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Abstract

A subset of positive integers F is a Schreier set if it is nonempty and |F| � min F (here |F| is the cardinality
of F). For each positive integer k, we define kS as the collection of all the unions of at most k Schreier sets.
Also, for each positive integer n, let (kS)n be the collection of all sets in kS with maximum element equal
to n. It is well known that the sequence (|(1S)n |)∞n=1 is the Fibonacci sequence. In particular, the sequence
satisfies a linear recurrence. We show that the sequence (|(kS)n |)∞n=1 satisfies a linear recurrence for every
positive k.

2020 Mathematics subject classification: primary 11B37; secondary 05A15.
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1. Introduction

A subset F of positive integers is called a Schreier set if it is nonempty and |F| � min F
(here |F| is the cardinality of the set F). Let S denote the family of all Schreier sets and
Sn the set of Schreier sets F with max F = n. The family S, which we call the Schreier
family, was introduced in the 1930s in a seminal paper of Schreier [10]. In that paper,
Schreier solved a problem in Banach space theory posed by Banach and Saks. It is now
well established that Schreier sets and their generalisations have deep connections to
the norm convergence of convex combinations of weakly null sequences [1, 2, 9] and
are thus of fundamental importance in Banach space theory.

In this paper, we focus on the combinatorial properties of Schreier sets. Recently,
counting various generalisations of Schreier sets has attracted attention (see [3, 5, 6, 7].
Research in this direction began with the simple observation by an anonymous blogger
that (|Sn|)∞n=1 is the Fibonacci sequence. This fact follows from the observation that the
set of elements of Sn which contain n − 1 can be put in bijection with Sn−1, and the set
of elements of Sn not containing n − 1 can be put in bijection with Sn−2. The blogger
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20 K. Beanland, D. Gorovoy, J. Hodor and D. Homza [2]

was later revealed to be Alistair Bird who discovered this connection while writing his
PhD thesis in Banach space theory.

It is natural to ask if, for various modified Schreier families, the analogous sequence
(counting members with a fixed maximal element) is a linear recurrence sequence. A
natural and nontrivial modification of S is to fix natural numbers p and q and consider
the family

Sp,q = {F ⊆ N : q min F � p|F|}.

In [3], Beanland et al. proved that the sequence (|Sn
p,q|)∞n=1 is a linear recurrence

sequence and gave a compact recursive formula (building on the earlier work [8]).
We write N for the set of all positive integers and we refer to members of N as

natural numbers. We consider, for each natural number k, the set kS of all subsets of N
that can be written as a union of at most k many Schreier sets. These sets were recently
studied in a Banach space theory context in [4] by the first and third authors.

We prove that for each k the sequence {|(kS)n|}∞n=1 satisfies a specific recurrence
relation that is generated by the Fibonacci recurrence in a natural way. In order to
describe these recurrences we recall a few basic notions. A sequence (an)∞n=1 satisfies
the linear recurrence with coefficients ck, ck−1, . . . , c0 (we assume that ck � 0) if for
each n ∈ N,

ckan+k + ck−1an+k−1 + · · · + c1an+1 + c0an = 0.

The characteristic polynomial of the linear recurrence is given by

p(x) = ckxk + ck−1xk−1 + · · · + c1x + c0.

We now introduce a sequence of polynomials (pk(x))∞k=1 that will enable us to state
our main result. Let p0(x) = x − 1. This is the characteristic polynomial of the constant
sequence. Suppose that pk(x) has been defined for some nonnegative integer k, and let

pk+1(x) := pk(x(x − 1)).

Below we have computed pk(x) for each k ∈ {1, 2, 3}:

(1) p1(x) = x(x − 1) − 1 = x2 − x − 1, the characteristic polynomial of the Fibonacci
recursion;

(2) p2(x) = x2(x − 1)2 − x(x − 1) − 1 = x4 − 2x3 + x − 1;
(3) p3(x) = x8 − 4x7 + 4x6 + 2x5 − 5x4 + 2x3 + x2 − x − 1.

