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The Coniveau Filtration on K1 for Some
Severi–Brauer Varieties

Eoin Mackall

Abstract. We produce an isomorphism Em ,−m−1
∞

≅ Nrd1(A⊗m) between terms of the K-theory
coniveau spectral sequence of a Severi–Brauer variety X associated with a central simple algebra A
and a reduced norm group, assuming A has equal index and exponent over all ûnite extensions of its
center and that SK1(A⊗i) = 1 for all i > 0.

Notation and conventions
● We work over a ûxed base ûeld k.
● A variety is a separated scheme of ûnite type over a ûeld.
● For a prime p, we write vp(−) for the p-adic valuation.

1 Introduction

Some K-cohomology groups were studied, and computed, for Severi–Brauer vari-
eties associated with algebras of square-free degree in [MS82]. As an application of
these computations one can compute the Chow groups of these Severi–Brauer vari-
eties and ûnd they are torsion free. Chow groups of arbitrary Severi–Brauer varieties
X have been studied in depth and, in certain degrees, are known to be torsion free
(e.g., CH0

(X) is free trivially; CH1
(X) is torsion free by [Art82]; CH0(X) is torsion

free by [CM06]; if X is associated with an algebra whose index equals its exponent,
then CH2

(X) is torsion free by [Kar98]).
he Chow groups of Severi–Brauer varieties are not always torsion free. heir

torsion subgroups have also been studied in depth. In [Kar98], Karpenko shows
that if X is a Severi–Brauer variety associated with an algebra having diòering in-
dex and exponent, CH2

(X) sometimes contains a nontrivial torsion subgroup that
surjects onto torsion in the graded group associated with the coniveau ûltration on
the Grothendieck group G0(X). In a diòerent direction, Merkurjev [Mer95] has
shown there is sometimes nontrivial torsion in the Chow groups of Severi–Brauer
varieties that occurs in codimension 3 or higher; this torsion cannot be detected by
Karpenko’s methods, since it is contained in the kernel of the canonical epimorphism
from CH(X) onto the graded group associated with the coniveau ûltration on the
Grothendieck group G0(X).

Recently,Karpenko computed the Chow ring of a Severi–Brauer variety associated
with a central simple algebrawith equal index and exponent under the assumption the
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Chow ring is generated by Chern classes [Kar17]. In this computation, the Chow ring
turns out to be torsion free. Without the assumption that the Chow ring is generated
by Chern classes, any nontrivial torsion in the Chow ring of such a Severi–Brauer
variety will come from nontrivial diòerentials in the K-theory coniveau, or Brown–
Gersten–Quillen, spectral sequence.

his article stemmed from exploring the possibility of torsion in theChow group of
a Severi–Brauer variety associatedwith an algebra Awith index equal to its exponent.
Hopefully, it will be of use in further study of this problem.

Section 2 is mainly for reference and introducing notation. In Section 3 we prove
a series of lemmas that will be used for themain results of Sections 4 and 5.

In Section 4, we compute the Em ,−m−1
∞ terms of the K-theory coniveau spectral se-

quence for any Severi–Brauer variety X associated with an algebra A satisfying the
following properties: the index of A is a power of a prime p, the exponent of A equals
the index of A over all ûnite extensions of the center of A, and the reduced White-
head groups SK1(A⊗r) = 1 vanish for all r ≥ 1. his result is a direct generalization
of the known computation for the terms Em ,−m

∞ , and the proof of the main theorem
manages to describe both simultaneously. hemain result is heorem 4.2; its proof is
elementary, but it requires some involved arguments comparing the reduced norms
of certain tensor powers of a given algebra.

In Section 5,we show how to prove the general case stated in the abstract using the
primary case of Section 4.

2 On the K-theory of a Severi–Brauer Variety

hematerial in this sectionwas developed in detail byQuillen [Qui73]. heK-theory
coniveau spectral sequence, or the Brown–Gersten–Quillen spectral sequence, is a
fourth quadrant cohomological spectral sequence

E p ,q
1 = ∐

x∈X(p)
K−p−q(k(x)) Ô⇒ G−p−q(X),

where X(p) denotes the set of codimension p points of X. For a variety X, the spectral
sequence converges, and for a regular variety X, one can identify the E2-terms with
K-cohomology groups

E p ,q
2 = Hp

(X ,K−q) Ô⇒ G−p−q(X).

