R.(4.148)

Making use of (4.148) at the first step and then repeating the insertion of the right side
of (4.147), we can find that the functions (v̂ , R̂, Ŝ , θ̂) must satisfy the inequalities of
the forms

∣v̂(ξ, η)∣, ∣v̂x (ξ, η)∣, ∣R̂(ξ, η)∣, ∣Ŝ(ξ, η)∣, ∣θ̂(ξ, η)∣ ≤ M̂∗( 2
3

)
�

,(4.149)

for arbitrary integer � ≥ 1 and some positive constant M̂∗. It is obvious by (4.149) that
there holds v̂ = R̂ = Ŝ = θ̂ ≡ 0, which yields the uniqueness of classical solutions of
Cauchy problem (2.7), (2.6). Hence, the proof of Theorem 2.1 is completed.

Based on Theorem 2.1 and the transformation (2.5), one obtains the existence and
uniqueness of classical solutions for the Cauchy problem (2.3), (2.4). Finally, by the
relation θx = (R̃ − S̃)/2θ in (3.123) and the transformation (2.1), it concludes that
the two problems (2.3), (2.4) and (1.7), (1.8) are equivalent. Therefore, we complete
the proof of Theorem 1.1.
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