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The flow behind impulsively started circular and polygonal plates is investigated
experimentally, using particle image velocimetry at several azimuthal angles. Observing
plates accelerating up to a steady Reynolds number Re = 27 000, the three invariants of
the motion, circulation Γ , hydrodynamic impulse I and kinetic energy E , were scaled
against four candidate lengths: the hydraulic diameter, perimeter, circumscribed diameter
and the square root of the area. Of these, the square root of the area was found to best
collapse all the data. Investigating the three-dimensionality of the flow, it is found that,
while a single-plane measurement can provide a reasonable approximation for Γ behind
plates, multiple planes are necessary to accurately estimate E and I .
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1. Introduction
The dynamics of coherent structures around impulsive and steady flat plates are of
particular interest in aero- and hydrodynamic applications, primarily due to their major
contribution to the drag force generated by the body. For flat plates in a steady flow,
studies have focused primarily on the formation and dynamics of a vortex loop to explore
possible drag reduction mechanisms (Fernando & Rival 2016a). Impulsively started plates
are typically used to model biological phenomena, such as flapping wings or fins (Pullin &
Wang 2004; Green & Smits 2008; Beckwith & Babinsky 2009), with the plate accelerated
quickly from rest, and maintained at a desired velocity. To compare the flow properties
around plates of different geometries, universal scaling factors are necessary. Typically,
flow properties such as forces and circulation require scaling factors for velocity and
length. It is accepted that the characteristic velocity should be the steady-state velocity U ;
however, the most appropriate characteristic length is still an open question.
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The natural characteristic length for circular plates is the plate diameter D, and has
successfully scaled vortex ring formation in its wake (Yang, Jia & Lin 2012; Xiang et al.
2021), the drag coefficient (Li et al. 2022) and shear layer properties (Rosi & Rival 2017).
For impulsively started disks, added mass plays a significant role in the generation of
drag force, and hence in the circulation of the flow field and other flow invariants. One
could therefore argue that an appropriate characteristic length should include the area
of the plate, since the mass displaced by the plate would be directly proportional to its
area and the length that the plate is surged. One possible, and often used, length scale
that accounts for the area is the hydraulic diameter: the ratio of a plate’s area to one-
quarter of its perimeter, Dh = 4A/P (Fernando & Rival 2016a,b; Fernando, Weymouth
& Rival 2020; Reijtenbagh, Tummers & Westerweel 2023). For regular polygons, Dh is
equal to a shape’s inscribed diameter; for example, the hydraulic diameter of a circle is
its diameter, while Dh of a square is one side length. Studying circular, elliptical, square
and rectangular plates, Fernando & Rival (2016b) argued that the hydraulic diameter is an
appropriate characteristic length to scale forces and circulation, as it considers both the
area and perimeter of the plate. The argument often given is that the area sets the mass to
be displaced, whereas the perimeter accounts for how the mass is displaced in space. While
peak forces on plates were similar for square and circular plates with equivalent hydraulic
diameters, transient forces were not. Fernando & Rival (2016b) also demonstrated that
for constant hydraulic diameter plates, increasing the aspect ratio resulted in lower peak
forces and earlier vortex pinch-off. Reijtenbagh et al. (2023) used a ‘natural length’
as a characteristic length to predict peak forces on accelerating plates. For the three-
dimensional thin-plate geometries tested, this characteristic length is equivalent to the
hydraulic diameter of a square or circle, or the shorter length of a rectangular plate. They
found that the square root of the non-dimensional acceleration rate was necessary to model
the transient forces on the accelerating plates. The authors noted that a minor adjustment to
the drag coefficient was necessary to scale the peak forces; simply relying on the natural
length and acceleration was insufficient, and an additional scaling factor based on plate
geometry was required.