Recall that the K-cohomology groups Hp(X ,Kq) are deûned to be the homology of
a complex

Hp
(X ,Kq) = H( ∐

x∈X(p−1)
Kq−p+1(k(x))Ð→

∐
x∈X(p)

Kq−p(k(x))Ð→ ∐
x∈X(p+1)

Kq−p−1(k(x))) .

In particular, the groups Hp(X ,Kq) = 0 whenever p > q or p > dim(X).
he coniveau ûltration is the ûltration appearing in the abutment of the K-theory

coniveau spectral sequence. If X is a regular variety (which is all that isworkedwith in
this note), then there are natural isomorphisms Ki(X) ≅ Gi(X), and by transporting
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the ûltration on G-theory to K-theory, we get a coniveau ûltration on the groups
Ki(X). he j-th term of this ûltration on Ki(X) is denoted Ki(X) j below. We write
Ki(X) j/ j+1 for the quotient Ki(X) j/Ki(X) j+1.

heK-theory of a Severi–Brauer variety X associatedwith a central simple algbera
Awas computed by Quillen in terms of the tautological bundle ζX on X.

heorem 2.1 ([Qui73, §8, heorem 4.1]) Let X be the Severi–Brauer variety of a
central simple algebra A. hen for every i ≥ 0 the group homomorphism

deg(A)−1

⊕
j=0

Ki(A⊗ j
)Ð→ Ki(X)

induced by the exact functor that takes a le� A⊗i-module M to ζ⊗i
X ⊗A⊗i M is an

isomorphism.

Crucial in our computationwill be the reduced norm subgroups of a central simple
k-algebra. For this, let L be a Galois splitting ûeld for A. he ûrst reduced norm of A
is deûned to be the uniquemap making the following diagram commutative:

K1(AL) K1(L)

K1(A) K1(k).

det

Nrd1

he vertical arrows in this diagram are induced by extension of scalars. Similarly we
deûne the zeroth reduced norm of A to be themap Nrd0 ∶ K0(A)→ K0(k) taking the
class of an A-module M to the k-vector space of dimension rdimA(M), the reduced
dimension of M. For i = 0, 1 we will o�en use the abbreviation Nrdi(Ki(A)) ∶=

Nrdi(A).
he kernel of the map Nrdi is called the i-th reducedWhitehead group and is de-

noted SKi(−). Note that the group SK0(A) necessarily vanishes, since Nrd0 is injec-
tivewith image the subgroup generated by the index of A, ind(A)Z ⊂ K0(k) = Z. he
group SK1(A) does not vanish in general.
For any ûnite ûeld extension E of k, the extension of scalars map

ρ∗E/k ∶ Ki(X)Ð→ Ki(XE)

is the sum of themaps Ki(A⊗ j)→ Ki(A⊗ j
E ) in the decomposition ofheorem 2.1. In

the other direction, the pushforward ρE/k∗ ∶ Ki(XE)→ Ki(X) is given by the sum of
the norm maps Ki(A⊗ j

E ) → Ki(A⊗ j) in the same decomposition. If i = 0, then the
norm map is characterized componentwise by having image the number

ρE/k∗(K0(AE)) = [E∶k]
rdimAE (M)

rdimA(N)
⊂ K0(A) = Z,

where M ,N are simple modules under AE ,A, respectively. he image of the norm
maps when i = 1 are more complicated to describe. In the simple situation we work
in, these images can be described fairly explicitly. We do this in detail in the next
section.
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3 Relations Between Reduced Norms

In this section we ûx a central simple algebra A over k, and we set X to be the Severi–
Brauer variety associated with A.

Our ûrst objective is to describe the image of the reduced norm using splitting
ûelds of A.

Lemma 3.1 Let A be a central simple algebra. hen for every ûnite ûeld extension L
of k and for i = 0, 1, the following diagram commutes:

Ki(AL) Ki(L)

Ki(A) Ki(k),

Nrd i

NAL/A NL/k

Nrd i

where both NAL/A and NL/k are the norm maps induced by restriction of scalars.
Moreover, the subgroup Nrdi(A) is generated by the images NL/k(Ki(L)), as L

varies over all ûnite extensions of k that split A. his can be reduced further. he sub-
group Nrdi(A) is generated by the images NL/k(Ki(L)), as L varies over all ûnite ex-
tensions of k that aremaximal subûelds of the underlying division algebra of A.