Notice that pk(x) has degree 2k. For all natural numbers k and n, set sk,n := |(kS)n|. We
can now state our main theorem.

THEOREM 1.1. For each k ∈ N, the sequence (sk,n)∞n=1 satisfies the linear recurrence
with characteristic polynomial pk(x).

Unlike the proof in the k = 1 case, our proof for general k is quite involved and
requires connecting the sequences (sk−1,n)∞n=1 with (sk,n)∞n=1 in a nonobvious but elegant
way. In addition, we obtain an interesting corollary to the proof of Theorem 1.1. In
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[3] Counting unions of Schreier sets 21

order to state it, we need some more notation. For two sets E, F ⊆ N, we write E < F if
max E < min F. We say that sets E1, . . . , Em ⊆ N are successive if E1 < E2 < · · · < Em.
A set F ∈ S is called a maximal Schreier set if |F| = min F. Furthermore, F ∈ kS is a
maximal k-Schreier set if it can be decomposed as the disjoint union of k successive
maximal Schreier sets. Let R0

k,n ⊆ (kS)n be the collection of all maximal k-Schreier
sets in (kS)n and r0

k,n := |R0
k,n|.

COROLLARY 1.2. For each k ∈ N, the sequence (r0
k,n)∞n=1 satisfies a linear recurrence

with characteristic polynomial pk(x).

2. Notation and overview of the proof of Theorem 1.1

Let F ⊆ N. We will inductively define a subset Ek(F) of F for each k ∈ N. Let E1(F)
be the initial segment of F that is a maximal Schreier set, and if no such set exists, let
E1(F) = F. Assuming Ek(F) has been defined for some positive integer k, let

Ek+1(F) = E1

(
F \

k⋃
i=1

Ei(F)
)
.

Observe that E1(F), E2(F), . . . is a partition of F into consecutive Schreier sets, where
all nonempty sets are maximal except possibly for the last nonempty one.

Let k ∈ N and F ∈ kS. Let dk(F) be the greatest nonnegative integer d so that there is
a set G ⊆ Nwith F < G, |G| = d and F ∪ G ∈ kS. If no such d exists, we let dk(F) = ∞.
Note that

(1) dk(F) < ∞ if and only if Ek(F) � ∅;
(2) F is a maximal k-Schreier set if and only if dk(F) = 0.

For each n, k ∈ N and d, we define

Rd
k,n := {F ∈ (kS)n : dk(F) = d} and rd

k,n := |Rd
k,n|.

Also, let rd
k,n := 0 for all k, n ∈ Z, d ∈ Z ∪ {∞} such that the value was not defined

above. As a visual aid see the initial values of rd
k,n for k ∈ {1, 2} in Table 1.

For example, for the k = 1 table, the value r0
1,n is the cardinality of the set of all F so

that max F = n and F is a maximal Schreier set (that is, min F = |F|). For the second
column, the value r1

1,n is the number of sets F with max F = n so that F ∪ {n + 1} is
a maximal Schreier set. For the k = 2 table, the value r1

2,n is the number of sets F
so that F = F1 ∪ F2 with F1 < F2, F1 being a maximal Schreier set, max F2 = n, and
F2 ∪ {n + 1} being a maximal Schreier set. For example

r1
2,6 = |R

1
2,6| = |{{1, 3, 6}, {1, 4, 5, 6}, {2, 3, 4, 5, 6}}| = 3.

We now record a few observations regarding the above tables.