In contrast, Kaiser, Kriegseis & Rival (2020), who investigated impulsively started
circular disks with sinusoidal perturbations on their perimeter, used the mean diameter
of the plate as a characteristic length. This dimension is similar to, but slightly different
(within 1 %) from, that Higuchi, Anderson & Zhang (1996) used, namely the equivalent
diameter Deq (the diameter of a circle with an equal area) in their flow visualisation
study of polygonal plates. Although only the vortex kinematics were investigated, it
demonstrated that such a scaling could work for impulsively generated flows. These
results also showed that the vortex structure resembles the shape of the plate at early
times. This scaling, which is equivalent to the square root of the area, � = √

A, has
also been used for plates undergoing steady-state motion (Fail, Lawford & Eyre 1959;
Nedić, Ganapathisubramani & Vassilicos 2013a; Kubota & Endo 2022). Of particular
note is that � produced self-similar scalings of turbulent axisymmetric wakes, generated
by non-axisymmetric plates, including squares and fractal plates (Nedić, Vassilicos &
Ganapathisubramani 2013b). This would suggest that the perimeter might not be required
for scaling purposes.

In the vast majority of previous studies, only the circulation of the flow field, as well
as the drag force, have been investigated and scaled with the hydraulic diameter. Of the
remaining two invariants, those being the hydraulic impulse and kinetic energy, only the
kinetic energy for a disk has been investigated (de Guyon & Mulleners 2022). As all three
invariants are based on the same flow field properties, the ideal characteristic length must
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collapse all three invariants. Given the success of � = √
A as a scaling parameter for steady

wakes, its effectiveness for impulsive flows is worth exploring. This length scale is further
justified by its relation to the plate area, which in turn has been shown to scale added mass
effects. Our primary objective, therefore, is to ascertain how well � = √

A collapses all
three invariants of the flow, as compared with the hydraulic diameter. A selection of other
possible characteristic lengths is also considered for comparison.

A secondary objective is to determine how accurately the invariants can be estimated
from a finite number of measurement planes. Higuchi et al. (1996) demonstrated that the
vortex formed on an impulsively started polygon plate follows the shape of the plate in
early times. Therefore, it stands to reason that multiple planes must be used to accurately
determine all the invariants, and hence test the validity of the proposed characteristic
length scaling. This objective is further motivated by the works of Fernando & Rival
(2016b) who mentioned that such measurements would be of interest.

2. Characteristic lengths
For a regular polygon, four candidate length scales can be defined: the square root of area
� = √

A, the hydraulic diameter Dh , the circumscribed diameter Do and the perimeter P .
Definitions, and justification, for the first two were presented earlier, hence we address the
latter two here. Studying vortex loop formation behind square plates, Fernando & Rival
(2016b) noted that the vortex ring had a radius Rc that lay between the inscribed and
circumscribed radii, Dh/2 � Rc �

√
2Dh/2. de Guyon & Mulleners (2021) demonstrated

that the circulation of the vortex ring behind conical shapes is best scaled with the vortex
ring diameter. Since the vortex ring radius scales approximately with circumscribed radii,
we will also consider this length in our scaling analysis. Finally, as Dh considers both
the area and perimeter, we shall also consider the perimeter as a potential length scale,
which can be viewed as a scale of the total circumference of the vortex loop. Remaining
consistent with the denominator of hydraulic diameter, we use P/4 as a potential scale.
For a square plate, this value is identical to the hydraulic diameter and the square root
of the area. Increasing the perimeter of a plate increases the perimeter of the shear layer,
which should lead to more entrained fluid, and, as shown by Kaiser et al. (2020), can lead
to enhanced entrainment into the vortex core.

3. Experimental set-up and methodology

3.1. Choice of regular polygon plates
Five plates are considered in this study, including a circle and four low-order regular
polygonal geometries: hexagon, pentagon, square and triangle. In the limit of infinite sides,
that is to say a circle, Do/� and Dh/� both tend to 2π−0.5, while P/4� tends to

√
π/2.