Proof he commutativity of the diagram is clearwhen i = 0, and iswell known (see
[GS06, Proposition 2.8.11]) when i = 1.

he only claim that needs to be proved is the last one: the subgroup Nrdi(A) is
generated by norms ofmaximal subûelds of the underlying division algebra of A. In
the case i = 0, the claim follows from the fact that such a ûeld has degree ind(A) over
k, so we are le� proving the case i = 1.
For the proof when i = 1, we’ll use Morita invariance to reduce to the case A is

a division algebra, and we’ll use [GS06, Proposition 2.6.3], which says Nrd1(x) =

NK/k(x) for any element x of a maximal subûeld K contained in A. Any element x
of A is contained in somemaximal subûeld (indeed, if F is amaximal element in the
collection of subûelds of A containing k(x), then the centralizer of F in A is F itself;
this is known to be equivalent to being amaximal subûeld), so taking the composition

A×↠ K1(A)
Nrd1
ÐÐ→ K1(k)

of the natural surjection and the reduced norm gives the result by the commutativity
of the given diagram. ∎

he K-theory of the Severi–Brauer variety X relies heavily on the tensor powers of
the algebra A due to the decomposition ofheorem 2.1. Because of this, we’ll need to
investigate certain relations between the reduced norms Nrdi(A) andNrdi(A⊗r) for
varying r ≥ 0. It will be necessary in our formulation of these relations to introduce
some condition on the index of A over ûnite extensions. From now on we’ll say that
an algebra A satisûes condition (C) if

(C) ind(AE) = exp(AE) for any ûnite extension E/k.
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Example 3.2 Any central simple algebra of square-free index satisûes condition (C)
trivially. Any central simple algebra over a ûnite extension of Qp satisûes condition
(C). Central simple algebras over function ûelds of surfaces, with base a separably
closed ûeld, having index coprime to the characteristic of the base also satisfy condi-
tion (C); see [dJ04].

Moreover, if a central simple algebraA satisûes condition (C), then so do the tensor
powers of A. his is because, given a central simple algebra A with equal index and
exponent, the indices of all tensor powers of A can be explicitly determined. If the
index of A was a power of a prime p, say pn , then A⊗p has index pn−1; cf. [Kar98,
Example 3.9]. he general case follows easily from this one.

Remark 3.3 here exists a cyclic algebra A of index and exponent 4, over a ûeld
F of characteristic 2, along with a ûnite purely inseparable ûeld extension E/F with
[E∶F] = 2 and such that ind(AE) = 4 and exp(AE) = 2 (cf. [Per41,heorem 4]).

Lemma 3.4 Let A be a central simple k-algebra with ind(A) = pn for some n ≥ 0
and let i = 0 or i = 1. hen

Nrdi(A⊗ j
) = Nrdi(A⊗pvp( j)

)

for any j > 0.

Proof By Lemma 3.1 the subgroup Nrdi(A⊗ j) ⊂ Ki(k) is generated by the norm
subgroups NL/k(Ki(L)), as L varies over all ûnite extension of k splitting A⊗ j . he
set of such ûelds is the same for A⊗ j and A⊗pvp( j) , which proves the claim. ∎

Lemma 3.5 Let Abe a central simple k-algebrawith ind(A) = pn = exp(A) for some
prime p and some n ≥ 0. Assume that A satisûes condition (C). hen for i = 0, 1 the
containments

Nrdi(A⊗pa
) ⊃ Nrdi(A⊗pb

) ⊃ Nrdi(A⊗pa
)
pa−b

hold for all a ≥ b ≥ 0.

Proof By Lemma 3.1, the subgroup Nrdi(A⊗ j) ⊂ Ki(k) is generated by the norm
subgroups NL/k(Ki(L)), as L varies over all ûnite extension of k splitting A⊗ j . If such
an L would split A⊗pb , then L would also split A⊗pa . Hence we have the inclusion
Nrdi(A⊗pb) ⊂ Nrdi(A⊗pa).

To show the inclusion Nrdi(A⊗pa)pa−b ⊂ Nrdi(A⊗pb), we work in two cases. If
a ≥ n, then A⊗pa is split; if L is amaximal subûeld of the underlying division algebra
of A⊗pb , then [L∶k] = pn−b (see Example 3.2) and

Nrdi(A⊗pa
)
pa−b

⊂ pn−bKi(k) = NL/k(Ki(k)) ⊂ Nrdi(A⊗pb
).