(O1) Each entry below the first two main diagonals is computed by adding the
entry directly north to the northeast entry. We call this the Pascal-like property.
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22 K. Beanland, D. Gorovoy, J. Hodor and D. Homza [4]

TABLE 1. The left table contains initial values of (rd
1,n); the right table contains initial values of (rd

2,n).

k = 1 k = 2
n\d 0 1 2 3 4 5 6 7 · · · n\d 0 1 2 3 4 5 6 7 · · ·
1 1 1 0
2 0 1 2 0 1
3 1 0 1 3 1 0 1
4 1 1 0 1 4 1 1 0 2
5 2 1 1 0 1 5 2 1 2 0 3
6 3 2 1 1 0 1 6 3 3 2 3 0 5
7 5 3 2 1 1 0 1 7 6 5 5 3 5 0 8
8 8 5 3 2 1 1 0 1 8 11 10 8 8 5 8 0 13
...

...
. . .

...
...

. . .

Consequently, the two main diagonals determine the rest of the table. Note also that
the second main diagonal is constantly zero; we will show that this holds in general
(Lemma 5.2).

(O2) Due to the Pascal-like property of the tables, if the first two main diagonals satisfy
the same recursion, each diagonal satisfies that recursion. Moreover, we can express
each term of the diagonal in terms of the first column and use this to compute the
recursion for the first column (Lemma 4.1 and Figure 2).

(O3) In the k = 2 table, the sequence starting at the second entry of the main diagonal
is equal to the partial sums of the first column of k = 1 (Lemma 5.1). Consequently,
these sequences satisfy the exact same recursions. In this case, both sequences satisfy
the Fibonacci linear recurrence.

Taken together, these observations outline an inductive process to compute all of the
entries in the tables up to any given k. As we can see from the k = 1 table, the sequence
(r0

1,n)∞n=1 satisfies the Fibonacci recursion. As we mentioned in the introduction, the
sequence (s1,n)∞n=1 also satisfies the Fibonacci recursion. This led to the conjecture that
this holds for each k, namely, that (r0

k,n)∞n=1 and (sk,n)∞n=1 satisfy the same recursion
relation. We verify this in the affirmative. The main step is to note and prove that for
all natural numbers k, n, we have

sk,n = 2sk,n−1 − r0
k,n−1. (2.1)

3. Initial values of the sequences

This section contains several computations related to the initial values of the
sequences we are considering.
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[5] Counting unions of Schreier sets 23

LEMMA 3.1. For all k ∈ Nwith k � 2 and for each n ∈ {1, . . . , 2k − 2}, we have r0
k,n = 0.

Moreover,

r0
k,2k−1 = 1, r0

k,2k = 2k−1 − 1, r0
k,2k+1 =

(
2k−1

2

)
+ 2k−2.

PROOF. Since {1, . . . , 2k − 1} is a maximal k-Schreier set, no proper subset can be a
maximal k-Schreier set. This proves that for each n ∈ {1, . . . , 2k − 2}, we have r0

k,n = 0
and r0

k,2k−1 = 1. The equality r0
k,2k = 2k−1 − 1 follows from the fact that {1, . . . , 2k} \ {n}

is a maximal k-Schreier set for each n ∈ {2k−1 + 1, . . . , 2k − 1}, and every such set is
of this form. To compute r0

k,2k+1, one can easily check that any set F ∈ R0
k,2k+1 has

initial segment {1, . . . , 2k−2} and is made by either deleting two numbers from the set
{2k−1 + 1, . . . , 2k} or deleting one number from {2k−2 + 1, . . . , 2k−1}. �

The next lemma follows trivially from Lemma 3.1. For all n, k ∈ N, set

tk,n :=
n∑

i=1

r0
k,i.

LEMMA 3.2. For all k ∈ Nwith k � 2 and for each n ∈ {1, . . . , 2k − 2}, we have tk,n = 0.
Moreover,

tk,2k−1 = 1, tk,2k = 2k−1, tk,2k+1 = 2k−1 +

(
2k−1

2

)
+ 2k−2.

LEMMA 3.3. For all k ∈ N and for each n ∈ {1, . . . , 2k − 1}, we have sk,n = 2n−1.
Moreover,

s0
k,2k = 22k−1 − 1, sk,2k+1 = 22k − (2k−1 + 1).

