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Abstract
This article quantifies the aggregate effects of firing costs in a model of firm dynamics where firm-level
productivity is determined by innovation. In the model, the productivity distribution is endogenous, and
thus, potentially affected by policy changes, allowing the model to capture both the static (allocative effi-
ciency) and dynamic effects (changes in the distribution of firms’ productivity) of firing costs. The model
is calibrated to match key features of firms’ hiring and firing behavior using firm-level data from Spanish
nonfinancial firms. I show that firing costs equivalent to 2.5 monthly wages produce a 4% loss in aggregate
productivity relative to the frictionless economy. The aggregate productivity losses rise to more than 10%
when firing costs are equivalent to 1 year’s wage. I show that a model with a standard AR(1) productivity
process can only generate between 45 and 50% of these losses. Overall, the results suggest that ignoring the
effects of frictions on the dynamics of firms’ productivity can substantially underestimate their effects.
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1. Introduction
There is a large body of research studying the productivity losses from firing costs. Following
Hopenhayn and Rogerson (1993), most of this literature typically quantifies the effects of firing
costs by looking at the efficiency in the allocation of labor across firms given a productivity distri-
bution. However, if firm growth is a risky process, firing costs would be a critical component of the
cost of failure, affecting the incentives of firms to grow, and potentially shaping the distribution
of firms’ productivity itself. By assuming an exogenous process for firm’s productivity, previous
literature cannot capture such dynamic effects, and thus, may underestimate the aggregate impact
of firing costs. This article fills the gap by quantifying the aggregate implications of firing costs in
a model in which the dynamics of firms’ productivity are endogenous.

I extend the standard firm dynamics model of Hopenhayn and Rogerson (1993) by incorpo-
rating an innovation technology that allows firms to have partial control over the probability of
innovation—as in Atkeson and Burstein (2010)—and over its outcome. I model innovation build-
ing on the “control cost” approach borrowed from the game theory literature. In particular, firms
in themodel can choose, at a cost, the probability of innovation and, in case innovation occurs, the
distribution of the next period’s productivity. In models á la Atkeson and Burstein (2010), firms
do not face the risk of a very negative shock—key to account for the effects of firing costs—unless
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the size of the productivity step is sufficiently large, which would generate unrealistic produc-
tivity dynamics.1 My approach can generate a sufficiently large downwards risk while keeping
the dynamics of productivity realistic and allowing for a cleaner identification of the relevant
parameters.

I estimate the parameters of the model by matching key moments regarding firm growth and
firing and hiring behavior, using firm-level data from Spanish nonfinancial firms. The Spanish
economy is of particular interest for this analysis. The Spanish labor market, considered as one
of the most inefficient labor markets in Europe, is characterized by a high structural unem-
ployment rate, a high volatility of employment, and an intensive use of temporary employment.
Productivity in Spain is one of the lowest among developed countries. In 2010, Spanish Total
Factor Productivity was 9% lower than it was in 1990, while for the USA and Germany it was 20%
higher. This article connects the underperforming of Spanish productivity with the distortions of
its labor market.

The model closely matches the targeted moments. In the baseline economy, small firms
innovate more frequently, their innovations are more aggressive (as measured by the expected
productivity growth) and more volatile (as measured by the standard deviation of productivity
growth). These predictions imply that small firms grow faster and that their growth rates are more
volatile. This is consistent with the empirical evidence.2

Using the calibrated model, I ask, “What are the aggregate effects of firing costs?”. To address
this question, I compare the baseline economy with a firing cost parameter equivalent to its cal-
ibrated value of 2.5 monthly wages, with one in which firing costs are set to zero. I find that
aggregate productivity is 3.7% lower in the baseline economy than in the frictionless one. This is
a large effect compared to what has been found in the previous literature, given the magnitude of
firing costs in mymodel. For instance, Da-Rocha et al. (2019) find a 4.2% fall in aggregate produc-
tivity for a level of firing costs equivalent to 1 year’s wage. When I set the firing costs to 1 year’s
wage, the fall in aggregate productivity in my model is the calibrated more than 10%.

The main reason behind this larger fall in aggregate productivity in my model is that pro-
ductivity dynamics are endogenous. The firm dynamics literature typically assumes that firm
productivity follows an exogenous process. Nevertheless, firms in reality have the option to under-
take a large number of actions to improve their profit prospects, which I refer to as “innovation”.3
This means that, although partially stochastic, firm’s growth is driven by firm’s actions, whichmay
be affected by economic conditions such as labor regulation. In particular, if innovation is costly
and its outcome uncertain, firms incentives to make such investments will depend on the cost of
failure, that is affected by the magnitude of firing costs. As a result, firms may optimally decide to
invest less in innovation, reducing their productivity growth and the average firm productivity in
the economy.

In Figure 1, I plot some suggestive evidence on this negative relationship between firing costs
and innovation. In particular, I plot the relationship between the strictness of employment protec-
tion legislation taken from the OECD, and two measures that fit well the broad definition of inno-
vation used in my paper: R&D expenditures (left panel) and firms’ spending on online marketing
(right panel). In both cases, countries with high levels of firing costs show lower spending on inno-
vation.4 This is what happens in the model. In the baseline economy, with firing costs equal to the
calibrated value of 2.5 monthly wages, investment in innovation is 2.7% lower than in the friction-
less economy, making the average firm-level productivity to drop by 1.4%. When firing costs are
of 1 year’s wage, innovation expenses and average productivity fall by 8% and 4.5%, respectively.

To quantify how much of the estimated aggregate effects of firing costs is accounted for by
endogenous changes in the dynamics of firms’ productivity, I simulate an economy with positive
firing costs but fixing the innovation choices from the frictionless economy. This makes the law
of motion of productivity to be unaffected by changes in the firing cost. In this new economy,
the fall in aggregate productivity is of 2.4%, substantially lower than in a model with endogenous
innovation where firms can adjust their innovation choices. This means that 36% of the drop in
aggregate productivity is explained by changes in the dynamics of productivity.
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Figure 1. Firing costs and firms’ investments in growth-generating activities. Source: (i) Employment Protection refers to the
sum of the OECD strictness of employment protection legislation indicators for permanent and temporary contracts; (ii)
Private expenditures in R&D is taken from the OECD Main Science and Technology Indicators Database; (iii) Expenditures in
Online Marketing is taken from Greece (2016).

However, the economy with exogenous innovation is still not comparable to a standard firm
dynamicsmodel with the typical AR(1) process for productivity. The reason is that in the economy
with exogenous innovation, the law of motion of productivity is not affected by firing costs but
differs across firms, as it is taken from the endogenous choices of firms in the frictionless economy.
To quantitatively asses the contribution of these nonlinearities in accounting for the overall fall in
aggregate productivity, I repeat the main experiment of the paper imposing an AR(1) process for
firm productivity.5 Thus, the only difference between this new economy and the economy with
exogenous innovation is that in the latter the law ofmotion of productivity is different for different
firms. Making the dynamics constant across firms reduces substantially the impact of firing costs.
In particular, a firing cost of 2.5 monthly wages generates a fall in aggregate productivity of 1.64%
relative to the frictionless economy, raising to 5.5% when firing costs are of 1 year’s wage. These
effects represent between 45% and 50% of the aggregate productivity fall in the baseline economy.