Otherwise, when a < n, let L be a maximal subûeld of the underlying division al-
gebra of A⊗pa . hen L has degree [L∶k] = pn−a , the algebra AL has exponent di-
viding pa and, since we are assuming condition (C), index dividing pa . If E is a
maximal subûeld of the underlying division algebra of A⊗pb

L , then [E∶L] divides pa−b .
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Again by Lemma 3.1, we have the inclusion

NE/k(Ki(E)) ⊂ Nrdi(A⊗pb
),

since E splits A⊗pb . It follows that for any element x of Ki(L) ⊂ Ki(E), we have that

NE/k(x) = NL/k(NE/L(x)) = NL/k(x[E∶L]) = NL/k(x)[E∶L]

is contained in Nrdi(A⊗pb). he proof is then complete, sincewe’ve shown the collec-
tion of elements NL/k(x)pa−b , as L varies over all maximal subûelds of the underlying
division algebra of A⊗pa and x varies over Ki(L), are contained in Nrdi(A⊗pb), and
these form a generating set by Lemma 3.1. ∎

Lemma 3.6 Let Abe a central simple k-algebrawith ind(A) = pn = exp(A) for some
prime p and some n ≥ 0. Assume that A satisûes condition (C). hen for i = 0, 1, there
is containment

Nrdi(A⊗a)(
a
b) ⊂ Nrdi(A⊗b)

for all a ≥ b > 0.

Proof he proof continues by working in cases: assuming either vp(a) ≤ vp(b) or
vp(a) > vp(b). In the ûrst case, vp(a) ≤ vp(b), we appeal to Lemmas 3.4 and 3.5 to
ûnd

Nrdi(A⊗a) = Nrdi(A⊗pvp(a)
) ⊂ Nrdi(A⊗pvp(b)

) = Nrdi(A⊗b).
In the second case, vp(a) > vp(b),we appeal to the second containmentofLemma 3.5.
hat is to say, by Lemma 3.7 below, we ûnd that vp((

a
b)) ≥ vp(a) − vp(b) so that

Nrdi(A⊗a)(
a
b) ⊂ Nrdi(A⊗pvp(a)

)
pvp(a)−vp(b)

⊂ Nrdi(A⊗pvp(b)
) = Nrdi(A⊗b)

by applying Lemma 3.4 for the ûrst inclusion, Lemma 3.5 for the second inclusion,
and Lemma 3.4 for the last equality. ∎

he lemma needed for the above is the following.

Lemma 3.7 If a > b and vp(a) > vp(b), then vp((
a
b)) ≥ vp(a) − vp(b).

Proof More generally, for any pair of integers a > b, one can show that a
(a ,b) divides

the binomial coeõcient (ab). he claim follows from noting that

vp(
a

(a, b)
) = vp(a) − vp((a, b)) = vp(a) − vp(b).

First, write (a, b) = na +mb with n,m both integers. hen
(a, b)
a

(
a
b
) =

(na +mb)
a

(
a
b
) = n(

a
b
) +

mb
a

(
a
b
) = n(

a
b
) +m(

a − 1
b − 1

)

with the latter sum an integer. ∎

To go from an algebra of p-primary index to an arbitrary central simple algebra A,
seeProposition 5.1,wewill need a characterization ofNrdi(A) in terms of the primary
components of Awhen A is division. For this, we ûx a primary decomposition

A ≅ Ap1 ⊗ ⋅ ⋅ ⋅ ⊗ Aps
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with p1 , . . . , ps the primes dividing ind(A) (such decompositions exist with the fac-
tors unique up to isomorphism, see [GS06, Proposition 4.5.16]). For each algebra Ap j

we ûx amaximal subûeld Fp j , necessarily of degree a power of p j over k. We set F p j

to be a composite of the ûelds Fp1 , . . . , Fp j−1 , Fp j+1 , . . . , Fps with the j-th ûeld being
omitted, contained in some ûxed algebraic closure L.

Lemma 3.8 In the notation above, and for i = 0, 1,

Nrdi(A) =
s
⋂
j=1

Nrdi(AF p j )

inside of Ki(L).