PROOF. Fix k ∈ N. The set {1, . . . , 2k − 1} is a maximal k-Schreier set. Therefore, every
subset of {1, . . . , 2k − 1} is a k-Schreier set. Consequently, for each n ∈ {1, . . . , 2k − 1},
we have sk,n = 2n−1. On the other hand, {1, . . . , 2k} is not a k-Schreier set, but each of
its proper subsets is k-Schreier. Thus, sk,2k = 22k−1 − 1

We compute sk,2k+1. We will show there are exactly 2k + 1 subsets of {1, . . . , 2k + 1}
with maximum element 2k + 1 that are not in kS. Let F be such a set and assume the
case that F � {1, . . . , 2k + 1}.

First observe that {1, . . . , 2k−1} ⊆ F. Indeed, if this were not the case, then
min Ek(F) > 2k−1, which implies that max Ek(F) � 2k + 1. Hence, since F � kS,
max F > 2k + 1, which is a contradiction. Therefore, min Ek(F) = 2k−1, and since
2k − 1 � max Ek(F) < 2k + 1, it follows that F = {1, . . . , 2k + 1} \ {n} for each
n ∈ {2k−1 + 1, . . . , 2k}. Including the case that F = {1, . . . , 2k + 1}. We have a total
of 2k + 1 many such sets. This is the desired result. �
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24 K. Beanland, D. Gorovoy, J. Hodor and D. Homza [6]

For each k ∈ N, define (dk
i )2k

i=0 by

pk(x) =
2k∑

i=0

dk
i xi.

LEMMA 3.4. Let k ∈ N with k � 2. Then

dk
2k−2 =

(
2k−1

2

)
− 2k−2, dk

2k−1 = −2k−1, dk
2k = 1.

PROOF. We proceed by induction on k. Since p2(x) = x4 − 2x3 + x − 1, the base case
k = 2 holds. Fix some integer k with k � 3 and assume the identities hold for k − 1.
Let m = 2k−1. Then

pk(x) = pk−1(x(x − 1)) = xm(x − 1)m − m
2

xm−1(x − 1)m−1 + · · · .

By inspection of the leading coefficients and using the binomial theorem, we have

pk(x) = x2m − mx2m−1 +

( (m
2

)
− m

2

)
x2m−2 + · · · .

This completes the inductive step of the proof. �

The next lemma verifies that the recursions are satisfied for the initial 2k + 1 values
of the sequence. This lemma will be repeatedly used as the base case of the induction
in the proof of Theorem 1.1.

LEMMA 3.5. For each k ∈ N,

2k+1∑
i=1

dk
i−1r0

k,i =

2k∑
i=0

dk
i tk,i+1 =

2k∑
i=1

dk
i tk,i =

2k∑
i=0

dk
i sk,i+1 = 0.

PROOF. Direct calculation using the above lemmas shows that the first three sums
are 0. For the final identity, notice first that pk(2) = 1 for each k ∈ N. Thus using the
identities in Lemmas 3.3 and 3.4,

0 = pk(2) − 1 = dk
0 + dk

12 + · · · + dk
2k−1(22k−1 − 1) + dk

2k 22k − 1 + dk
2k−1

= dk
0 + dk

12 + · · · + dk
2k−1(22k−1 − 1) + dk

2k (22k − 2k−1 − 1) =
2k∑

i=0

dk
i sk,i+1. �

4. Pascal-like sets and recursions

A set {rj
i : i ∈ N, j ∈ {0, . . . , i − 1}} is Pascal-like if for every i ∈ N with i � 3 and

every j ∈ {0, . . . , i − 3}, we have rj
i = rj

i−1 + rj+1
i−1. By definition, the Pascal-like set is

determined by the values of the two main diagonals (ri−1
i )∞i=1 and (ri−1

i+1)∞i=1. See Figure 1
for an illustration. In the next lemma, we express each element of the main diagonal in
terms of the first column.
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[7] Counting unions of Schreier sets 25

FIGURE 1. An initial fragment of a Pascal-like set. The cells of a table are filled with the numbers rj
i , for

example, r1
6 = 7. The set is determined by two main diagonals highlighted with shading.