In sum, this article uses a firm dynamics model with endogenous productivity dynamics to
quantify the aggregate impact of firing costs. In the model, firms are able to affect the distri-
bution of next period’s productivity, which implies that the law of motion of productivity is
different across firms and can potentially be affected by firing costs. Both features contribute
significantly to the aggregate effects of firing costs. These findings suggest that models with exoge-
nous productivity processes may largely underestimate the effects of frictions/policies such as
firing cost.

2. Literature review
There is a large literature that evaluates the role of different policies and frictions in account-
ing for aggregate productivity differences across countries [Guner et al. (2008), Restuccia and
Rogerson (2008), Hsieh and Klenow (2009), Bartelsman et al. (2013), Hsieh and Klenow (2014)
and García-Santana et al. (2016)]. While many of these papers measure policy distortions through
“wedges”, some others specify particular policies.6 One of the policies that has attracted more
attention is employment protection, starting with the analysis of firing costs of Hopenhayn
and Rogerson (1993). The distortion introduced by firing taxes on firms’ hiring and firing
decisions is well established in the literature, both empirically [Haltiwanger et al. (2014)] and
theoretically [Bentolila and Bertola (1990)]. These distortions prevent firms from operating at
their optimal scale, worsening the allocation of labor across firms, and damaging aggregate
productivity.

The literature studying the impact of firing costs on aggregate productivity typically finds mod-
erate effects [Hopenhayn (2014)]. However, aggregate productivity losses may be larger when the
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productivity distribution of firms is endogenous, and thus, potentially affected by the policy. The
reason is that firing costs may not only distort the allocation of workers but also the incentives of
firms to invest in risky growth-generating activities—such as innovation, marketing campaigns,
launching new products, etc.—changing the distribution of productivity itself. This additional
channel, which is the focus of this paper, was first explored by Da-Rocha et al. (2019), who study
the aggregate implications of firing costs in a model with size-dependent productivity dynamics.
My paper differs from theirs in two margins. First, I consider a model with a continuum of poten-
tial firm size, while they consider a model where firms can either be small or large. Second, in
their paper, the law of motion of firms’ productivity is size-dependent, but the difference between
large and small firms is exogenous. In my paper, large and small firms will have different laws of
motion for their productivities endogenously, as a result of different innovation choices which are
affected by the introduction of firing costs.

More generally, my paper relates to a recent literature that explores how frictions affect aggre-
gate productivity not only through the efficiency in the allocation of resources, but also through a
direct effect on the distribution of firm-level productivity itself. For instance, López-García et al.
(2007) andMukoyama andOsotimehin (2019) endogenizes the way in which frictions affect firm’s
productivity dynamics by including an innovation technology similar to the one in Grossman and
Helpman (1991), Aghion and Howitt (1992) and Atkeson and Burstein (2010). Ranasinghe (2014)
extends the Hopenhayn and Rogerson (1993) framework by allowing firms to invest in innova-
tion, which changes the parameters of a flexible parametric distribution driving the next period’s
distribution. Gabler and Poschke (2013) study the effects of firing costs, among other frictions,
using a firm dynamics model in which firms can engage in experimentation and discard negative
productivity shocks.

My paper contributes to this literature by making the distribution of firm-level productivity
entirely driven by firm choices, including the degree of uncertainty faced by firms. This has two
main implications. On the one hand, it allows my model to generate a sufficiently large down-
ward risk while keeping the firms’ size distribution realistic. This is particularly relevant for the
analysis of firing costs since this friction introduces asymmetric adjustment costs. On the other
hand, the parameters governing the innovation process have a clear interpretation and can be
identified using moments on firm size and hiring and firing choices. The innovation process
used in this paper is also computationally convenient as it generates closed-form solutions for
innovation choices. Thus, the model can be used to study the effects of different policies and fric-
tion accounting for their effects on the productivity distribution of firms without adding model
complexity.

Finally, my paper is related to the game theory literature from which I borrow the “control
cost” approach used to model productivity dynamics. This modeling device is used to model
equilibria in which agents optimally make errors under the assumption that precision in decision-
making is costly. In this approach, choices are conceived as a random variable over a feasible
set of alternatives—which in my setting are the different levels of productivity—, and the cost is
given by the precision of this random variable. In Costain et al. (2022), we implement this idea to
model price and wage adjustment decisions in an otherwise standard new-keynesian framework
with heterogeneous agents. Turen (2019) models costly information acquisition in a price-setting
problem using a “control cost” framework. To the best of my knowledge, my paper is the first that
uses this approach to model the dynamics of firm-level productivity.

3. The model
This section presents an extension of the workhorse general equilibrium model of Hopenhayn
and Rogerson (1993) in which I introduce an innovation technology that allows firms to invest in
both the probability and the outcome of innovation.
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3.1 Overview
The economy is populated by a continuum of firms of unit mass, characterized by a prof-
itability factor, denoted by d, and a number of workers hired in the past, n. The term d ∈D≡
{d1, d2, . . . , dD} is a factor that increases revenues for given inputs, so it captures both productiv-
ity (i.e. technology) and demand factors (i.e. taste). For simplicity in the exposition, I will refer to
d as firm’s productivity throughout the rest of the paper.

Given an initial state (d, n), firms decide on hirings/firings, produce, and collect profits. Then,
they are hit by an exit shock. With probability 1− δ ∈ (0, 1), the firm continues in the market and
makes innovation decisions. With probability δ, the firm exists and it is immediately replaced by
a new firm. Entrants start with no workers and an initial productivity drawn from log (d0)∼ η0

with E[d0]= μ0.

3.2 Firms
Firms produce a homogeneous good, and its price is normalized to 1. This good is used both to
consume and to invest in innovation. It is produced using a decreasing returns to scale technol-
ogy, y(d, n)= d1−γ nγ , where γ ∈ (0, 1) the degree of returns to scale. Firms’ operating profits are
given by

�(d, n, n′) = y(d, n′) − wn′ − κFwmax{0, n− n′}, (1)
where n′ is the number of workers involved in production in this period, w is the wage rate, and
κFw is the per-worker firing cost. Using this profit function, the value of a firm with productivity
d and n workers is given by

V(d, n) = max
n′ �(d, n, n′) + β(1− δ)I(d, n′) + βδVE(n′), (2)

where β ∈ (0, 1) is the subjective discount factor, I(d, n) is the value of a firm with state (d, n)
before the innovation stage, and VE(n)= −wκFn captures the value of exit for a firm with n
workers.7

3.3 Productivity dynamics
After production and the realization of the exit shock, firms enter the innovation stage. At this
stage, firms decide how much resources to spend in improving their productivity prospects. If
a firm decides to invest no resources in innovation, productivity would evolve according to an
exogenous distribution η that satisfies

E(d′|d) =
D∑
i=1

η(d′|d)di = d(1− μ).

where μ > 0 is the depreciation rate of productivity. This assumption has an important implica-
tion: firms that decide to spend no resources in innovation expect their productivity to fall. In
other words, productivity growth in this model only arises as a result of innovation, since the
reverse-to-the-mean effect of the standard AR(1) productivity process used in the literature is not
present.