Proof If s = 1, the lemma is trivial, so we can assume that s > 1.
he inclusion ⊂ is immediate from Lemma 3.1, since a ûeld E splitting A also nec-

essarily splits each of the AF p j .
For the other inclusion, ⊃,we let x be an element of the intersection. By Lemma 3.1

this means we have equalities

x = NE1,1/F p1 (y1,1) ⋅ ⋅ ⋅NE1,r1 /F p1 (y1,r1)

⋮

x = NEs ,1/F ps (ys ,1) ⋅ ⋅ ⋅NEs ,rs /F ps (ys ,rs)

for some elements y j ,k of ûelds E j ,k splitting AF p j , respectively. It follows from these
equalities that x is an element of B = Ki(F p1) ∩ ⋅ ⋅ ⋅ ∩ Ki(F ps). If i = 0, then B is
just ind(A)Z. If i = 1, then, since by construction the degrees [F p j ∶k] are divisible by
all primes dividing ind(A) except for p j , we have gcd([F p1 ∶k], . . . , [F ps ∶k]) = 1 and
B = k×.
Applying the norm, from F p j to k, to the corresponding expression above for x,

we ûnd the elements

NF p j /k(x) = NE j,1/k(y j ,1) ⋅ ⋅ ⋅NE j,r j /k(y j ,r j)

are contained in Nrdi(A), for every 1 ≤ j ≤ s, since each E j ,k splits AF p j and so
necessarily also splits A. Since x is already contained in Ki(k), taking the norm also
yields equalities

NF p j /k(x) = x[F
p j ∶k] .

Finally, as x is in the subgroup spanned by these powers, x is contained in Nrdi(A),
completing the proof. ∎

4 The Coniveau Filtration on Ki for a p-primary Algebra

We ûx aprime p throughout. We ûx a central simple algebraAwith index ind(A) = pn

and exponent exp(A) = pn for some n > 0. We write X for the Severi–Brauer variety
of A.

his section describes the groups Ki(X) j and Ki(X) j/ j+1 for j ≥ 0 assuming A
satisûes condition (C) and either i = 0 or, i = 1 and SK1(A⊗r) = 1 for all r ≥ 1. In
the case i = 0, this result was shown in [Kar98, Proposition 3.3] (condition (C) is not
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needed in this result). Although the only new result is when i = 1, the proof does not
depend on this assumption.

We note that the assumption SK1(A⊗r) is trivial for all powers r is another way
of stating that K1(X) → K1(XL) is injective for a splitting ûeld L of A. he reason
the latter, more natural, assumption is not given is because it is o�en easier to check
that the groups SK1(A⊗r) are trivial. Note that the analogous statement is also true
replacing i = 1 with i = 0 in the above, so that the map K0(X) → K0(XL) is always
injective.

Lemma 4.1 Suppose B is an arbitary central simple algebra and let Y be the Severi–
Brauer variety of B. Let L be a splitting ûeld for B. hen, for i = 0, 1, the pullback
Ki(Y)→ Ki(YL) is injective if and only if the groups SKi(B⊗ j) are trivial for all j ≥ 0.

Proof he diagram

Ki(B⊗r
L ) Ki(L)

Ki(B⊗r) Ki(k)

Nrd i

Nrd i

π∗r

commutes, where the vertical arrows are the extension of scalars maps. Since the
right-vertical arrow is always an injection, we ûnd SKi(B⊗r) = ker(π∗r ). he claim
then follows from heorem 2.1 by summing over all r ≥ 0. ∎

As in the above lemma, let B be an arbitrary central simple algebra and let Y be the
associated Severi–Brauer variety. If L is a splittingûeld for B, thenK0(YL) is generated
as a group by the powers γ i , from i = 0 to deg(B) − 1, of the element γ representing
the class of OYL(−1). By Lemma 4.1, the pullback K0(Y) → K0(YL) is injective, and
we identify K0(Y) with its image in K0(YL). Similarly, the group K1(YL) is a sum of
groups L×γ i as i ranges from i = 0 to i = deg(B) − 1. If SK1(B⊗r) = 1 for all r ≥ 1,
then the pullback K1(Y) → K1(YL) is injective and we identify K1(Y) with its image
in K1(YL).

heorem 4.2 Assume A satisûes condition (C). Let L be a splitting ûeld for A. If i = 0,
or if i = 1 and SK1(A⊗r) = 1 for all r ≥ 1, then there is an equality (with notation as
above)

Ki(X) ∩Ki(XL)
j
= Nrdi(A⊗ j

)(γ − 1) j
+ ⋅ ⋅ ⋅ +Nrdi(A⊗deg(A)−1

)(γ − 1)deg(A)−1

for all 0 ≤ j ≤ deg(A) − 1. For j < 0, or for j > deg(A) − 1, the groups Ki(X) j = 0
vanish.