LEMMA 4.1. Let {rj
i : i ∈ N, j ∈ {0, . . . , i − 1}} be a Pascal-like set. Then for each

n ∈ N,

rn−1
n =

n−1∑
j=0

(−1)n−1−j
(
n − 1

j

)
r0

n+j. (4.1)

PROOF. We proceed by induction. We shall prove that for each n ∈ N, any Pascal-like
set satisfies (4.1). For n = 1, the assertion is clearly satisfied. Fix n � 2 and assume
that (4.1) holds, replacing n with n − 1 for any Pascal-like set. Fix a Pascal-like set
{rj

i : i ∈ N, j ∈ {1, . . . , i − 1}} and define bj
i = rj+1

i+1. Then {bj
i : i ∈ N, j ∈ {0, . . . , i − 1}} is

also a Pascal-like set. By the inductive assumption,

rn−1
n = bn−2

n−1 =

n−2∑
j=0

(−1)n−2−j
(
n − 2

j

)
b0

n−1+j =

n−2∑
j=0

(−1)n−2−j
(
n − 2

j

)
r1

n+j

=

n−2∑
j=0

(−1)n−2−j
(
n − 2

j

)
(r0

n+j+1 − r0
n+j)

=

n−1∑
j=1

(−1)n−1−j
(
n − 2
j − 1

)
r0

n+j +

n−2∑
j=0

(−1)n−1−j
(
n − 2

j

)
r0

n+j

=

n−1∑
j=0

(−1)n−1−j
(
n − 1

j

)
r0

n+j.

Notice that, in the fourth equality, we used the definition of a Pascal-like set. �

The properties of Pascal-like sets allow transferring recursive relations between
diagonals and columns. In Lemma 4.2 we show how recursive relations are transferred
between diagonals and in Lemma 4.3 we show how recursive relations are transferred
from the main diagonals to the first column (see Figure 2 for intuition). Next, in
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26 K. Beanland, D. Gorovoy, J. Hodor and D. Homza [8]

FIGURE 2. The goal is to relate the main diagonal entries with the first column entries. Knowing the
entries a4,1, a5,1, a6,1, a7,1 we can restore the value of a4,4 using the equation ai,j = ai+1,j−1 − ai,j−1, which is

illustrated on the left-hand side.

Lemma 4.4, we relate the recursive relation on the main diagonals to the partial sums
of the first column.

LEMMA 4.2. Let {rj
i : i ∈ N, j ∈ {0, . . . , i − 1}} be a Pascal-like set. If (ri−1

i )∞i=1 and
(ri−1

i+1)∞i=1 both satisfy a linear recurrence with characteristic polynomial p(x), then
for each integer � with � � 2, the sequence (ri−1

�+i )
∞
i=1 satisfies a linear recurrence with

characteristic polynomial p(x).

PROOF. We sketch the easy proof. The Pascal-like property yields ri−1
i+2 = ri−1

i+1 + ri
i+1

for each i ∈ N. It is clear that (ri−1
i+2)∞i=1 must satisfy the same recursions as both (ri−1

i )∞i=1
and (ri−1

i+1)∞i=1. Using this observation as the base case for an inductive argument, the
general case follows. �

LEMMA 4.3. Suppose that {rj
i : i ∈ N, j ∈ {0, . . . , i − 1}} is Pascal-like and (ri−1

i )∞i=1 and
(ri−1

i+1)∞i=1 both satisfy a linear recurrence with characteristic polynomial p(x). Then
the sequence (r0

i )∞i=1 satisfies the linear recurrence with characteristic polynomial
p(x(x − 1)).

