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Abstract

We show that the isomorphism problems for left distributive algebras, racks, quandles and kei are as
complex as possible in the sense of Borel reducibility. These algebraic structures are important for their
connections with the theory of knots, links and braids. In particular, Joyce showed that a quandle can
be associated with any knot, and this serves as a complete invariant for tame knots. However, such a
classification of tame knots heuristically seemed to be unsatisfactory, due to the apparent difficulty of
the quandle isomorphism problem. Our result confirms this view, showing that, from a set-theoretic
perspective, classifying tame knots by quandles replaces one problem with (a special case of) a much
harder problem.
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1. Introduction

Left distributivity arises in the study of many well-known mathematical objects such
as groups, knots and braids, and also in the study of large cardinal embeddings
in set theory. Specifically, left distributive algebras are structures with one binary
operation ∗ satisfying the left self-distributivity law a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c).
Familiar examples include the conjugation operation on any group and the implication
operation on any Boolean algebra; symmetric spaces in differential geometry provide
further examples [1]. The first nontrivial example of a free left distributive algebra on
one generator is due to Laver [17], who showed that the algebra generated by closing
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a rank-to-rank embedding under the application operation is such an algebra. (The
existence of these embeddings is one of the strongest known set-theoretic axioms.
For more on them, see [17–19], [5] or [6].) Other interesting classes of structures are
obtained by adding further algebraic axioms to the left distributive law. Racks are left
distributive algebras such that, for every a and c in the algebra, there is a unique b such
that a ∗ b = c. Quandles are racks satisfying a ∗ a = a for every element a.

Quandles were rediscovered and named by Joyce in his thesis, published in [13].
(The objects that Joyce called involutory quandles, namely, those satisfying x ∗ (x ∗
y) = y for all x, y in the underlying set, were first considered by Takasaki [23] in
1943 under the name kei, with the kei of reflections in the plane under conjugation
being a central example.) Joyce established many foundational relationships in his
thesis, including those between quandles and group conjugation and quandles and
knots. Indeed, he showed that the equational theory of quandles is precisely the
equational theory of the conjugation operation: any identity true in every group with
its conjugation operation is also true in every quandle, and hence provable from the
quandle axioms.

The three quandle axioms may also be viewed as algebraic versions of the familiar
Reidemeister moves for passing between different regular projections of equivalent
tame knots. One may consequently associate to any tame knot K a quandle Q(K)
generated by the arcs of the knot and with identities dictated by the crossings.
(Tame knots essentially correspond to one’s intuitive notion of finite knots in three-
dimensional space and, in particular, are not assumed to be endowed with an
orientation.) Further, for any (possibly wild) knot K embedded in a space X, Joyce
defined the fundamental quandle Q(K, X) analogously to the fundamental group. For
tame knots Joyce showed that Q(K) can be derived from Q(K, S 3) and, moreover, that
the quandle Q(K) constitutes a complete invariant for K: two tame knots K and K′ are
equivalent if and only if their associated quandles Q(K) and Q(K′) are isomorphic.

However, knot theorists express some dissatisfaction with quandles as knot
invariants, in part, because of the apparent difficulty in determining whether two
quandles are isomorphic. Indeed (as the anonymous referee kindly pointed out to us),
substantial work has been done in obtaining secondary invariants that can be derived
from the knot quandle that are more practical (see, for example, [14] for a survey). Our
result makes rigorous this impression that the quandle itself is difficult to work with:
we show that the isomorphism problem for arbitrary countable quandles is as complex
as possible for algebraic structures, in the sense of Borel reducibility (discussed
below). By contrast, the problem of distinguishing tame knots up to equivalence is
trivial in this context as there are only countably many possibilities. Thus, if the goal
is to simplify the problem of distinguishing different objects, moving to the algebraic
framework of quandles may be viewed as a step in the wrong direction; any reasonable
algorithm for dealing with knot quandles will necessarily use information about them
beyond the mere fact of being countable quandles.

The complexity of classification problems and the study of complete invariants for
structures have emerged as major themes in set theory. Broadly, a classification can be
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thought to assign mathematical objects of one type—considered up to isomorphism or
some other such equivalence relation—to mathematical objects of another type (again,
up to an equivalence relation), where the former act as invariants. Frequently, the
objects in question, both those to be classified and the invariants, can be encoded by
real numbers. For example, countable structures with underlying setN, such as groups,
rings and, indeed, left distributive algebras and quandles can be encoded in a natural
way by sets of finite tuples of natural numbers, and hence by reals. Classification then
amounts to finding a reasonably definable map from the reals encoding the structures
to the reals encoding the invariants that respects the relevant equivalence relations.
The words ‘reasonably definable’ are important here—a nonconstructive proof of the
existence of such a map using, for example, the Axiom of Choice should not be
considered a classification. A natural way to exclude such uninformative maps would
be to require the map to be continuous, but this interpretation is too restrictive to be
practical. For example, it is reasonable to encode reals by elements of 2N, but no such
encoding map can be continuous, by connectedness considerations. The more liberal
constraint that the map be Borel, however, permits almost all constructions that arise
in practice whilst being restrictive enough to obtain meaningful theorems about the
framework.