Innovation consists of choosing both the probability and the outcome of innovation, defined as
a distribution over next period’s productivity. I denote the probability of innovation as λ ∈ [λ̄, 1],
where λ̄ ∈ (0, 1) is a default innovation probability. The outcome of innovation is the distribution
π = (π1, π2, . . . , πD), satisfying:

D∑
i=1

πi = 1. (3)
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where πi is the probability of drawing a productivity level of di next period. Therefore, the pro-
ductivity’s law of motion for firm that innovates is a combination of π and η. In particular, the
firm draws the next period’s productivity from the distribution π with probability λ, and from η

with probability 1− λ. The choice of λ can be thought as the extensive margin of innovation, and
the choice of π as the intensive one. Another valid interpretation would be to think of λ as the
probability of generating a new idea, and π as the implementation of such idea.

Innovation problem.
Let II(d, n) be the value of firm that innovates and IN(d, n) be the value of not innovating. The
innovation problem reads as

I(d, n) = max
λ

λ

(
max
{πi}Di=1

D∑
i=1

πiV(di, n)−D(π ||η)
)

︸ ︷︷ ︸
II(d, n)

+

+ (1− λ)

( D∑
i=1

η(di|d)V(di, n)
)

︸ ︷︷ ︸
IN (d, n)

−D(λ||λ̄), (4)

subject to λ ∈ [λ̄, 1] and equation (3). The result of this maximization problem is a probability of
innovation λ(d, n) and a distribution of next period’s productivity π(d′|d, n)= (π1, π2, . . . , πD),
where πi = π(di|d, n).

Innovation cost.
The cost of choosing λ is given by D(λ||λ̄), defined as proportional to the Kullback–Leibler
divergence measure, or relative entropy, between λ and λ̄:

D(λ||λ̄) = κI

[
λ log

(
λ

λ̄

)
+ (1− λ) log

(
1− λ

1− λ̄

)]
, (5)

where κI is the innovation cost, given by log κI = log κ0 + κ1 log d, with κ0 > 0 and κ1 > 0.
Assuming κ1 > 0 implies that cost of innovation is higher for high productivity firms, which is
consistent with the lower growth rate of larger firms.8 The intuition behind this assumption is
that high productivity firms find it more difficult to generate ideas that could improve their already
high level of productivity.

Similarly, the cost of choosing the distribution π(d′|d, n) is given by D(π ||η):

D(π ||η) = κI

[ D∑
i=1

πi log
(

πi
ηi

)]
, (6)

Note that the innovation cost, κI , is the same for both the extensive and the intensive margin.
The main implication of this assumption is that the timing of choices does not affect the results
[Costain (2017)].9 Moreover, assuming equal costs implies that any combination of π and λ can
be expressed as a single distribution.10

Note also that equation (6) implies that setting a probability πi < ηi would reduce the cost
D(π ||η). However, recall that π is a proper probability distribution. Thus, setting a low πi would
require setting a larger value somewhere else in the distribution, increasing the total cost. In fact,
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it can be shown that D(π ||η)> 0 for any distribution π different from η, and 0 if (and only if)
π ≡ η. The same reasoning applies to the choice of λ in equation (5), where D(λ||λ̄)= 0 if (and
only if) λ = λ̄.11

In sum, I make two assumptions regarding innovation cost. First, I define the cost of inno-
vation to be increasing in firm’s productivity, which allows the model to generate lower growth
rates among large firms as explained before. Second, I assume that this cost is proportional to the
Kullback–Leibler divergence measure. This measure has become very popular in models of state-
dependent pricing literature or rational inattention [Turen (2019) and Costain et al. (2022)]. The
reason for this popularity is that the Kullback–Leibler divergence measure allows for closed-form
solutions for equilibrium objects that would, otherwise, require a high computational cost. This
advantage is also applicable to my model where, as in some models of state-dependent pricing or
rational inattention, one of the policy functions is a distribution.

To solve the innovation problem, I first solve the choice of the next period’s productivity dis-
tribution for innovating firms. Then, given the choice of π , and thus, the value of innovating, I
solve the choice of the innovation probability.

Choice of next period’s productivity distribution, π
The choice of the next period’s distribution for innovative firms consists of choosing each proba-
bilities πi in the distribution π = (π1, π2, . . . , πD). The first order condition of (4) with respect to
the probability πi = π(di|d, n) is

V(di, n) = κI

[
1+ log

(
π(di|d, n)
η(di|d)

)]
+ ξ , (7)

where ξ is the multiplier on the constraint (3). The left-hand side of equation (7) is the marginal
gain from increasing π(di|d, n), which equals the value of a firm with productivity di. The right-
hand side is the marginal cost, which is the sum of two terms: the “direct” innovation cost
associated with the choice of π(di|d, n) and the cost associated with the constraint, captured by ξ .
Using the first-order conditions for (π1, π2, . . . , πD) described by equation (7) in the constraint
(3), and after some rearrangement, one finds

π(di|d, n) =
η(di|d) exp

(
V(di, n)/κI

)
∑D

j=1 η(dj|d) exp
(
V(dj, n)/κI

) . (8)

The chosen distribution is a transformation of the default distribution η. In particular, firmswill
choose to increase the probability of those di that imply larger continuation values, and decrease
those that deliver lower V(di, n). Yet, this transformation is not linear—that is, the chosen distri-
bution is not just a shifted version of η. The reason is that firms want to increase the probability
of a high di more than what they can decrease it for a low di. This can be clearly seen in Figure 2.
Taking an arbitrary firm, Figure 2 presents the benchmark distribution η (shaded area), the con-
tinuation value of the firm V(di, n) (light line) and the chosen distribution π (dark line). The
chosen distribution η is shifted to the right relative to η, but it is also more dispersed.

To understand why the chosen distribution is more dispersed, one needs to look at the tails
of both distributions. Firms want to increase the probability of larger values of d′, but to do so,
firms have to reduce the probability somewhere else in the distribution. However, the probabil-
ity in the left tail of the benchmark distribution cannot be reduced sufficiently to accommodate
the desired increase in the right tail, as the cost of setting π(di|d, n)= 0 if η(di|d)> 0 would be
infinitely costly.12 As a result, the chosen distribution has the same support as η but a fatter right
tail, yielding a more dispersed distribution.
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Figure 2. Choice of next period’s productivity distribution,π .Notes: The shaded area represents the benchmark distribution
η faced by a firm with productivity d= −1 and 5 employees, the dark line the chosen distribution, π , and the light line plots
the (normalized) value function for the different values of productivity. For this exercise, I used the baseline calibration,
presented in Section 4.

Finally, using equations (8) and (6), we can write II(d, n) as

II(d, n) = κI log

[ D∑
i=1

η(di|d) exp
(
V(di, n)/κI

)]
(9)

Note that Jensen’s inequality implies that E
[
exp (x)

]
> exp [E(x)] for any non-degenerate ran-

dom variable, and therefore, II(d, n)>
∑D

i=1 η(di|d)V(di, n)= IN(d, n), so that firms will always
prefer to innovate.13

Choice of the innovation probability, λ
The choice of the innovation probability consists of setting the probability λ with which the firm
can choose the next period’s productivity distribution. The first-order condition of equation (4)
with respect to the probability of innovation λ is

II(d, n)− IN(d, n)= κI
[
log λ(d, n)− log λ̄ − log (1− λ(d, n))+ log (1− λ̄)

]
,

where the left-hand side are the gains from innovation, equal to the marginal product of λ(d, n),
and the right-hand side is the marginal cost. Rearranging terms:

λ(d, n) =
λ̄ exp

(
II(d, n)/κI

)
λ̄ exp

(
II(d, n)/κI

)
+ (1− λ̄) exp

(
IN(d, n)/κI

) . (10)

The probability of innovation λ(d, n) is increasing in the difference between the value of inno-
vating, II , and the value of not innovating, IN . Moreover, equation (10) implies that λ(d, n)> λ̄

for any (d, n), since II(d, n)> IN(d, n).