Both the circumscribed diameter and the perimeter decrease as the number of sides of a
regular polygon increases (for a constant area), while the hydraulic diameter increases.
For a square plate, which is the most common polygon plate used in the literature,
� = Dh = P/4, and the difference with a circle is ≈ 13 %. By exploring a wider range
of polygons, specifically the triangle plate, the difference in Dh and P/4 compared with a
circle increases to ≈ 27 %, while for Do the difference is ≈ 56 %.

3.2. Apparatus
Experiments were performed in an octagonal acrylic tank with an inscribed diameter of
215 mm and 6 mm thick walls, filled with water to a height of 400 mm. A rendering of
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Figure 1. Rendering of the experimental set-up: (a) side view of experiment, (b) top view for a triangular
plate, (c) top view of a square plate.

Shape
√

A (mm) Dh (mm) Do (mm) P/4 (mm)

Circle 35.4 39.9 39.9 31.3
Hexagon 35.4 38.0 43.9 32.9
Pentagon 35.4 37.1 45.9 33.7
Square 35.4 35.4 50.0 35.4
Triangle 35.4 31.1 62.0 40.3

Table 1. Candidate length scales for each plate.

the set-up is provided in figure 1. A flat acrylic plate is pulled by an electric actuator
(a modified version of the Ultramotion ServoCylinder A2 – see Limbourg & Nedić 2021).
The actuator has a maximum range of motion of 320 mm and a maximum speed of
800 mm s−1. The water temperature was measured regularly during the measurements and
was found to be between 19◦C and 21◦C, corresponding to a kinematic viscosity ranging
from 0.98 mm2 s−1 to 1.03 mm2 s−1. For simplicity, the kinematic viscosity of water is
assumed to be 1.0 mm2 s−1 when computing Reynolds numbers.

Each plate was pulled by the actuator from rest at a constant acceleration of
a = 12.5 m−1 s2, until it achieved, and subsequently maintained, a constant velocity of
U = 0.750 ms−1. All plates had an area of A = 1250 mm2 and a thickness of 3 mm. This
plate area corresponds to a blockage ratio of approximately 3.3 %, well below acceptable
blockage limits. Using the square root of the area � = √

A as a characteristic length, the
corresponding Reynolds numbers was Re = 27 000. The non-dimensional acceleration
a∗ = a�/U 2 = 0.785. Plate properties are presented in table 1, showing all candidate
length scales for each plate.

3.3. Particle image velocimetry
Time-resolved planar particle image velocimetry (PIV) was used to measure the velocity
field in the wake of the plates. A cylindrical r−ϕ−x coordinate system is used, where the
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plate travels in the x-direction. A continuous 5 W, 532 nm laser, along with a Powell lens
and various optics, was used to create a 1.5mm thick vertical laser sheet in the r−x plane
of the flow field, passing through the centre of the plate, at a specific azimuthal angle ϕ.
The flow was seeded with 20 µm polyamide particles (specific density of 1.03), with an
average of seven particles per final interrogation window.

The high-speed camera (Photron FASTCAM Mini WX50) was placed to capture
a region of approximately (r, x) ∈ [−40, 40] mm × [−10, 150] mm, where (0, 0) is the
centre of the plate at rest. The high-speed camera has a resolution of 1024 × 2048 pixels
at the operating frame-rate of 1500 s−1. A three-pass cross-correlation algorithm is used,
ending in a 24 × 24 pixel interrogation window, with 50 % overlap. This results in a
86 × 171 vector field with data spacing of �r = �z = 0.91 mm and spatial resolution of
1.88 mm.