Classifying structures using Borel maps between sets of encoding reals gives rise
to the notion of Borel reducibility. Given two equivalence relations E and F on real
numbers, we say that E is Borel reducible to F, written E ≤B F, if there is a Borel
function f from R to R such that, for all x and y in R, x E y holds if and only if f (x) F
f (y) holds. Establishing that one equivalence relation is not Borel reducible to another
has been used in a number of cases to show that a classification problem is impossible
to resolve. For example, Farah, Toms and Törnquist [8] used this analysis to show that
unital simple separable nuclear C∗-algebras are not classifiable by countable structures
(note that each adjective makes the theorem stronger), and Foreman, Rudolph and
Weiss [9] showed that ergodic measure-preserving transformations of the unit interval
are not classifiable by countable structures (and, indeed, much more). For more on this
area see, for example, the books of Hjorth [12] and Gao [11].

Against this background it is natural to ask: what is the Borel reducibility
complexity of the isomorphism relation on the class of countable left distributive
algebras? This question was indeed posed to the second author by Matt Foreman.
In this article, we show that it has the maximum possible complexity for an
isomorphism relation on a first-order class of countable structures: in the standard
terminology introduced in the seminal paper of Friedman and Stanley [10],
isomorphism of left distributive algebras is Borel complete. Moreover, the same is true
for the subclasses of racks, quandles and kei (see Section 2 for definitions). We show
directly that isomorphism of kei (Definition 2.1.4) is Borel complete; the result for the
other, more general classes follows. We also observe that the related class of expanded
left distributive algebras satisfying the set of axioms that Laver [18] denoted by Σ

(Definition 2.2) is Borel complete, as this follows from the fact, due to Mekler [20],
that the class of groups is Borel complete.
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Our results add to the list of isomorphism relations for countable structures that
are known to be Borel complete. Other examples include those for graphs, for linear
orders, for trees [10] and for groups [20]. It remains an important open question
whether the isomorphism relation for the class of countable abelian groups is Borel
complete.

Whilst Camerlo and Gao [3] have shown that the isomorphism relation for
countable Boolean algebras is Borel complete, our result for left distributive algebras
does not obviously follow, because Boolean algebras have algebraic structure in
addition to the left distributive implication operation. Furthermore, as a Boolean
algebra with the implication operation is not a rack, our other results are orthogonal to
those of Camerlo and Gao.

We present the technical preliminaries in Section 2, and we give the main result
and corollaries in Section 3. We prove that the class of countable kei, a subclass
of the countable left distributive algebras, is Borel complete. The proof proceeds
by reducing the question to the folklore result that the class of countable irreflexive
directed graphs is Borel complete. We provide an explicit construction of a countable
kei G associated with every countable irreflexive directed graph G, making use of
Kamada’s notion of a dynamical quandle [15]. ( is the Japanese hiragana letter
‘ke’. In the paper [23] introducing them, Takasaki used the kanji character for
kei.) Our construction of clearly constitutes a Borel map; in fact, it is continuous
between the relevant topological spaces (described in Section 2). The main technical
difficulty lies in showing that the map is injective on isomorphism classes: if two kei
associated to graphs are isomorphic, then the graphs from which they were obtained
are isomorphic, that is, if G � G′ , then G � G′. Whilst not every isomorphism ϕ
between such kei G and G′ arises from an isomorphism between the graphs G and
G′, by considering the combinatorics of the kei operations we show that the existence
of such a ϕ guarantees the existence of some isomorphism between G and G′.

We thus show that countable quandles are well above tame knots in the Borel
complexity hierarchy. Meanwhile, Kulikov [16] has recently shown that equivalence of
arbitrary knots—including wild knots with infinitely many crossings—is strictly more
complex than the isomorphism relation on any first-order class of countable structures,
and hence, in particular, the isomorphism relation of countable quandles. This raises
natural questions about the relationship between quandles and knots, which we discuss
along with other related questions in Section 4.

2. Preliminaries

As we will be discussing the related classes of left distributive algebras, racks,
quandles and kei, we begin by giving some intuition for them. These classes of
structures can usefully be understood in terms of the behaviour of the action of left
multiplication by an element of the algebra. For structures with underlying set A and
binary operation ∗, and for each a in A, denote by ma the map from A to A that acts
by multiplication on the left by a, that is, ma(b) = a ∗ b. Then left distributive algebras

https://doi.org/10.1017/S1446788719000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000399


266 A. D. Brooke-Taylor and S. K. Miller [5]

are those for which ma is a homomorphism from A to itself for each a in A. A rack is
a left distributive algebra in which each ma is an automorphism (indeed, Brieskorn [2]
referred to racks as automorphic sets). In a quandle, ma is an automorphism and a is
a fixed point of ma for each a in A. Finally, a kei (plural kei; also called an involutory
quandle) is a quandle such that each ma is its own inverse. For the history of the
nomenclature in this area, see the Preface of [7].

Formally, these structures can be defined using the following axioms.