3.4 Households
The household problem closely follows Hopenhayn and Rogerson (1993) and Da-Rocha et al.
(2019). There is a household with a continuum of members who own the firms, consume, and
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supply labor. The problem of the household is
U = max

C,L
ln C − θL

s.t. C = wL+ F + �,
where C is household consumption, L is the total labor supply, F are the total firing taxes, and �

are firms’ profits. The parameter θ > 0 captures the disutility of labor supply. The optimal labor
choice is characterized by w= θC.

3.5 Stationary equilibrium
Let x= (d, n) be the state vector, X ≡D×R≥0 be the state space, and F be the distribution of
firms over X . For simplicity in the exposition, I consider a discretized state space so that F(x) is
the mass of firms with state x. The law of motion of the distribution of firms is

F′(x) = (1− δ)
∑
z∈X

�(x|z)F(z) + δ�E(x),

where F′ is the next period’s distribution of firms, �(x|z) is the incumbents’ transition probability
between states z and x, derived from firm choices, and�E is the distribution of entrants that results
from the discretization of the distribution of d0.

The equilibrium of this economy is given by a wage rate, a distribution of firms over the state
space, and a set of firm’s policy functions (for n′, λ and π) such that (i) policy functions solve
firms’ problem, (ii) the household first order condition is satisfied, (iii) labor market clears, and
(iv) the distribution of firms over the state space X is invariant, F′(x)= F(x), ∀x ∈X .

4. Calibration
The model is calibrated to the Spanish economy, using data from the Central de Balances dataset.
This is a panel of nonfinancial Spanish firms, prepared by the Bank of Spain, including balance
sheet information, income statement, and some firm characteristics (sector, age, etc). The panel
covers the years 1995 to 2015 and provides an excellent representation of the Spanish productive
sector.14 Since Spanish employment is highly volatile, I restrict the sample to the years between
2005 and 2007 in order to avoid the Spanish boom (2000–2005) and the financial crisis. Themodel
period is set to 1 year.

4.1 Exogenous parameters
I set the discount factor to β = 0.95.15 I set the degree of returns to scale to γ = 0.6, somewhat
lower than in Hopenhayn and Rogerson (1993), but within the standard values in the literature.16
I normalize the equilibrium wage rate to 1 and make θ be such that the household first-order
condition is satisfied in the benchmark equilibrium. Finally, I set the exit probability parameter to
7.56% so that the average firm age in the model is 9.7 years, as in the data.

4.2 Endogenous parameters
The remaining parameters are internally calibrated using the model. I calibrate the parameters
of the initial distribution of productivity, the firing cost parameter, the benchmark probability
of innovation, the innovation cost parameters, and the benchmark distribution, η. The latter is
modeled as a discretized unit root process:

log (d′) = log (d)− μ + σε. (11)

https://doi.org/10.1017/S1365100522000049 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100522000049


954 B. Petit

The initial productivity distribution is defined as a discretized normal distribution with
parameters μ0 and σ 2

0 , such that log (d0)∼N
(
log (μ0)− 1

2σ
2
0 , σ

2
0
)
.

The parameter vector, � = (μ0, σ 2
0 , κF , λ̄, κ0, κ1,μ, σ

2), is chosen such that the sum of squared
differences between a set of model-generated moments and their empirical counterparts is
minimized:

min
�

M∑
i=1

(
mi(�)− m̄i

m̄i

)2
,

where M is the number of moments, and mi(�) and m̄i are the model-generated and empirical
i-th moments, respectively.

Moment selection and identification
The main limitation of my data is that it lacks information on firms’ innovation choices.
Furthermore, given the broad meaning of innovation in this paper, it is not clear what type of
information one should use. However, the model establishes a clear link between productivity and
size, allowing me to discipline the innovation technology using employment data, as in Garcia-
Macia et al. (2019). Note that hiring and firing choices in my model only depend on productivity,
so targeting the dynamics of employment would pin down the dynamics of productivity. For
instance, given that productivity growth only emerges from innovation, the share of hiring firms
and their growth rate are very informative about the share and growth rate of innovators. Thus,
the model is calibrated to match the share of hiring firms and the hiring rate, defined as the ratio
between newly hired workers and previous employment.

Innovation cost is assumed to be increasing in firm productivity. To control for the strength of
this effect, I target the size distribution of firms. Note that, if innovation is equally costly for high-
and low-productivity firms, high-productivity firms would grow faster than low-productivity
ones, generating a bimodal firm size distribution. Given the focus of this paper on firing cost,
firing behavior is particularly relevant for the analysis. I match the share of firing firms and the
firing rate, defined analogously to the hiring rate. Finally, given that innovation is particularly
flexible, it is important to control for the shape of the resulting distribution of next period’s pro-
ductivity. To do so, I match the average and the coefficient of variation of firm size, both for the
whole population of firms and for entrants.

Although all moments are affected by all the parameters, some relationship between specific
parameters and moments can be postulated.17 The average productivity of entrants, μ0, is partic-
ularly relevant to match the average size of entrants. The variance of the initial productivity draw,
σ 2
0 , drives the dispersion in firm size among entrants, so it is key to match the coefficient of vari-

ation of firm size among entrants. The variance of the benchmark distribution, σ 2, controls the
dispersion of the chosen distribution among innovators, and thus, drives the overall dispersion
in firm size. The parameter κ0 limits how much innovative firms can grow and, as argued before,
is informative to match the hiring rate observed in the data. The parameter κ1 controls the rate
at which the cost of innovation increases with firm’s productivity, and thus, the ability to grow
among high-productivity firms, driving the firm size distribution. Since productivity growth only
emerges from innovation, the share of innovators is very informative about the share of hiring
firms. The default probability of innovation, λ̄, is key for the overall probability of innovation in
the model and thus, it is very informative about the share of hiring firms. Among those firms that
do not innovate, the productivity depreciation parameter, μ, drives the size in the productivity
fall, and therefore, it is very informative about the firing rate, which is key to control the mag-
nitude of downwards risk. Finally, the firing cost parameter, κF , drives the share of firms firing
workers.
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Table 1. Calibration. Model fit

Moment Model Data

Average size of entrants 3.53 3.40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coefficient of variation of firm size 1.21 1.19
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coefficient of variation of firm size among entrants 1.39 1.36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firing firms 0.26 0.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of hiring firms 0.35 0.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Firing rate among firing firms 0.19 0.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hiring rate among hiring firms 0.44 0.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firms with 0–5 workers 0.62 0.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firms with 6–10 workers 0.21 0.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firms with 11–15 workers 0.07 0.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firms with 16–20 workers 0.04 0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firms with 21–25 workers 0.02 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Share of firms with 25+workers 0.04 0.05

Table 2. Calibration. Parameter values

Parameter Description

μ0 = 2.95 Average productivity of entrants
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ0 = 1.10 Standard deviation of initial productivity draw
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ = 0.07 Depreciation of productivity (default distribution)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ = 0.30 Standard deviation of shocks (default distribution)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ0 = 7.22 Cost of innovation, level parameter
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ1 = 1.25 Cost of innovation, shape parameter
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ̄ = 0.47 Default probability of innovation
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κF = 0.20 Firing cost

Parameter values andmodel fit
Table 1 presents the model fit and Table 2 collects the estimated parameters. The model closely
matches the moments concerning firing and hiring behavior, and the size distribution of firms is
also closely matched.18 This is particularly relevant since it provides support for the innovation
technology used in the paper. Furthermore, the model generates a distribution of firm size that
matches not just the average firm size, but also the dispersion in employment, which provides
further support to the innovation technology. In the next section, I discuss the main predictions
generated by my innovation technology and show that these predictions are consistent with the
existing empirical evidence on firm growth.