PROOF. Let p(x) = ckxk + ck−1xk−1 + · · · c1x + c0. Let (di)2k
i=0 be defined by

p(x(x − 1)) =
∑2k

i=0 dixi. It suffices to show that for each nonnegative integer �,
2k+1∑
i=1

di−1r0
�+i = 0.

Fix some nonnegative integer �. From the definition, {rj
�+i : i ∈ N, j ∈ {0, . . . , i − 1}} is

Pascal-like. Therefore, by Lemma 4.2,
∑k

i=0 ciri
�+i+1 = 0. Using Lemma 4.1, we rewrite

this sum as

0 =
k∑

i=0

ciri
�+i+1 =

k∑
i=0

ci

i∑
j=0

(−1)i−j
(
i
j

)
r0
�+i+1+j. (4.2)
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[9] Counting unions of Schreier sets 27

Since (4.2) is satisfied, there are coefficients (d′i )
2k
i=0 such that

∑2k+1
i=1 d′i−1r0

�+i = 0 (for
each nonnegative integer �). We wish to show that d′i = di. Rather than a messy
calculation, a simple way to see this is by converting to the characteristic polynomial
and matching the coefficients. That is, replace r0

�+α by xα−1 in (4.2) and apply the
binomial theorem to obtain

k∑
i=0

ci

i∑
j=0

(−1)i−j
(
i
j

)
xi+j =

k∑
i=0

cixi(x − 1)i = p(x(x − 1)) =
2k∑
i=0

dixi.

Therefore, d′i = di as desired. �

LEMMA 4.4. Let {rj
i : i ∈ N, j ∈ {0, . . . , i − 1}} be Pascal-like so that (ri−1

i )∞i=1 and
(ri−1

i+1)∞i=1 both satisfy a linear recurrence with characteristic polynomial p(x). Let (di)2k
i=0

be the coefficients of the polynomial p(x(x − 1)) and tj =
∑j

i=1 r0
i for j ∈ N. Suppose

2k+1∑
j=1

dj−1tj = 0. (4.3)

Then (tj)∞j=1 is a linear recurrence relation with characteristic polynomial p(x(x − 1)).

PROOF. Set all the notation as in the statement of the lemma. We proceed by induction
to show that for each nonnegative integer �,

2k+1∑
j=1

dj−1t�+j = 0. (4.4)

The base case of the induction � = 0 is just (4.3).
Suppose that for some � � 0, (4.4) holds. We will show that (4.4) holds for � + 1.

By Lemma 4.3, (r0
i )∞i=1 satisfies the recurrence relation with characteristic polynomial

p(x(x − 1)). Using this fact and the induction hypothesis,

2k+1∑
j=1

dj−1t�+1+j =

2k+1∑
i=1

dj−1(t�+1+j − t�+j) +
2k+1∑
i=1

dj−1t�+j

=

2k+1∑
j=1

dj−1r0
�+1+j +

2k+1∑
j=1

dj−1t�+j = 0 + 0 = 0.

This completes the proof. �

5. Proof of Theorem 1.1

In the previous section, we made some general observations on Pascal-like sets.
Now, in order to use them, we show that the numbers rd

k,n form Pascal-like sets, as in
(O1). Next, in order to formally prove (O3), we prove that (2.1) holds in general.
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LEMMA 5.1. Let n, k ∈ N. Then

rn
k+1,n+1 = tk,n :=

n∑
i=1

r0
k,i.

PROOF. First, recall that the upper index 0 in the expression r0
k,n indicates counting

maximal kS sets. Observe that every element of Rn
k+1,n+1 is the union of two sets.

The first is a maximal kS set with a maximum at most n − 1. The second is {n + 1}.
Consider the map

Rn
k+1,n+1 � F 	→ F\{n + 1} ∈

n⋃
i=1

R0
k,i.

The map is clearly bijective (i can be interpreted as the second largest element of F)
and the families under the union in the codomain are pairwise disjoint. �

LEMMA 5.2. Let k ∈ N, n ∈ N with n � 3 and d ∈ {0, . . . , n − 3}. Then

rd
k,n = rd

k,n−1 + rd+1
k,n−1.