(i) For every a, b and c in A, a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c).
(ii) For all a and c in A, there is a unique b in A such that a ∗ b = c.
(iii) For every a in A, a ∗ a = a.
(iv) For all a and b in A, a ∗ (a ∗ b) = b.

Definition 2.1. For a set A with one binary operation ∗ (an algebra), we define the
following.

(1) A left distributive algebra is an algebra satisfying axiom (i).
(2) A rack is an algebra satisfying axioms (i) and (ii).
(3) A quandle is an algebra satisfying axioms (i), (ii) and (iii).
(4) A kei is an algebra satisfying axioms (i), (ii), (iii) and (iv).

There are a number of choices to be made in presenting the above definitions.
Instead of using axiom (ii), one can formulate racks using a second operation ∗̄ such
that the function ma : b 7→ a ∗ b is inverse to the function b 7→ a ∗̄ b: formally, one
requires that, for all a and b, a ∗̄ (a ∗ b) = a ∗ (a ∗̄ b) = b holds. This has the advantage
of eliminating the existential quantifier. Whether to consider self distributive structures
as left distributive, like we do here, or right distributive (with axioms (ii) and (iv)
reformulated for right multiplication) is an arbitrary choice. Many relevant references
on racks, quandles and kei use right distributivity; we chose left distributivity in order
to easily view these classes of structures as subclasses of the left distributive algebras.

There is another well-studied left distributive structure, this one with two
operations: the left distributive operation ∗ and another operation ◦ that behaves like
composition. These algebras were first studied by Laver [17] as algebras of large
cardinal embeddings in which the operation ◦ is, in fact, composition.

Definition 2.2. We denote by Σ the following collection of four identities

a ◦ (b ◦ c) = (a ◦ b) ◦ c
(a ◦ b) ∗ c = a ∗ (b ∗ c)
a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c)
(a ∗ b) ◦ a = a ◦ b.

Note that left distributivity follows from the second and fourth identities via
the equalities a ∗ (b ∗ c) = (a ◦ b) ∗ c = ((a ∗ b) ◦ a) ∗ c = (a ∗ b) ∗ (a ∗ c). Dehornoy
refers to algebras satisfying Σ as LD-monoids (for example, in [5] and [6]); we use
Laver’s original phrase ‘algebras satisfying Σ’ to avoid any potential confusion with
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other uses of ‘monoid’. If ◦ is a group operation on A, then the fourth equational
condition of Σ determines that the other operation ∗ must be the conjugation operation
a ∗ b = a ◦ b ◦ a−1. Taking ∗ to denote conjugation in the group in question, it is
straightforward to check that the other identities of Σ are also satisfied, so any group
with its multiplication and conjugation operations is an algebra satisfying Σ.

Laver showed, among other things, that Σ is a conservative extension of the left
distributive law [17]. Thus any free left distributive algebra may be expanded to a
free algebra on the same generators satisfying Σ: any identity on elements of the
free left distributive algebra will hold in the algebra satisfying Σ if and only if it is
a consequence of the left distributive law. For more on this, the linearity of several
orderings on the free left distributive algebra (from the large cardinal hypothesis) and
a normal form for terms in the free left distributive algebra, see [17] and [18]. For
a simpler proof and fuller account of the theory of left distributive algebras, see [19].
Using braid groups, Dehornoy showed within the standard axioms of set theory that the
above-mentioned orderings on the free left distributive algebra are linear [4]; Dehornoy
has also contributed substantially to the literature on algebras satisfying Σ (see, for
example, [5]).

We now move on to preliminaries regarding Borel reducibility. Recall that a subset
of a topological space is Borel if it lies in the least σ-algebra containing the open sets,
and that a function between two topological spaces is Borel if the inverse image of any
Borel set (or, equivalently, of any open set) is Borel. Thus, to discuss Borel reducibility
between classes of countable structures, we first define a topology on each of these
classes. We briefly sketch this definition here, and refer the reader to Section 2.3 of
Hjorth’s book [12] for further details.

We exclusively consider countable structures, and so we may assume that each
structure has underlying setN. Furthermore, all of the classes of structures we consider
are first-order, namely, the structures have finitely many relations and operations, and
the class is defined by formulas involving these relations and operations. The relations
and operations of a structure in one of these classes can thus be represented by a set of
tuples from N. Indeed, we follow the common practice of identifying a directed graph
(N, E) (with vertex set N) with the set {(m, n) |m E n} ⊆ N2, and we may identify an
algebra (N, ∗) with the set {(`,m, n) | ` ∗m = n} ⊂ N3. The space of countable structures
for a given signature with finitely many operation and relation symbols can thus be
identified with a subset of Cantor space via the usual identification of a power set
P(X) with the space of characteristic functions 2X; the set X here is a product of sets
of the form Nk, one for each relation and operation, and is, in particular, countable.
The topology considered on these classes is the standard topology on the Cantor
space. Note that a clopen subbase for this topology is given by the sets defined by
determining a single ‘bit’ from 2X—for example, on the space of countable algebras
with underlying set N, the subbase is the collection as `,m and n vary over N of all
sets either of the form {(N, ∗) | ` ∗ m = n} or of the form {(N, ∗) | ` ∗ m , n}.