3.3.1. Selection of planes
To observe the non-axisymmetric aspects of the vortex loop formation, measurements
were taken in r−z planes at several azimuthal angles, in 5◦ increments. The selection
of which planes to observe was based on the dihedral group Dn of the plate geometry.
Figure 1 provides the reference coordinate system for n-sided polygons, including the first
and last planes measured, ϕo and ϕN , respectively. For odd n, ϕo was defined as an axis
of symmetry, which crosses through one vertex and the midpoint of the opposite side.
For even n, ϕo was defined as a midline axis of symmetry, connecting opposite midpoints
of edges. Due to the assumed Dn symmetry of the flow, measurements were required
only in the range between two sets of reflection axes. For example, in the case of the
square plate, this involved azimuthal angles ϕ ∈ [0◦, 45◦], which also captured the range
of ϕ ∈ [180◦, 225◦]. This information was reflected and repeated to assume Dn symmetry,
to observe the full 360◦ of the flow field. In the case of the circular disk, three azimuthal
angles were selected in 15◦ increments. Measurements at each angle ϕ were repeated
five times for each plate. For all calculations, only measurements behind the plate are
considered. In subsection 4.3, we will further address how the number of measurement
planes affects the results, and determine the minimum number of planes to accurately
characterise the flow.

3.4. Invariants of the flow
For an unbounded axisymmetric flow with no swirl, the principal invariants of the motion
are the circulation, the hydrodynamic impulse and the kinetic energy:

Γ =
∫∫

ωdrdx, I = πρ

∫∫
ωr2drdx, E = πρ

∫∫ (
u2

r + u2
x

)
drdx, (3.1a–c)

where ω is the vorticity of the flow, ρ is the density of the fluid, and ur , ux are the velocity
components in the r− and x− directions, respectively. Although we do not expect the flow
to be axisymmetric, again referring to the observations of Higuchi et al. (1996), these three
properties will remain invariants of the flow under the condition that the integral is taken
about the axis of dihedral symmetry. For such a condition, circulation, kinetic energy and
hydrodynamic impulse (3.1) becomes:

Γ = 1
2π

∫∫∫
ωdrdxdϕ, I = 1

2
ρ

∫∫∫
ωr2drdxdϕ, E = 1

2
ρ

∫∫∫ (
u2

r + u2
x

)
drdxdϕ.

(3.2a–c)
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Figure 2. Non-dimensional invariants for all potential scaling factors: triangle ( ), square ( ), pentagon
( ), hexagon ( ), circle ( ).

4. Results and discussion

4.1. Scaling of circulation, kinetic energy and hydrodynamic impulse
Non-dimensionalised quantities for the circulation Γ , hydrodynamic impulse I and kinetic
energy E , as defined in (3.2), are shown in figure 2, as a function of distance travelled s
in the x-direction. The markers in each plot indicate the location where the plates travel
at constant velocity. We first confirm that the non-dimensional circulation behind circular
disks, normalised by the hydraulic diameter, is consistent with those found in literature
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Length Scale, L Γ E I Range (s/L)

� = √
A 0.031 0.034 0.047 [0, 4.2]

Dh 0.062 0.239 0.277 [0, 3.8]
Do 0.067 0.356 0.315 [0, 2.4]
P/4 0.045 0.222 0.177 [0, 3.7]

Table 2. The NRMSD for each scaled invariant.

(Yang et al. 2012; Fernando & Rival 2016b; de Guyon & Mulleners 2021; Xiang et al.
2021). Focusing on figure 2(a,d,g,j), which shows the circulation scaled by the proposed
lengths, both � and P/4 collapse Γ well. A clear trend is observed for both the hydraulic
diameter and circumscribed diameter: for Dh the normalised circulation increases as the
number of sides on the polygon increases, while the opposite is true for Do.

Figure 2(b,e,h,k) shows the kinetic energy. Of all the proposed lengths, � is the only
one which appears to collapse the data. There is a small deviation for the triangle plate for
s > 3�, which shall be addressed in a later section. As with the circulation, the same trend
with the number of edges is observed for the Dh and Do scaling. The perimeter, which
appeared to collapse the circulation well, now shows a clear trend, with the normalised
energy increasing as the number of sides on the polygon increases.

Finally, figure 2(c,f ,i,l) shows the impulse, where we again see that � collapses the data
better than the other three proposed lengths. Combined, these results indicate that � is the
only length that can scale all three flow invariants.