Hence, the set {rj
k,i : i ∈ N, j ∈ {0, . . . i − 1}} is Pascal-like. Moreover, rj−1

k,j+1 = 0 for each
j ∈ N.

PROOF. Define

T1 := {F ∈ Rd
k,n : n − 1 ∈ F}, T2 := {F ∈ Rd

k,n : n − 1 � F},
T ′1 := {F\{n} : F ∈ T1}, T ′2 := {F\{n} ∪ {n − 1} : F ∈ T2}.

Clearly, we have |T1| = |T ′1 | and |T2| = |T ′2 |. Hence, rd
k,n = |T1| + |T2| = |T ′1 | + |T

′
2 |.

Consider some F ∈ Rd
k,n. We claim that |Ek(F)| > 1. If Ek(F) = {n}, then dk(F) = n − 1,

but we assumed that d < n − 1, which is a contradiction. Comparing the sets Ek(F) and
Ek(F′), where F′ is the set F modified in one of two presented ways, it can be easily
checked that T ′1 = R

d+1
k,n−1 and T ′2 = R

d
k,n−1. This concludes the proof of the first part.

We will show that for each n ∈ N, we have Rn−1
k,n+1 = ∅. We know that if F ∈ Rn−1

k,n+1
we have n + 1 ∈ Ek(F) and, by definition, dk(F) = n − 1. We obtain contradictions
for all possible values of min Ek(F). If min Ek(F) � n, using n + 1 ∈ Ek(F), we have
dk(F) � n − 2. If n + 1 = min Ek(F), then dk(F) = n. �

LEMMA 5.3. Let k, n ∈ N with n � 2. We have

sk,n = 2sk,n−1 − r0
k,n−1.

PROOF. Define

T1 := {F ∪ {n} : F ∈ (kS)n−1\R0
k,n−1}, T2 := {F\{n − 1} ∪ {n} : F ∈ (kS)n−1}.

We claim that (kS)n = T1 ∪ T2. Then, by the fact that T1 ∩ T2 = ∅, we obtain

sk,n = |(kS)n| = |T1| + |T2| = (sk,n−1 − r0
k,n−1) + sk,n−1.
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For each G ∈ (kS)n we have F = G\{n} ∪ {n − 1} ∈ (kS)n−1. If n − 1 ∈ G, then
F = G \ {n}. Since G ∈ (kS)n, F is not a maximal k-Schreier set. Hence, G ∈ T1. If
n − 1 � G, then G ∈ T2. It follows that (kS)n ⊆ T1 ∪ T2. The inclusion T2 ⊆ (kS)n is
obvious. It suffices to prove that T1 ⊆ (kS)n; however, this is almost obvious. Adding
one element larger than the maximum to a nonmaximal k-Schreier set produces a
k-Schreier set. �

We are now ready to proceed to the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. We claim that for each k ∈ N, the sequence (sk,n) satisfies
a linear recurrence with characteristic polynomial pk(x). This claim has already
been established in the previous work for k = 1; however, we will not use this
statement directly. Instead, we prove the following statement holds for each natural
number k.

(Pk): The sequences (r0
k,i)
∞
i=1, (tk,i)∞i=1 satisfy a linear recurrence with characteristic

polynomial pk(x).

Consider the base case k = 1. Note that rn−1
1,n = 1 for each n ∈ N since F ∈ Rn−1

1,n if
and only if F = {n}. Therefore, (rn−1

1,n ) satisfies a linear recurrence with characteristic
polynomial p0(x) = x − 1 and the same holds for (rn−1

1,n+1)∞n=1 since this sequence
is identically 0 (Lemma 5.2). Therefore, by Lemma 4.3, (r0

1,i)
∞
i=1 satisfies a linear

recurrence with characteristic polynomial p0(x(x − 1)) = x(x − 1) − 1 = p1(x). Notice
that (4.3) is satisfied by Lemma 3.5 for k = 1. Therefore, we may apply Lemma 4.4
to see that (t1,i)∞i=1 satisfies a linear recurrence with characteristic polynomial p1(x).
Therefore, (P1) holds.