We deviate from this conventional framework in one detail: for expositional clarity,
the kei that we construct will have underlying set N × {0, 1} rather than N. However,
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this discrepancy can be easily overcome using the canonical identification ofN × {0,1}
with N via the map (n, i) 7→ 2n + i.

Note that the Cantor space 2X with X countable is a separable topological space
(that is, it has a countable dense set) and may be endowed with a complete metric:
identifying X withN, let d(x, y) = 2−n, where n is least such that x(n) , y(n). Separable,
completely metrisable spaces such as 2X andR are known as Polish spaces. As outlined
in the Introduction, we have the following standard definitions.

Definition 2.3. Let X and Y be Polish spaces, let E be an equivalence relation on X,
and let F be an equivalence relation on Y . We say that E is Borel reducible to F,
written E ≤B F, if there is a Borel function f from X to Y such that, for all x and x′ in
X, x E x′ holds (that is, x is E-equivalent to x′) if and only if f (x) F f (x′) holds.

We say that E is continuously reducible to F, written E ≤c F, if there is a continuous
function f from X to Y such that, for all x and x′ in X, x E x′ if and only if f (x) F f (x′).

If F is the isomorphism relation for a first-order class of countable structures for a
finite signature, each with underlying set N, we say that F is Borel complete if every
other such class has isomorphism relation Borel reducible to F.

Continuous maps are, of course, Borel, and all maps we construct in what follows
will be continuous.

3. The class of kei is Borel complete

It is folklore that the class of countable irreflexive directed graphs is Borel
complete—see Section 13.1 of Gao’s book [11] for a proof of the stronger statement
that the subclass of countable irreflexive symmetric graphs is Borel complete. The
general strategy of this section is to construct a kei from an arbitrary irreflexive directed
graph, and then to show that the resulting kei are isomorphic if and only if the original
graphs are isomorphic. Since the map taking each irreflexive directed graph to the
corresponding kei will be Borel (indeed, continuous), this will establish that the class
of countable kei is also Borel complete. To this end, we shall describe how to build
what Kamada [15] calls a dynamical quandle; the specific dynamical quandles we
construct will, in fact, be kei.

In all of the following we exclusively discuss graphs that are irreflexive and directed,
but, for the sake of the casual reader, we will repeat these hypotheses each time they
are used.

Let A be a set and let τ be a bijection from A to itself. Let ϕ be a map from A to the
power set P(A) such that, for every a ∈ A, ϕ(a) contains a, ϕ(a) is closed under τ and
τ−1, and ϕ(a) = ϕ(τa). We will refer to such maps ϕ as τ-replete. Kamada observes
[15, Theorem 4] that with the operation ∗ defined by

a ∗ b =

b if a ∈ ϕ(b),
τb if a < ϕ(b),

the structure (A, ∗) is a quandle. Kamada uses an equivalent definition with a function θ
defined on τ-orbits rather than our orbit-invariant function ϕ on elements of A. Axioms
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(ii) and (iii) of Definition 2.1 are immediate from the assumptions on ϕ, and (i) follows
by checking cases

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) =


c if a ∈ ϕ(c) and b ∈ ϕ(c),
τc if a ∈ ϕ(c) and b < ϕ(c),
τc if a < ϕ(c) and b ∈ ϕ(c),
τ2c if a < ϕ(c) and b < ϕ(c).

Moreover, if τ is an involution, then, clearly, axiom (iv) also holds and so the quandle
is a kei. Following Kamada, but using our ϕ rather than Kamada’s θ, we call this (A, ∗)
the quandle derived from (A, τ) relative to ϕ. Kamada named the objects so constructed
dynamical quandles, in line with a view of the pair (A, τ) as a dynamical system, and
we shall call those dynamical quandles that are kei dynamical kei.

To encode an irreflexive directed graph G = (V, E) into a kei G, we use the
dynamical quandle construction with underlying set being a pair of copies of the vertex
set V of G. Our involution τ simply switches between the two copies of the vertex set,
and the function ϕ corresponds to choosing the set of neighbours (in one direction) for
each vertex of G, irrespective of which copy of V contains the vertices.

Definition 3.1. Suppose G = (V, E) is an irreflexive directed graph. Let τ be the
involution on V × {0, 1} taking (v, 0) to (v, 1) and (v, 1) to (v, 0) for every v in V . Let
ϕ̄G be the function from V to P(V) defined by u ∈ ϕ̄G(v) if and only if u E v or u = v.
Let ϕG from V × {0, 1} to P(V × {0, 1}) be the function obtained from ϕ̄G by ignoring
second coordinates: (u, i) ∈ ϕG(v, j) if and only if u ∈ ϕ̄G(v), that is, if and only if u E v
or u = v. Note that ϕG is τ-replete. The kei G associated to G is the quandle derived
from (V × {0, 1}, τ) relative to ϕG, and we denote the operation on G by ∗G.