The firing cost parameter is calibrated to 0.20. This means that the cost of firing one worker
equals 2.5 monthly wages. According to Spanish labor regulations, a dismissed worker has the
right to receive 40 days of wages per year working in the firm. Note, however, that the Spanish
economy is characterized by the heavy use of temporary workers, whose firing costs are either
zero or very small. Thus, κF should be interpreted as an average firing cost for both temporary
and permanent workers. The depreciation rate of productivity, μ, is calibrated to 0.07, meaning
that those firms that do not invest in innovation expects to loss 7% of its current productivity
next period. The standard deviation of productivity under the default distribution is 0.3, similar
to Poschke (2009) who also assumes a unit root process for firm’s productivity.

The magnitude of κ0 and κ1 do not have a clear interpretation. Nevertheless, they imply that
firms in the baseline economy spend 16% of total output in innovation.19 Although this may be
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Figure 3. Productivity growth. Next period’s productivity distribution. Notes: The x-axis refers to the difference in log pro-
ductivity � log d. The dark line is the chosen next period’s distribution π for a low and a high productivity firm. The light
line represents the default distribution, η, given by equation (11), which is the same for low and high-productivity firms by
assumption.

too high for innovation expenses, it should be noticed that innovation in this model includes all
sorts of firm actions aimed at increasing profitability prospects, and not only product or process
innovation as typically assumed in innovation papers. For instance, Mukoyama and Osotimehin
(2019), who also consider a broad concept of innovation similar to mine, find an innovation-to-
output ratio of 12%.

The default probability of innovation is 0.47, which is 9 p.p. lower than the average innovation
probability in the baseline economy. Given the structure of the innovation problem, most inno-
vation investments are devoted to the choice of the next period’s productivity. This is because the
cost of choosing a distribution π is incorporated in the value of innovating lowering gains for
innovation, as shown in equation (4).

5. Results
Before analyzing the effects of firing cost, it is worth describing firms’ innovation behavior in the
baseline equilibrium to illustrate howmy approach tomodel firm innovation can generate realistic
productivity dynamics.20

5.1 Endogenous productivity dynamics
Many papers in the literature of firm growth document the negative (unconditional) relationships
between firm size and growth and between firm size and volatility of growth.21 The model is
consistent with these facts. Figure 3 presents the default and chosen distributions of productivity
growth for a low- and high-productivity firm (in the 25th and 75th percentile of the productivity
distribution, respectively). The average productivity growth for those firms that innovate (thus,
taking the chosen distribution π) is as high as 0.22 for low productivity firms and 0 for high
productivity firms, who just offset the negative productivity trend on average. At the same time,
the standard deviation of productivity growth is 0.45 for low productivity firms and 0.35 for high
productivity ones. This result is driven by the fact that the cost of innovation is assumed to be
increasing in firm’s productivity.

This can be seen more generally in Figure 4, where I plot the expected productivity growth
rate, the standard deviation of firm productivity growth, and the probability of innovation by firm
productivity in the baseline economy in which κF = 0.20. Later we will discuss how these figures
change when we increase/decrease the firing cost. Three main predictions arise from the model:
(i) low productivity firms innovate more frequently, (ii) they undertake more aggressive inno-
vations, and (iii) their innovations are riskier, as measured by the expected productivity growth
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Figure 4. Innovation choices by firm productivity. Notes: I compute the expected productivity growth rate and standard
deviation of productivity growth for each point in the discretized state space using the corresponding distribution of next
period’s productivity, π (chosen) or η (default), and then average across firm size for each value of d. The probability of
innovation is also averaged across size for every value of d, where the default probability is λ̄ and the chosen one is given by
λ(d, n). Figure B.5 replicates these graphs by number of employees.

and the standard deviation of expected firm productivity growth, respectively. As a result, low-
productivity (small) firms in the model grow faster and face higher uncertainty. This does not
mean that small firms spend more on innovation. For instance, a firm with 10 workers spends
40% less in innovation than a firm with 30 workers.22 This is because high-productivity firms
prefer to lower the risk they face, which is also costly.

Figure 4 highlights the importance of allowing firms to have (partial) control over the whole
distribution of next period’s productivity. Models based on Atkeson and Burstein (2010) allow
firms to affect the probability of innovation while keeping the “size” of the innovation fixed.
Alternatively, once could fix the probability of innovation and allow firms to invest in the average
productivity growth. However, the volatility of productivity growth is constant across firms and
unaffected by the distortion in both cases. In this model, firms endogenously face different degrees
of uncertainty, which is key to account for the effects of firing costs (Bentolila and Bertola, 1990).

5.2 Aggregate effects of firing costs
The main goal of this article is to better understand the aggregate consequences of firing costs.
To facilitate the exposition and the comparison with previous literature, I simulate the frictionless
economy, in which κF = 0, and compare it with an economy with positive firing costs. In this
exercise, the main object of interest is aggregate productivity. Following Da-Rocha et al. (2019), I
define aggregate productivity as

aggregate productivity =
(∫

x∈X
d(x)1−γ s(x)dF(x)

) 1
1−γ

, (12)
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Table 3. Aggregate effects of firing cost (% fall relative to frictionless economy)

κF = 0.20 κF = 0.40 κF = 1.00

Aggregate productivity 3.71 5.99 10.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output 1.91 3.33 6.57
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average productivity 1.41 2.25 4.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average firm size 1.84 3.17 6.10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Innovation expenses 2.68 4.23 8.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consumption 1.77 3.16 6.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Job destruction rate 52.6 68.8 86.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Job creation rate 29.1 39.8 50.8

where x= (d, n) is the state vector of the firm, and F(x) is the stationary mass of firms with state
x, satisfying

∫
x dF(x)= 1.23

Table 3 collects the results of this experiment. Table entries represent the percentage (negative)
change in the corresponding variable relative to the frictionless economy. In the first column, I
compare the frictionless economy with the one that arises from the calibration exercise presented
in Section 4, in which the firing cost parameter is κF = 0.20. The second column collects the results
from simulating an economy in which I set the firing cost parameter to κF = 0.40, twice as large
as the calibrated value. Finally, and to facilitate the comparison with the literature, I simulate
an economy in which firing costs are equivalent to 1 year’s wage. All these results are general
equilibrium outcomes.24

In line with the findings of previous literature, I find that firing costs damage aggregate produc-
tivity. In particular, the baseline level of firing costs, equivalent to 2.5 monthly wages, generates a
3.7% fall in aggregate productivity relative to the frictionless economy. Output and consumption
also fall substantially, by almost 2%. These are large numbers compared to the literature. With
a firing cost of 1 year’s wage, Da-Rocha et al. (2019) find a 4.2% fall in aggregate productivity
and output, and Gabler and Poschke (2013) find fall in output and consumption of 2.5% and 4%,
respectively. With that level of firing costs, I find a fall in aggregate productivity, output and con-
sumption of 11%, 6.6%, and 6.3%, respectively. These comparisons, however, must be taken with
caution. Both Da-Rocha et al. (2019) and Gabler and Poschke (2013) are calibrated to the USA,
while I calibrate my model to Spanish data, and Da-Rocha et al. (2019) and I assume constant
mass of firms and exogenous exit while Gabler and Poschke (2013) includes endogenous exit.