As a means of quantifying the scaling, the normalised root-mean-squared deviation
(NRMSD) of each scaled invariant is provided in table 2. The NRMSD is calculated
against the mean of the scaled invariant across all plate geometries, and is normalised
by this mean over the observed range. To compare plates on a like-for-like basis, for each
scaling parameter L , scaled invariants were compared only over a range of s/L in which
measurements were available for all plates, as listed in table 2. Consistent with figure 2,
table 2 indicates that � is the best scaling parameter for all three invariants. While the
NRMSD is similar for all length scales applied to Γ , � is notably better at scaling E and I ,
approximately six times better for E and almost four times better for I .

As mentioned earlier, there is a noticeable deviation in the kinetic energy for the triangle
plate for s > 3�. A possible reason for this is that our measurements do not include
out-of-plane velocity measurements. Fernando & Rival (2016b) demonstrated that non-
axisymmetric plate geometries, such as a square, or an ellipse, are associated with earlier
vortex pinch-off and breakdown, which would result in strong out-of-plane velocities. In
figure 3, snapshots of the vorticity field behind the circular, triangular and square plates,
at non-dimensional distances travelled of s/� = {0.5, 1.5, 3.0}, are shown. By s = 3�, a
primary vortex behind the triangle plate is not as evident as it is for the other plates,
which suggests that the primary vortex has broken down. This, in turn, would lead to more
turbulent motion in the wake, which would have higher out-of-plane motions.

4.2. Robustness to flow conditions
While the present experiments were performed for a fixed plate area and acceleration rate,
it is worth considering the robustness of the results, and whether they are generalisable
to other flow conditions. The present experiment was therefore repeated for the circle,
square and triangular plates, having a smaller plate area and a larger acceleration
(A = 625 mm2, � = 25 mm), which corresponds to a smaller Reynolds number, and faster
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Figure 3. Snapshots of vortex evolution behind (a) circular plate, (b) triangular plate at ϕ = 30◦, (c) triangular
plate at ϕ = 0◦, (d) square plate at ϕ = 0◦, (e) square plate at ϕ = 45◦.
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Figure 4. Circulation(a), kinetic energy (b) and hydrodynamic impulse (c) behind triangle ( ), square ( ),
circle ( ). Solid lines denote data associated with Re = 27 000, while dashed lines denote data associated with
Re = 19 000.

non-dimensional acceleration (Re = 19 000, a∗ = 1.33). All other parameters were fixed.
Figure 4 shows non-dimensionalised invariants from both sets of experiments. While it
is not expected that scaled invariants would collapse across different Reynolds numbers
(Fernando & Rival 2016a), figure 4 shows that, with a fixed Reynolds number, the
invariants collapse across several plate geometries using �. Note that at a lower Reynolds
number, the kinetic energy behind the triangular plate is less than that of the square and
circular plates, more noticeably after s/� ≈ 2.5.

4.3. Considerations of multiple azimuthal planes
Although Γ, Eand I are correctly scaled by � for all the plates, it does not imply that their
flow fields are identical, as already demonstrated by Higuchi et al. (1996) and shown in
figure 3. As previously stated, at a given s/� a particular invariant is equal for all plates;
however, the vorticity distribution differs from plane to plane. Take, for example, the
two planes for the triangle shown in figure 3. Indeed, measuring the circulation, kinetic
energy and impulse for the planes shown in figure 3 results in values that are markedly
different from those obtained by considering all the measured planes. Relying on a single
measurement plane would therefore lead to errors. Prior studies on impulsively started flat
plates, however, have typically measured one or two planes at different azimuthal angles.
To approximate the circulation of the flow field, Fernando & Rival (2016b) averaged
the circulation between the primary and secondary axes of rectangular plates of various
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Figure 5. Circulation(a,d), kinetic energy (b,e) and hydrodynamic impulse (c,f ) behind triangle ( ), square
( ), pentagon ( ), hexagon ( ), circle ( ). (a–c) Solid lines represent combined data from all measured
axes, dashed lines denote extrapolated data from measurements at a single plane (Γ1, E1, I1), aligned with ϕo.
(d–f ) Relative error of a single measurement plane.

aspect ratios, AR. For a square plate (AR = 1), these planes should have identical flow
fields. Kaiser et al. (2020), studying plates with a periodic edge, measured two planes,
aligned with the peak and trough of the undulating edge, and averaged this information to
determine the circulation of the velocity field.