Thus, G is a kei on underlying set V × {0,1}with operation ∗ such that (u, i) ∗ (v, j)
equals (v, j) if there is an edge from u to v in G or if u = v, and (u, i) ∗ (v, j) is (v, 1 − j)
otherwise.

We now begin working towards Theorem 3.5, which says that the dynamical kei G

and G′ constructed from graphs G and G′ are isomorphic if and only if the graphs G
and G′ are isomorphic. First, we prove the existence of a particular, useful involution
of the kei G.

Lemma 3.2. For every irreflexive directed graph G with underlying set V and for every
W ⊆ V, the function IW : G → G, defined by

IW(v, j) =

(v, j) if v ∈ W,
(v, 1 − j) if v < W,

is an involution of G.

Proof. By inspection, IW is a bijection and, moreover, (IW)2 is the identity map. To see
that IW respects the quandle operation ∗ of G, we must verify that IW((u, i) ∗ (v, j)) =
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IW(u, i) ∗ IW(v, j). Note that, for each (v, j) ∈ G, either both of (u, 0) and (u, 1) are in
ϕG(v, j) or neither is, so

(u, i) ∗ (v, j) = (IW(u, i)) ∗ (v, j) =

(v, j) if (u, i) ∈ ϕ(v, j),
(v, 1 − j) if (u, i) < ϕ(v, j).

So

IW((u, i) ∗ (v, j)) =

IW(v, j) if (u, i) ∈ ϕ(v, j),
IW(v, 1 − j) if (u, i) < ϕ(v, j),

and

IW((u, i)) ∗ IW(v, j) =


IW(v, j) if (u, i) ∈ ϕ(IW(v, j)) = ϕ((v, j)),
(v, 1 − j) = IW(v, 1 − j) if v ∈ W and (u, i) < ϕ((v, j)),
(v, j) = IW(v, 1 − j) if v < W and (u, i) < ϕ((v, j)).

Thus it is established that IW is a homomorphism, and is indeed an involution of G. �

A slicker if less direct proof of Lemma 3.2 is to consider the graph G′ on V ∪̇ {v0}

(where ∪̇ denotes disjoint union) with the restriction G′ � V of G′ to the vertices V
being G, and taking v0 E v if and only if v is in W for each v in V . Then the restriction

G′ � V × {0, 1} of G′ to V × {0, 1} is simply G, and mv0 � V × {0, 1} = IW .
The kei constructed in Definition 3.1 are, in fact, quite general dynamical kei.

Indeed, the only extra constraint we need on dynamical kei to get a kei G associated
to a graph G is that the involution τ has no fixed points.

Definition 3.3. A kei (A, ∗) is called a folded kei1 if there is an involution τ of A with
no fixed points and a τ-replete function ϕ such that (A, ∗) is the quandle derived from
(A, τ) relative to ϕ.

By definition, the kei G associated to any graph G is a folded kei. As alluded to
above, we also have a converse to this.

Proposition 3.4. Every folded kei is isomorphic to a kei of the form G for some
irreflexive directed graph G.

Proof. Let (A, ∗) be a folded kei and, in particular, suppose (A, ∗) is the quandle derived
from (A, τ) relative to ϕ for τ an involution of A without fixed points and ϕ is a τ-
replete function from A to P(A). Choose a subset V of A such that, for each pair {a, τa}
of elements of A, exactly one of a and τa is in V , and express A as the disjoint union
A = V ∪ {τv | v ∈ V}. For each v in V , let ϕ̄(v) denote the set ϕ(v) ∩ V; since (A, ∗) is the
quandle derived from (A, τ) relative to ϕ, we have that ϕ̄(v) is the set of u in V such that
u ∗ v = v (this ϕ̄ will be ϕ̄G, as in Definition 3.1, for the graph G we now construct).
Take the directed graph G on vertex set V with edge relation defined by u E v if and
only if u ∈ ϕ̄(v) holds and u , v. Then it is straightforward to check that the map from

G to A taking (v, 0) to v and (v, 1) to τv is an isomorphism of kei. �

1In baking, one folds ingredients to achieve complete mixing with minimal disruption.
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We will now state the main result.

Theorem 3.5. For irreflexive directed graphs G and G′ and the associated kei G and
G′ , G � G′ if and only if G � G′ .

Proof. One direction is a fairly straightforward observation.

Remark 3.6. Isomorphic irreflexive directed graphs have isomorphic associated kei.