The main additional channel compared to previous papers is that firing costs in my model
affect the whole productivity distribution by changing firms’ incentives to innovate.25 In particu-
lar, firing costs make innovation riskier because the cost of a negative productivity shock increases.
As a result, firms decide to decrease the dispersion in next period’s productivity at the expense of
lowering potential productivity growth, generating a decrease in the (unweighted) average pro-
ductivity of 1.4%. To see how firing costs shift firms’ innovation decisions, Figure 5 presents the
differential expected productivity growth rate (left panel) and the differential standard deviation
of next period’s productivity (right panel) between the frictionless economy and one in which
firing costs are set to κF = 0.2.26 The fall in expected productivity growth is of 3 p.p. for low pro-
ductivity firms (and up to 10 p.p. if κF = 1) who lower the standard deviation of next period’s
productivity distribution decreases by 2% (and 6% if κF = 1).27

Both the expected productivity growth and the volatility of next period’s productivity fall more
among low productivity firms. This is because firing costs increase the cost of failure more inten-
sively among low productivity firms, since these firms face a higher probability of having to fire
workers—that is, the probability of drawing a level of productivity that induces firms to fire—in
case of a negative productivity shock.28 Because of this, low-productivity firms decide to focus
their innovation on avoiding negative productivity shocks by reducing the risk of their innovation
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Figure 5. Innovation choices. Experiment, κF = 0.2 vs. κF = 0. Notes: To compute the differences in expected productivity
growth between non-innovative and innovative firms, I average expected growth over firm size for each productivity d using
the corresponding distribution of next period’s productivity (π for innovative firms and η for non-innovative firms) as in
Figure 4. I do the same for computing the volatility of next period’s distribution.

at the expense of productivity growth.29 This effect of firing costs is substantially smaller for high-
productivity firms, for whom firing workers is a very unlikely event. The differential response
of high- and low-productivity firms highlights again the importance of allowing firms to control
both the outcome and the risk of innovation.

Productivity and size are positively correlated, so the fall in expected productivity growth is also
higher for small firms compared to large ones. When the firing cost parameter is set to κF = 0.2,
the growth rate of productivity for firms with less than 10 workers falls by 0.93 p.p. relative to
the undistorted economy, while that of firms with more than 10 employees decreases by 0.14
p.p. When the firing cost parameter is set to κF = 0.4, the growth rate of productivity falls by
1.1 p.p for firms with less than 10 workers and increases by 0.3 p.p. for firms with more than
10 workers, who benefit from lower wages.30 These results show that small firms are particularly
affected—consistent with larger effects among low productivity firms. The reason is that small
firms face a higher probability of firing, and thus, face larger potential costs. Consequently, small
firms endogenously choose to invest more on reducing the dispersion of next period’s productivity
at the expense of lowering potential productivity growth.

The distorted economy also exhibits lower job destruction and creation rates (defined as total
firings/hirings over total employment). In particular, the share of newly hired workers in the econ-
omy falls by 30%, from 18.3% to 12.6%, while the share of fired workers drops by more than 53%,
from 10.7% to 5.1%. Since firms find it costlier to fire workers with κF > 0, they decide to keep
workers even if their size is larger than the optimal one. At the same time, firms below their opti-
mal size decide not to hire due to precautionary motives. Since there is uncertainty about future
productivity, firms know that they may need to fire in the future, which prevents them from hiring
in the first place. Interestingly, the fall in job creation is less pronounced than that in job destruc-
tion, as in Bentolila and Bertola (1990). These two distortions give rise to inefficiencies in the
allocation of labor, which further damages aggregate productivity.

5.2.1 Sensitivity analysis
In this section, I check how robust the results presented in Table 3 are to changes in the calibrated
parameter values.31 In particular, I compare the aggregate productivity losses from firing costs of
2.5 monthly wages shocking each calibrated parameter at a time, first increasing it by 10%, and
then lowering it by 10%. To ensure comparability, I recompute the disutility of labor supply, θ , so
that the equilibrium wage is equal to 1 for each alternative calibration.

The results, collected in Table 4, suggest that effects of firing costs on aggregate productivity are
very robust to changes in the calibrated parameters.32 In general, changes in the parameter values
that make innovation cheaper lower the overall impact of firing costs on aggregate productivity.
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Table 4. Sensitivity analysis (% fall in aggregate productivity relative to frictionless economy)

Shock

Parameter (benchmark % fall in aggregate productivity= 3.71) +10% −10%
σ0 Standard deviation of initial productivity draw 3.68 3.73

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ Depreciation of productivity (default distribution) 3.84 3.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ Standard deviation of shocks (default distribution) 3.74 3.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ0 Cost of innovation, level parameter 3.73 3.57
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ1 Cost of innovation, shape parameter 3.79 3.32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ̄ Default probability of innovation 3.57 3.81

This is the case for an increase in λ̄ or a decrease in κ0, κ1, μ or σ . The reason is obvious: for
a given value of firing cost, a lower cost of innovation allows firms to grow more, making the
fall in aggregate productivity smaller. For instance, κ1 controls how costly it is to innovate for
high-productivity firms. As it decreases, innovation becomes cheaper for those firms that are less
affected by firing costs. Something similar happens when increasing the default probability of
innovation: as λ̄ increases, the cost of the extensive margin lowers, and firms use those resources
to invest more in the intensive margin. In both cases, firms are able to reduce the probability of
firing (by lowering the probability of a decrease in productivity), shrinking the overall effect of
firing costs.

One important parameter in the model, that is not included in the previous table, is the degree
of returns to scale, γ . In order to check the robustness of the results to changes in the value of γ , I
set a γ = 0.66 (a 10% increase relative to its baseline value), recalibrate the rest of the parameters,
and then compute the losses in aggregate productivity associated with firing costs. I find that
aggregate productivity falls by 4.7%, 7.6%, and 13.6% for a level of firing costs equivalent to 2.5
monthly wages (κF = 0.2), 5 monthly wages (κF = 0.40), and 1 year wages (κF = 1), respectively.33
These numbers are larger than the results presented in the first row of Table 3, suggesting that my
choice of γ is conservative.