Measurements in as many as 13 azimuthal planes were taken for this study, which allows
us to quantify the error in estimating the invariants from a finite number of measurement
planes. Figure 5(a–c) shows the calculated invariants from the ϕo plane compared with
the invariants from all measurement planes. The error appears negligible for circulation,
which would be consistent with Helmholtz’s vortex theorems. For the energy and impulse,
however, discrepancies in both the trend and magnitude of both invariants are visible. The
relative error is quantified by taking the difference between the measured invariant from a
single plane and the value obtained from all measurement planes. The results are presented
in figure 5(d–f ). For s/�, the relative error for the circulation is generally less than 10 %,
with the triangle plate producing the largest error and the higher order polygons, including
the disk, generally showing negligible error. This error rapidly diminishes to within 4 % for
s > 2�. No convergence of the error, neither as a function of distance nor plate geometry,
is observed for the kinetic energy and impulse, with errors as high as 30 % possible.

A similar exercise is repeated for all the measurement planes, and the NRMSD of a one-
plane approximation is calculated over 0 < s/� < 4. The results are presented in figure 6.
For the pentagon, hexagon and disk, measurement of the invariants from any one plane
would have an NRMSD error of less than 8 %. The square and triangle, however, could
have NRMSD as high as 17 %, with the lowest error at ϕ = 22.5◦ for the square, and
approximately ϕ = 12.5◦ and ϕ = 42.5◦ for the triangle.
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Figure 6. The NRMSD of a single-plane approximation for each invariant: circulation (a), kinetic energy (b)
and hydrodynamic impulse (c); triangle ( ), square ( ), pentagon ( ), hexagon ( ), circle ( ).
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Figure 7. The NRMSD of an n-plane approximation for each invariant: circulation (a), kinetic energy (b) and
hydrodynamic impulse (c); triangle ( ), square ( ), pentagon ( ), hexagon ( ), circle ( ).

Finally, we expand our analysis to consider measurements from n evenly spaced planes
(or the nearest measured plane), between ϕo and ϕN , and calculate the NRMSD of an
n-plane approximation. For n = 1, the mean results from selecting any individual plane
are shown in figure 7. Generally, the error is largest for the triangle and square plate, but
the error diminishes as the number of planes increases. For example, behind the square
plate, relying on knowledge at ϕo and ϕN individually will produce an NRMSD in I of
12 %; however, relying on both planes reduces the error to 3 %. For n = 3 equally spaced
planes between ϕo and ϕN , the NRMSD is at most 3 % for all invariants.

5. Conclusions
The flow behind impulsively started polygonal plates was investigated using PIV. The
three invariants of the motions, circulation Γ , hydrodynamic impulse I and kinetic
energy E , were found to best scale as a function of the square root of the area of the
plate � = √

A. This length scale performed better at collapsing the invariants compared
with the hydraulic diameter, which has typically been used in past studies. This scaling
was shown to work at both Re = 27 000 and Re = 19 000, a roughly 40 % change, as well
as at two different acceleration rates (a∗ = 0.785 and a∗ = 1.33). Accounting for the three-
dimensional topology of the flow is important. Although a single-plane measurement can
provide a reasonable approximation for invariants of the motions behind a circular plate,
with errors of less than 1 %, the error generally decreases with the number of edges on
the polygon plate. Estimating the invariants from a single measurement plane for a square
or triangle plate can result in errors as high as 17 %, whereas measurements from three
equally spaced planes between ϕo and ϕN , reduce the error to less than 4 %. The current
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study limits its scope to regular polygons; however, it would be interesting to extend this
work in the future to non-regular geometries, such as rectangles.
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