Proof of Remark. Recall that a graph isomorphism is a bijection between vertices that
preserves both the edge relation and the failure of the edge relation. Given graphs
G = (V, E) and G′ = (V ′, E′) with an isomorphism h : G→ G′ between them, u E v in
G if and only if h(u) E′ h(v) in G′, so u is in ϕ̄G(v) if and only if h(u) is in ϕ̄G′(h(v)).
Therefore, by construction of the quandles G and ′

G, h induces an isomorphism h
from G to G′ taking (u, i) to (h(u), i). Indeed, for vertices u and v in G, we have that
(u, i) ∈ ϕG(v, j) holds if and only if (h(u), i) ∈ ϕG′(h(v), j) holds. The verification that
x ∗G y = z if and only if h (x) ∗G′ h (y) = h (z) follows immediately. �

For the converse, we will show that any two isomorphic kei of the form G and G′

admit an isomorphism induced by an isomorphism of the underlying graphs G and
G′. Not all kei isomorphisms between G and G′ arise from graph isomorphisms;
indeed, Lemma 3.2 gives continuum many others. Also, if the graph K is the complete
irreflexive directed graph on V , then K is the trivial kei on V × {0, 1}, with (u, i) ∗
(v, j) = (v, j) for all (u, i) and (v, j). Of course, there are many automorphisms of
the trivial kei that are not of the form given by Lemma 3.2 or induced by a graph
isomorphism: any permutation of the underlying set V × {0, 1} is an automorphism of
this kei. We will see in the claim that follows that any kei isomorphism ρ between
folded kei splits into two parts, one being of the type described by Lemma 3.2 and
one given by an automorphisms of a trivial kei. Each of these can be converted into
a partial isomorphism of the desired form, and the pieces can be recombined to yield
the graph isomorphism required for the theorem. To aid with intuition, for any graph
G = (V, E) with associated kei G = (V × {0, 1}, ∗G), we refer to V × {0} ⊂ G as the
bottom of G and to V × {1} ⊂ G as the top of G. Also, for any v in V , we refer to
each of (v, 0) and (v, 1) as the twin of the other.

Proposition 3.7. Suppose G = (VG, EG) and G′ = (VG′ , EG′) are irreflexive directed
graphs such that there is a kei isomorphism ρ from G to G′ . Then there is bijection
f from VG to VG′ such that, viewed as a map from G to G′, f is a graph isomorphism.

Proof of Proposition 3.7. For any graph H = (V,E), we split the underlying set V into
two components, which we call the ‘fixed points’ and the ‘moving points’ based on
their behaviour in the quandle H . The purely graph-theoretic definitions of the fixed
points and moving points is simpler, so we give them first: the fixed points are those
which are complete for inward edges, and the moving points are those that are not.
That is,

FH = {v ∈ V | ∀u ∈ V(u = v or u E v)}.
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From the quandle point of view, the fixed points may, equivalently, be defined as those
v for which left multiplication by any element of H does not swap (v, 0) with (v, 1),
that is,

FH = {v ∈ V | ∀(u, i) ∈ H[(u, i) ∗H (v, 0) = (v, 0)]}.

The moving points are then those not in FH , that is, MH = V r FH .
When we come to define the function f : VG → VG′ it will be piecewise, giving

separately the restrictions of f to the fixed points FG and the moving points MG. In
fact, these restrictions will themselves be bijections from FG to FG′ and from MG to
MG′ , as is clearly necessary for f to be a graph isomorphism.

We are given an isomorphism ρ : G → G′ . Let us denote by ρV (v, i) and
ρI(v, i), respectively, the first and second components of ρ(v, i): that is, ρ(v, i) =

(ρV (v, i), ρI(v, i)).
First, we define f on the moving points. If v is in MG, then there is some (u, i) in

G that moves (v, 0). That is, the value of (u, i) ∗G (v, 0) is not (v, 0), and hence, by the
definition of ∗G, it must be that (u, i) ∗ (v, 0) is (v, 1) and, furthermore, that (u, i) ∗ (v, 1)
is (v, 0). Applying the kei isomorphism ρ, we have that ρ(u, i) ∗ ρ(v, 0) = ρ(v, 1) holds,
and by injectivity ρ(v, 1) , ρ(v, 0). By the definition of ∗G′ , the first components of
ρ(v, 0) and ρ(v, 1) must be equal. We take f (v) to be this value: f (v) = ρV (v, 0) =

ρV (v, 1).
Clearly, f � MG ( f restricted to MG) so defined is injective since ρ is a bijection.

Moreover, f � MG surjects onto MG′ . Indeed, for w in MG′ and (t, i) in G′ such
that (t, i) ∗G′ (w, 0) , (w, 0), we have ρ−1(t, i) ∗G ρ−1(w, 0) , ρ−1(w, 0), and so the first
component of ρ−1(w, 0) lies in MG and has image w under f .

To complete the definition of f , it remains to give the value of f (v) for those v in
FG. Let v0 be an element of FG. Unlike for elements of MG, it need not be the case that
ρV (v0, 0) is the same as ρV (v0, 1). However, since ρ is surjective, we may find v1 in FG

and iv1 in {0, 1} such that ρV (v1, iv1 ) = ρV (v0, 1) and ρI(v1, iv1 ) = 1 − ρI(v0, 1): that is, if
ρ(v0, 1) is on the bottom of the kei, then (v1, iv1 ) is chosen such that ρ(v1, iv1 ) is its twin
on the top, and, conversely, if ρ(v0, 1) is on the top of the kei, then (v1, iv1 ) is chosen
such that ρ(v1, iv1 ) is its twin on the bottom. Likewise, we may find v−1 in FG and iv−1