5.3 What is the role of endogenous productivity dynamics?
Firm choices are affected by firing costs, including those regarding innovation. This means that
firing costs may have an impact on aggregate outcomes that goes beyond the distortion in fir-
ing/hiring choices. Most papers studying the effects of firing costs and other frictions typically
abstract from this indirect effect. Themost extended assumption is that firms’ productivity follows
an AR(1) process, which is not only unaffected by frictions, but also implies identical dynamics
across firms.

It is natural to ask whether abstracting from the endogenous determination of productivity
dynamics yields very different results. This section presents two experiments that quantify the
impact of the (endogenous) changes in the dynamics of productivity as a response to firing costs,
and of the differences in productivity dynamics across firms.

5.3.1 Exogenous innovation
To quantify the aggregate impact of firing costs through their effects on the dynamics of pro-
ductivity, I repeat the experiments shown in section 5.2, fixing the innovation behavior from the
frictionless economy. In short, I simulate a distorted economy in which I impose a law of motion
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Table 5. Aggregate effects of firing cost. Counterfactual economies (% fall relative to frictionless economy)

Endogenous Inn. Exogenous Inn. AR(1) process

Firing cost, κF 0.20 0.40 1.00 0.20 0.40 1.00 0.20 0.40 1.00

Aggregate productivity 3.71 5.99 10.9 2.38 3.86 7.10 1.64 2.99 5.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output 1.91 3.33 6.57 1.14 2.09 4.28 0.95 1.70 3.57
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average productivity 1.41 2.25 4.47 0.00 0.00 0.00 0.00 0.00 0.00
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Innovation expenses 2.68 4.23 8.04 0.00 0.00 0.00 0.00 0.00 0.00

for firm productivity given by

d′ ∼
{

π(d′|d, n;κF = 0) w.p. λ(d, n|κF = 0)
η(d′|d) w.p. 1− λ(d, n|κF = 0)

where λ(d, n|κF = 0) and π(d′|d, n;κF = 0) are the resulting innovation probabilities and dis-
tributions from the frictionless economy in which firing costs are set to zero. To ensure the
comparability of these two economies, I also keep the cost of innovation fixed, which is now added
as a fixed cost to the value of the firm. Results are collected in Table 5.34 The first three columns
collect the results from the exercise in section 5.2, in which innovation is endogenous, and thus,
reacts to changes in firing costs. Columns 4 to 6 collect the results from changing firing costs in an
economy in which I fix the innovation behavior that arises from the frictionless economy.

In the model with exogenous innovation, a level of firing costs of κF = 0.2 implies a fall in
aggregate productivity of 2.3% which is significantly lower than in a model with endogenous
productivity dynamics. This fall in aggregate productivity represents a 65% of the estimated fall
when innovation choices can react to changes in firing costs. In other words, changes in firms’
innovation choices account for 35% of the aggregate productivity losses associated with firing
costs. Endogenous firm productivity dynamics are also important in accounting for the changes
in aggregate output. In particular, the fall in aggregate output with exogenous innovation is equal
to 1.1%, 2.1%, and 4.3% when the firing cost parameter equals 0.2, 0.4, and 1, respectively. These
effects account for a 35–40% of the overall fall in aggregate output.

Given that innovation choices are fixed, the (unweighted) average productivity does not change
when firing costs are introduced. In the baseline experiment, firms react to firing costs by reducing
the innovation risk at the expense of potential growth, damaging the average productivity in the
economy. This indirect effect of firing costs is not present in the exogenous innovation scenario,
lowering the overall effect of firing costs on aggregate productivity and output.

Interestingly, the aggregate effects of firing costs when innovation is fixed are still large com-
pared to previous literature. The main reason for this is that the dynamics of productivity when
innovation is exogenous are the ones obtained in the frictionless economy, and thus, nonlinear.
This means that the persistence and volatility of productivity are not constant across firms, as in
models based on AR(1) productivity processes.35

5.3.2 AR(1) productivity dynamics
To quantify the implications of the nonlinearity of productivity dynamics, I repeat the experiment
in an economy with a standard AR(1) process for firm’s productivity. To do so, I solve the baseline
economy with zero firing costs, and compute the (average) transition matrix for firm’s productiv-
ity.36 Then, I find the AR(1) parameters that minimize the distance between the transition matrix
obtained from the baseline economy with no firing costs and the one arising from the Tauchen’s
discretization of the estimated AR(1) process.37 The results from this experiment are presented in
columns 7–9 of Table 5.
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Using the estimated AR(1) process, I find that a firing cost of 0.2 yearly wages generates an
aggregate productivity fall of 1.64% relative to the frictionless economy.38 When firing costs are
set to 0.4 and 1 year’s wage, aggregate productivity falls by 2.99% and 5.47%, respectively. These
effects are substantially lower than in the economy with exogenous innovation. This means that
nonlinearities in the dynamics of productivity are quantitatively very relevant in accounting for
the aggregate impact of firing costs.

Note that the only difference between the economy with exogenous innovation and the one
with an AR(1) process is that the dynamics are linear in the latter. This means that the differ-
ences in the aggregate productivity fall between these two alternative economies can be attributed
exclusively to the nonlinearities in the dynamics of productivity. Using this decomposition, I find
that the nonlinearities in productivity dynamics explain 15–20% of the overall fall in aggregate
productivity.

Overall, allowing for an endogenous determination of productivity dynamics accounts for 50–
55% of the aggregate impact of firing on productivity: endogenous changes in the dynamics of
productivity account for 35% of the overall effect, while 15–20% is explained by differences in the
law of motion of productivity across firms.

6. Conclusions
This article presented a firm dynamics model with endogenous productivity growth to analyze the
aggregate effects of firing cost. Making the dynamics of productivity endogenous allows the model
to capture both the static effects of firing taxes—allocative efficiency—as well as the dynamic
effects of such friction—changes in the distribution of firms’ productivity. As opposed to the exist-
ing literature, my model allows firms to control not only the probability of innovation but also the
outcome. Themodel parameters are calibrated to match the firm size distribution and key features
of the hiring and firing behavior of Spanish nonfinancial firms. I show that my flexible innovation
technology is able to generate a distribution of firm size that is very close to that in the data, both
in terms of size and in terms of dispersion.

I use the calibrated model to quantitatively assess the aggregate effects of firing cost. I show
that firing costs equivalent to its calibrated value of 2.5 monthly wages generates a 3.7% drop
in aggregate productivity relative to the frictionless economy. When firing costs are equivalent
to 1 year’s wage, the fall in productivity is of 10%. I show that the introduction of firing costs
makes firms to shift their innovation efforts towards decreasing the risk they face, at the expense
of lowering the potential productivity growth. Moreover, low productivity firms—as well as small
firms—are the ones most affected by the policy. The reason is that the probability of having to fire
next period is larger for these firms, so that firing costs increase their cost of innovation failure
relatively more.

My model differs from standard firm dynamics models in that productivity dynamics are
endogenous. This has two important implications. First, innovation choices, and therefore, the
distribution of firms’ productivity itself, can be distorted by firing costs. Second, as opposed to
the standard AR(1) process typically used in the literature, the dynamics of productivity in my
model are (endogenously) nonlinear and different across firms. I show that changes in innovation
choices account for 35% of the aggregate productivity losses associated with firing costs, while
nonlinearities in the dynamics of productivity explains another 15–20%. This result suggests that
researchers should take the effects of frictions on the dynamics of productivity into account when
evaluating their aggregate effects. This article applies this idea to firing cost, but it can be extended
to any other frictions, such as distortionary corporate taxation or credit constraints.