Proof he claim when j < 0 or j > deg(A) − 1 is immediate: the ûrst of these is
by deûnition; the second follows from the fact (γ − 1)deg(A) = 0 in K0(X). Recall
(cf. [Pey95, Proposition 3.6]), the coniveau ûltration on Ki(XL) is given by

Ki(XL)
j
= Ki(A⊗ j

L )(γ − 1) j
+ ⋅ ⋅ ⋅ +Ki(A⊗ deg(A)−1

L )(γ − 1)deg(A)−1 ,

where γ = [O(−1)] is the class of the tautological line bundle in K0(XL). Under the
pullback Ki(X) → Ki(XL), the groups Ki(A⊗ j) are identiûed with the subgroups
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Nrdi(A⊗ j) ⊂ Ki(L). Hence, we identify

Ki(X) = Nrdi(k) ⋅ 1 +Nrdi(A)γ + ⋅ ⋅ ⋅ +Nrdi(A⊗ deg(A)−1
)γdeg(A)−1 .

We claim

(∗) Ki(X) ∩Ki(XL)
j
= Nrdi(A⊗ j

)(γ − 1) j
+ ⋅ ⋅ ⋅

+Nrdi(A⊗ deg(A)−1
)(γ − 1)deg(A)−1 .

he proof utilizes the following lemmas.

Lemma 4.3 Let A and L be as in heorem 4.2. Fix an element b in Nrdi(A⊗k) with
k ≥ 0 and i = 0 or i = 1. hen for any sequence of integers (n j) j≥0 an equality

bxk
=∑

j≥0
a j(x + n j)

j

inside of the free Ki(L)-module Ki(L)[x] implies a j is contained in Nrdi(A⊗ j) for all
j ≥ 0.

Proof By assumption ak = b is contained in Nrdi(A⊗k). By descending induction
on j, we assume that each a j is contained in Nrdi(A⊗ j) for all j larger than some
ûxed l ≥ 0. hen by expanding the right side of the given equality and comparing
coeõcients yields

a l = −
k

∑
j=l+1

n j−l
j (

j
l
)a j ,

which is contained in Nrdi(A⊗l) due to Lemma 3.6 applied to each (
j
l)a j . ∎

Lemma 4.4 Keeping notation as above, we have

∑
j≥0

Nrdi(A⊗ j
)γ j

=∑
j≥0

Nrdi(A⊗ j
)(γ − 1) j

inside of Ki(XL).

Proof Setting n j = −1 for all j ≥ 0 in Lemma 4.3, and setting x = γ, shows the
forward containment. Setting n j = 1 for all j ≥ 0, and setting x = γ − 1, shows the
reverse containment. ∎

Continuing with the proof ofheorem 4.2, we have

Ki(X) ∩Ki(XL)
j
= ∑

n≥0
Nrdi(A⊗n

)γn
∩∑

n≥ j
Ki(L)(γ − 1)n

= ∑
n≥0

Nrdi(A⊗n
)(γ − 1)n

∩∑
n≥ j

Ki(L)(γ − 1)n

=∑
n≥ j

Nrdi(A⊗n
)(γ − 1)n ,

as claimed. Here we used Lemma 4.4 to go from the ûrst line to the second. ∎
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Corollary 4.5 Let L be an algebraic closure of k. Assume that A satisûes condition
(C). Let i = 0 or i = 1 and assume SKi(A⊗r) = 1 for all r ≥ 1. hen we have an equality

Ki(X)
j
= Ki(X) ∩Ki(XL)

j

for all j ≥ 0.

Proof It’s clear we have the inclusion Ki(X) j ⊂ Ki(X) ∩Ki(XL)
j . By heorem 4.2,

there is an equality

Ki(X) ∩Ki(XL)
j
= Nrdi(A⊗ j

)(γ − 1) j
+ ⋅ ⋅ ⋅ +Nrdi(A⊗deg(A)−1

)(γ − 1)deg(A)−1 .

To show the reverse containment Ki(X)∩Ki(XL)
j ⊂ Ki(X) j , we go by induction

on the index. hat is to say: if E is a ûnite extension of k splitting A, then we have
containment Ki(XE) ∩ Ki(XL)

j ⊂ Ki(XE) j and for our induction hypothesis, we
assume this containment holds for all ûelds E with ind(AE) < ind(A).