in {0, 1} such that ρV (v−1, 1 − iv−1 ) = ρV (v0, 0) and ρI(v0, 0) = 1 − ρI(v−1, 1 − iv−1). We
may inductively extend our definitions, obtaining for all k in Z a vertex vk in VG and
ivk in {0, 1} (with iv0 = 0) such that ρV (vk, 1 − ivk ) = ρV (vk+1, ivk+1 ) and ρI(vk, 1 − ivk ) ,
ρI(vk+1, ivk+1 ). Note that if there is some k such that vk = v0, then ivk defined in this way
will be equal to iv0 , so our notation iv j gives a well-defined function from vertices v j

in FG to members of {0, 1}. Indeed (construing for now iv j as a function of j rather
than v j), consider the first repetition in the sequence (v0, iv0 ), (v0, 1 − iv0 ), (v1, iv1 ), . . . .
Clearly, if (vk, ivk ) is distinct from all of its predecessors in the sequence, then so
too is (vk, 1 − ivk ). Thus, the first repetition in the sequence must be of the form
(vk, ivk ). If (vk, ivk ) = (v j,1 − iv j ) for some j < k, then, of course, ρ(vk, ivk ) = ρ(v j,1 − iv j ),
so swapping between the top and bottom of the kei, we have from the inductive
construction that ρ(vk−1, 1 − ivk−1 ) = ρ(v j+1, iv j+1 ). But then, by the minimality of k as
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giving a repetition, we must have j = k − 1, so (vk, ivk ) = (vk−1, 1 − ivk−1 ), which violates
the fact from the construction that ρ(vk, ivk ) , ρ(vk−1, 1 − ivk−1 ).

The set {v j | j ∈ Z} may be finite or infinite, but the corresponding subset
{ρV (v j, iv j ) | j ∈ Z} has the same cardinality: (v j, iv j ) = (vk, ivk ) if and only if ρ(v j, iv j ) =

ρ(vk, ivk ). Note also that, for each k, the left multiplication maps mρ(vk ,1−ivk ) and
mρ(vk+1,ivk+1 ) on G′ are the same since ρ(vk, 1 − ivk ) and ρ(vk+1, ivk+1 ) have the same
first component. Therefore m(vk ,1−ivk ) and m(vk+1,ivk+1 ) are the same on G. It follows that
vk and vk+1 have outward edges to the same other vertices in G, as well as to each other,
and by induction the same is true of all members of the set {vk | k ∈ Z}; likewise, all
members of the set {ρV (vk, ivk ) | k ∈ Z} have edges to one another and to the same other
vertices.

The set FG may be expressed as the disjoint union of such ‘cycles’ of vertices
{vk | k ∈ Z} by choosing a starting vertex v0 in each cycle. With such choices made,
we, in particular, have an assignment of iv in {0, 1} to each v in FG, and we may
define f on FG by f (v) = ρV (v, iv). Clearly, with this definition, f � FG is a bijection
from FG to its image. Moreover its image is all of FG′ : if (t, i) ∗G′ (w, 0) = (w, 0)
for all (t, i) in G′ , then ρ−1(t, i) ∗G ρ−1(w, 0) = ρ−1(w, 0) for all (t, i) in G′ , that is,
(u, j) ∗G ρ−1(w, 0) = ρ−1(w, 0) for all (u, j) in G.

We have thus constructed a bijection f : VG → VG′ , and it remains to show that f
is, in fact, a graph isomorphism from G to G′. So let u and v be vertices of G. If v is
in FG, then f (v) is in FG′ , so both u EG v and f (u) EG′ f (v) hold. Suppose v is in MG.
If u is in FG, we have iu in {0, 1}, as defined above; otherwise take iu = 0. Then

(u, iu) ∗G (v, 0) =

(v, 0) if u EG v or u = v,
(v, 1) otherwise,

so

ρ(u, iu) ∗G ρ(v, 0) =

ρ(v, 0) if u EG v or u = v,
ρ(v, 1) otherwise.

Since the first component of ρ(u, iu) is f (u) and the first component of ρ(v, 0) is f (v),
we have that f (u) E′G f (v) if and only if u EG v, which completes the proof that f is a
graph isomorphism from G to G′. �

With Proposition 3.7, we have shown that, whilst not every isomorphism of kei
G and G′ need arise from a graph isomorphism, such an isomorphism can be

used to define a graph isomorphism of G and G′, which, by the remark, gives rise
to a (potentially different) isomorphism of G and ′

G. This completes the proof of
Theorem 3.5. �

Theorem 3.8. The classes of kei, quandles, racks, left distributive algebras and
algebras satisfying Σ are each Borel complete.

Proof. Implicit in the statement that these classes of structures are Borel complete is
that we are considering the classes of countable such structures with underlying set N,
with each class topologised as described in Section 2.
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The map : G 7→ G from the class of graphs to the class of kei is not only Borel
but is, in fact, continuous. Recall from Section 2 that the subbasic open sets in the
space of graphs are of the form either {G |m E n} or {G |m 6E n}. Similarly, for quandles
with underlying set N, the subbasic open sets are of the form {(N, ∗) | u ∗ v = w} or
{(N, ∗) | u ∗ v , w}. Then, by the construction of our dynamical kei, it is clear that the
inverse image of any open set is open (as we defined ∗ in terms of the edge relation
of E). Hence the map taking G to G is continuous and so certainly Borel, and
so, since the class of graphs is Borel complete, it follows that the class of kei is Borel
complete. Moreover, since the kei form a subclass of the classes of quandles, of racks
and of left distributive algebras, the map likewise shows that the classes of quandles,
of racks and of left distributive algebras are Borel complete.