My paper focuses on the negative effects of firing costs on firms, but the literature has shown
that firing costs may generate important welfare gains once we incorporate risk-averse workers
into themodel. An interesting avenue for future research would be to compute a welfare analysis of
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firing costs, incorporating heterogeneous risk-averse workers and hiring frictions into the model.
It would also be interesting to see how employment protection can be redefined to overcome
its negative impact on firms’ incentives to grow. An example would be making firing costs to
depend on firm size, such that firing costs do not prevent small firms to invest in growth generating
activities. I leave these questions for future research.

Supplementary material
To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
S1365100522000049.

Notes
1 These models assume that firms can invest resources in increasing the probability of a positive step in their productivity
versus a negative one, but the size of this step is exogenously set. This implies that the level of risk firms face is limited by
assumption. One could add an extreme shock to generate sufficient negative risk, but this would come at the cost of adding
more parameters into the model.
2 See for example Sutton (1997, 2002) or Klette and Kortum (2004). See Figure B.1 in Appendix B for the corresponding
relationships in the Spanish data. Haltiwanger et al. (2013) show that the size-growth correlation disappears when firm age is
controlled for. In the model presented in this paper, however, firm age does not have any economic interpretation.
3 Examples of these investments include product or process innovation but also demand-side investments such as marketing
or sales campaigns.
4 Firing costs can also increase firms’ incentives to make other types of investments, such as labor-saving technologies.
However, this type of investments may have a larger impact on the production technology than on profitability (for given
inputs), which is the focus of the paper.
5 I estimate the parameters of an AR(1) process that better fits the dynamics of productivity in the frictionless economy with
endogenous innovation.
6 See Restuccia and Rogerson (2013) for a discussion on these different approaches.
7 Spanish regulation imposes the obligation to pay dismissal costs in case of exit. If firm owners are subject to limited liability,
workers have priority at liquidation over the rest of debtors. Nevertheless, setting the exit value to 0 does not affect the
quantitative results significantly. The reason is that I consider a model with exogenous exit, and thus, firing costs do not have
a selection effect [Poschke (2009)].
8 Figure B.1 shows the relationship between firm growth and firm size in the Spanish data,
9 In short, when κI is the same for both the extensive and the intensive margin choices, results are not affected by the order
in which these two decisions are taken.
10 Defining the innovation problem in two stages allows for a cleaner interpretation of the parameters: λ̄ is the innovation
probability for a firms investing no resources in generating a new idea, while the parameters of η describe the distribution of
the next period’s productivity for a noninnovative firm.
11 Overall, firms’ expected profits conditional on a choice of λ and π are given by

�̂(d, n, n′) = �(d, n, n′)− β(1− δ)
[D(λ||λ̄)+ λD(π ||η)] ,

where �(d, n, n′) are firm’s operating profits defined in equation (1).
12 The chosen probability π in Figure 2 is strictly positive for any value of di for which η is positive.
13 Appendix A derives this expression and explains how to implement the solution to this problem in the computer.
14 See Almunia et al. (2018) for an analysis of the Central de Balances dataset representativeness.
15 The average long-term government bond yields in Spain for the period 2005–2007 is 4% according to FRED data. I assume
a risk premium of 1% and set the discount rate that corresponds to an annual interest rate of 5%.
16 Hopenhayn and Rogerson (1993) consider a degree of returns to scale of 0.64 for the US economy. However, Spain is
characterized for huge share of employment in small firms, so a value below 0.64 is a natural choice. Later I check how
sensitive my results are to the value of this parameter.
17 These arguments do not prove identification, but ease the interpretation of the parameter values.
18 For firms with more than 25 workers, the model also generates a distribution that is in line with that in the data. For
instance, the median size of firms with more than 25 workers is 35.5 workers in the data and 35 in the model.
19 According to the OCDE, Spanish firms spend around 1% of turnover on innovation. However, these data only include
technological innovation (supply-side innovation) while I use a much broader definition of innovation.
20 Figure B.3 presents the productivity and size distributions of firms in the baseline economy.
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21 See Figures B.1 and B.2 for the corresponding relationships in the data.
22 Figure B.4 presents the relationship between innovation expenses and firm size.
23 As in Da-Rocha et al. (2019), this measure is a weighted average of firm-level productivity where weights are given by
s(x)= nγ (x)/

∫
n(x)γ dF(d, x).

24 Figure B.6 plots the percentage change in aggregate and average productivity for different values of κF , ranging from zero
to 0.40, both in general and in partial equilibrium.
25 Although Gabler and Poschke (2013) include endogenous innovation, their setting allows firms to discard negative
outcomes of innovation, which limits the impact of firing frictions.
26 Figures B.7 and B.8 plot the same results when the distorted economy has a level of firing costs of 0.4 and of 1 year’s wage,
respectively.
27 The probability of innovation is almost unaffected by changes in κF . The reason is that both the value of innovating and
the value of not innovating fall when firing costs increase and thus, gains from innovation are roughly equal to those in the
frictionless economy. Despite being unaffected by changes in the firing cost, the innovation probability is still an important
margin in the analysis. This is because the probability of innovation is (endogenously) different for low- and high-productivity
firms.
28 Figure B.9 presents the firing rate as a function of current productivity and size in the baseline economy with κF = 0.2.
29 Figure B.10 shows the ratio of the differential productivity growth and the percentage change in innovation volatility.
This ratio is decreasing in firm’s productivity, meaning that the fall in productivity growth is larger than the fall in risk for
low-productivity firms.
30 Wages fall by 1.8%, 3.2%, and 6.3% relative to the undistorted economywhen firing costs are κF = 0.2, κF = 0.4 and κF = 1,
respectively.
31 I do not include changes in the average productivity of entrants, μ0, as it shifts the overall distribution of productivity and
only has a level effect.
32 Table B.1 collects the results from this sensitivity analysis including all the relevant variables.
33 If I do not recalibrate the rest of the parameters, the losses in aggregate productivity would be of 3.4%, 5.8%, and 10.3%
for a firing costs of 0.2, 0.4 and 1, respectively.
34 Table B.2 in the online appendix presents the effects on all the relevant variables of the model.
35 In the model, high productivity firms exhibit larger persistence and lower dispersion, which is in line with existing
literature [see López-García et al. (2007)].
36 The probability of drawing a next period productivity equal to d′ is Prob(d′|d, n)= λ(d, n)π(d′|d, n)+ (1−
λ(d, n))η(d′|d). Then, I construct the transition matrix taking the average of this probability over n. That is, the transition
matrix is T and its element Tj,i is given by Ti,j =

∫
n Prob(dj|di, n)dμ(di, n).

37 In particular, I consider the following law of motion of productivity: log (d′)= α0 + α1 log (d)+ σε where α0 = 0.0424,
α1 = 0.9642 and σ = 0.3262.
38 For consistency, the frictionless economy in this exercise is one in which the dynamics of productivity also follow the same
AR(1). This means that productivity in this frictionless economy is not the same as the one in the frictionless economy with
endogenous/exogenous innovation choices.
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