If E is a ûnite extension of k with ind(AE) < ind(A), then, using our induction
hypothesis and the assumption A satisûes condition (C), we have

Ki(X)
j
= ρ∗L/k(Ki(X)

j
)

⊃ ρ∗L/k(ρE/k∗(Ki(XE) j
))

= ρE/k∗( Nrdi(A⊗ j
E )(γ − 1) j

+ ⋅ ⋅ ⋅ +Nrdi(A⊗deg(A)−1
E )(γ − 1)deg(A)−1) .

Expanding a product (γ − 1)r and taking ρE/k∗ shows that

ρE/k∗(a(γ − 1)r
) = NE/k(a)(γ − 1)r .

Since all elements ofNrdi(A⊗r) are norms from ûnite extensions E of k splitting A⊗r

by Lemma 3.1, it follows that Ki(X)∩Ki(XL)
j is generated by the groups on the right

of the containment above. ∎

Corollary 4.6 Let i = 0, or i = 1 and SKi(A⊗r) = 1 for all r ≥ 0. Assume that A
satisûes condition (C). hen there is an isomorphism

Ki(X)
j/ j+1

≅ Nrdi(A⊗ j
)

for all 0 ≤ j ≤ deg(A) − 1. For other j these groups vanish.

Proof his follows immediately from heorem 4.2 and Corollary 4.5. ∎

5 The Coniveau Filtration on Ki for a Central Simple Algebra

In this section we assume B is a central simple algebra with ind(BE) = exp(BE) for
all ûnite ûeld extensions E/k. We let Y be the Severi–Brauer variety of B.

Proposition 5.1 If i = 0, or if i = 1 and SK1(B⊗r) = 1 for all r ≥ 0, then there is an
isomorphism

Ki(Y)
j/ j+1

≅ Nrdi(B⊗ j
)

for all 0 ≤ j ≤ deg(B) − 1. For other j these groups vanish.
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Proof Using a result of Karpenko ([Kar00, Example 10.20]), we can assume that B
is a division algebra throughout the proof.
Fix a primary decomposition

B ≅ Bp1 ⊗ ⋅ ⋅ ⋅ ⊗ Bps

with p1 , . . . , ps the primes dividing ind(B). We can assume that s > 1, as the result
has been proved above otherwise. For each algebra Bp j ,we ûx amaximal subûeld Fp j ,
necessarily of degree a power of p j over k. We set F p j to be a composite of the ûelds
Fp1 , . . . , Fp j−1 , Fp j+1 , . . . , Fps , the j-th ûeld being omitted, contained in some ûxed al-
gebraic closure L of k

We ûrst observe an equality

Ki(Y) ∩Ki(YL)
j
= Nrdi(B⊗ j

)(γ − 1) j
+ ⋅ ⋅ ⋅ +Nrdi(B⊗deg(B)−1

)(γ − 1)deg(B)−1 .

Indeed, by Lemma 3.8 and the explicit description of Ki(Y) given by Lemma 4.1, we
have

Ki(Y) = Ki(YF p1 ) ∩ ⋅ ⋅ ⋅ ∩Ki(YF ps )

inside of Ki(YL). Hence, we get equalities

Ki(Y) ∩Ki(YL)
j

= Ki(YF p1 ) ∩ ⋅ ⋅ ⋅ ∩Ki(YF ps ) ∩Ki(YL)
j

=
s
⋂
r=1

(Ki(YF pr ) ∩Ki(YL)
j)

=
s
⋂
r=1

(Nrdi(BF pr )(γ − 1) j
+ ⋅ ⋅ ⋅ +Nrdi(B⊗ deg(B)−1

F pr )(γ − 1)deg(B)−1)

= Nrdi(B⊗ j
)(γ − 1) j

+ ⋅ ⋅ ⋅ +Nrdi(B⊗deg(B)−1
)(γ − 1)deg(B)−1 .

A careful reading of the proof of Corollary 4.5 shows that the assumption A has
p-primary index was unnecessary. Hence, the corollary can be applied to B as well to
show Ki(Y) = Ki(Y) ∩Ki(YL)

j and the result follows. ∎

Acknowledgment I’d like to thank an anonymous referee forhelpful advice and sim-
pliûcations to the proof ofheorem 4.2.
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