Fix a positive integer k and assume that (Pk) holds; we will prove that (Pk+1)
holds. By Lemma 5.1, tk,i = ri

k+1,i+1 for each i ∈ N. Therefore, (ri
k+1,i+1)∞i=1 satisfies a

linear recurrence with characteristic polynomial pk(x). We want to show that (ri−1
k+1,i)

∞
i=1

satisfies a linear recurrence with characteristic polynomial pk(x); this is just the
sequence in the previous sentence starting with r0

k+1,1. Notice that r0
k+1,1 = 0. Therefore,

by Lemma 3.5,

2k∑
i=0

dk
i ri

k+1,i+1 =

2k∑
i=1

dk
i tk,i = 0.

Therefore, the initial conditions are satisfied and so (ri−1
k+1,i)

∞
i=1 satisfies a linear

recurrence with characteristic polynomial pk(x).
By Lemma 5.2, ri−1

k+1,i+1 = 0 for each i ∈ N. Thus we may apply Lemma 4.3 to
conclude that (r0

k+1,i)
∞
i=1 satisfies a linear recurrence with characteristic polynomial

pk+1(x). In addition, by Lemma 3.5, the assumptions of Lemma 4.4 are satisfied,
so (tk+1,i)∞i=1 satisfies a linear recurrence with characteristic polynomial pk+1(x). This
concludes the inductive step.
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Fix k ∈ N. It remains to prove that (sk,n)∞n=1 satisfies a linear recurrence with
characteristic polynomial pk(x). It suffices to show that for each nonnegative integer �,

2k∑
i=0

dk
i sk,�+i+1 = 0. (5.1)

By Lemma 3.5, the � = 0 case holds. Suppose (5.1) holds for some nonnegative �.
Using Lemma 5.3 and the statement (Pk), we have

2k∑
i=0

dk
i sk,�+i+2 = 2

2k∑
i=0

dk
i sk,�+i+1 −

2k∑
i=0

dk
i r0

k,�+i+1 = 0 − 0.

This finishes the proof of the theorem. Note that Corollary 1.2 follows from the initial
induction in the proof for the statements (Pk). �

6. Concluding remarks

It seems there are many interesting open problems similar to the one we have
studied. For example, there is another important regular family S2, which is the
convolution of S with itself. That is, a subset of natural numbers F is in S2 if there
exist disjoint nonempty sets E1, . . . , E� ∈ S such that

�⋃
i=1

Ei = F and {min Ei : i ∈ {1, . . . , �}} ∈ S.

The family S2 also appears naturally in Banach space theory [1].

PROBLEM 6.1. Is the sequence (|Sn
2|)
∞
n=1 a linear recurrence sequence? If yes, then what

is the recursive relation?
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JĘDRZEJ HODOR, Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science and
Doctoral School of Exact and Natural Sciences,
Jagiellonian University, Kraków, Poland
e-mail: jedrzej.hodor@gmail.com

DANIIL HOMZA, Mathematics Department,
Jagiellonian University, Kraków, Poland
e-mail: daniil.homza.work@gmail.com

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972723001326
Downloaded from https://www.cambridge.org/core. IP address: 3.141.25.201, on 14 Oct 2024 at 22:27:08, subject to the Cambridge Core terms of use, available at

mailto:beanlandk@wlu.edu
mailto:dimgor2003@gmail.com
mailto:jedrzej.hodor@gmail.com
mailto:daniil.homza.work@gmail.com
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972723001326
https://www.cambridge.org/core

	1 Introduction
	2 Notation and overview of the proof of Theorem 1.1
	3 Initial values of the sequences
	4 Pascal-like sets and recursions
	5 Proof of Theorem 1.1
	6 Concluding remarks