Because the language of Σ is different from that of left distributive algebras, a
different argument is needed to show that the class of algebras satisfying Σ is Borel
complete. For this, we use the result of Mekler [20] that the class of groups is Borel
complete (see [10, Section 2.3] for a sketch of the argument). As discussed after
Definition 2.2, every group endowed with its conjugation operation and its group
operation satisfies Σ. The inclusion map (G, ◦) 7→ (G, ◦, ∗), where ◦ denotes the group
operation and ∗ denotes conjugation, is easily seen to be continuous and so is certainly
Borel. Of course, since the group operation is one of the two operations in the language
of Σ, and the other is conjugation which is determined by the group operation, two
groups are isomorphic if and only if their corresponding structures satisfying Σ are
isomorphic. We thus have that group isomorphism Borel reduces to isomorphism as
algebras satisfying Σ, and therefore that the latter is Borel complete. �

4. Concluding remarks

We have shown that, in the sense of Borel reducibility, the complexity of the
isomorphism problem for countable quandles is well above that of tame knots.
As mentioned in the introduction, Kulikov [16] has shown, in contrast, that the
equivalence relation of arbitrary knots is strictly greater in complexity than any first-
order isomorphism relation. This intermediate status of quandle isomorphism relative
to knot equivalence raises a number of questions.

Question 4.1. (a) Is there a natural characterisation of those quandles arising from
tame knots? (b) If so, can the characterisation be used to simplify the computation of
whether two such quandles are isomorphic?

While it is clear that the quandles associated with tame knots are finitely generated,
it seems unlikely that this completely characterises them.

Even though wild knots are more complex in Borel reducibility terms than quandles,
and the fundamental quandle map associates a quandle to every knot, this does not
imply that all countable quandles can be obtained from a knot.

Question 4.2. Which quandles can be obtained as the quandle associated with a
(possibly wild) knot?
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Question 4.2 suggests the following one, which was first posed to us by Marcin
Sabok.

Question 4.3. Is there a natural class of knots broader than the tame knots that is
completely classified by their associated quandles?

A standard way to think of a knot is as the image of an embedding of the circle S 1

into three-dimensional Euclidean space R3. One possible approach to Question 4.3 is
to generalise by increasing the number of components and thus by considering links
rather than knots, where a link is the image of an embedding of multiple copies of the
circle into R3. In particular, Joyce’s definition [13] of the fundamental quandle is also
applicable to links. Call a link in R3 locally tame if its intersection with every compact
subset of R3 is tame (that is, a finite union of pieces of tame knots). The fundamental
quandle of a link with infinitely many components will not be finitely generated, so
this will be a proper extension of the tame knot case if the following question has a
positive answer.

Question 4.4. Is the fundamental quandle a complete invariant for locally tame links
in R3?

A different formalisation of the question of complexity is in a category-theoretic
setting. Just as the class of graphs is maximal in the sense of Borel completeness (and,
indeed, our proof made use of this fact), the category of graphs is universal in the
sense that every algebraic category fully embeds into it [22, Theorem 5.3]. There are
many such universality results for other categories—see, for example, [22]—raising
the following natural question.

Question 4.5. Does the category of graphs fully embed into the category of left
distributive algebras?

Of course, the same question may also be asked of the category of racks, the
category of quandles and the category of kei, in each case taking homomorphisms
as the morphisms of the category. We note that the construction of G from G in
Theorem 3.5 is not even functorial in a natural way, since graph homomorphisms
need not preserve nonedges. A potentially more problematic obstacle, however,
is the fullness requirement—we have seen that dynamical kei admit many more
homomorphisms than simply those arising from graph homomorphisms, at least in
our construction. On the other hand, even if it turns out that the category of graphs
cannot be fully embedded into the category of kei because kei always admit many
homomorphisms, there may be interesting minimal-nonfullness, maximal-complexity
results to be obtained in this direction. As an analogy, there can be no full embedding
of the category of graphs into the category of abelian groups, as any two abelian groups
A and B admit at least one homomorphism between them (the zero map) and the
set of homomorphisms between them Hom(A, B) naturally forms an abelian group.
Nevertheless, Przeździecki [21] has shown that there is an embedding A from the
category of graphs into the category of abelian groups such that Hom(AG,AG′) is
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the free abelian group generated by Hom(G,G′)—the best possible result given these
constraints.

Camerlo and Gao’s result that isomorphism of countable Boolean algebras is Borel
complete shows that Ketonen’s classification of countable Boolean algebras uses
objects for complete invariants that ‘cannot be improved in an essential way’ [3]. In
contrast, our result illustrates the need for finer analysis of quandles as knot invariants.
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