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There is a workmanlike chapter on counting techniques before continuous
random variables, including the Normal distribution, are introduced. This leads to
the central limit theorem and its various uses. The next chapter is on confidence
intervals, and now we encounter the thorny issue of estimating variance. In order to
confront the fact that the sample variance is a biased estimator for population
variance, one needs a theoretical framework which, unless a teacher is prepared to go
well beyond the syllabus, is beyond the scope of a textbook. The current author
simply says what happens.

The general theoretical framework of hypothesis testing is not taken beyond the
level of Year 1 core until the penultimate chapter. My own practice was to introduce
the concepts of Type 1 and Type 2 errors in the context of binomial tests, so that the
calculations are relatively straightforward and yet the concepts can be understood
thoroughly. However, the author's treatment of this, and non-parametric testing,
seems to be very sound.

This is not the book I would have written if anyone had the misfortune to
commission one from me. Perhaps I am expecting a somewhat more theoretical
approach to what is, after all, a difficult subject to teach. However, it contains plenty
of excellent questions and everything you need to know is there, even it is presented
as a fait accompli rather than justified from first principles. Use it by all means, but
be prepared for some searching questions from that awkward pupil who insists on
knowing why things work rather than just how to do the problems.
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OCR A level Further Mathematics Discrete (A) by Nick Geere, pp. 162, £21,
ISBN 978-1-5104-3337-3, Hodder Education (2018)

This slim volume completes the set of five books which cover the syllabus for the
OCR Further Mathematics examination. I have to admit that discrete mathematics is not
an area | have taught and, apart from combinatorics, not one I am expert in. Moreover,
my interest is motivated by problem-solving rather than by familiarity with particular
aspects of discrete mathematics such as network algorithms, critical path analysis, linear
programming or game theory. So I shall take it as read—I think with reason—that the
author of the book knows the syllabus intimately, has covered all the necessary topics
and has offered much useful advice on tackling the questions which will appear on the
examination paper. The focus of this review, therefore, will mainly be on the first two
chapters and, in particular, on concept development and problem-solving.

The first chapter provides a synopsis of what this subject is about, beginning
with a useful classification of problems into the four (possibily overlapping)
categories of existence, construction, enumeration and optimisation. The specific
items covered include the pigeonhole principle, set theory with Venn diagrams (and
the inclusion-exclusion principle) and permutations and combinations.
Derangements are mentioned but not pursued beyond four objects. I have no
criticisms of this treatment.
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The second chapter is on graph theory, and what emerges immediately is the
need for precise technical language. It is essential in the theory of networks, for
example, to distinguish between a walk, a trail and a path, all of which are examples
of routes, and some of which are cycles. In the first section alone, there are at least
23 such definitions. The remainder of the chapter covers Eulerian graphs, adjacency
matrices, complete bipartite graphs, k-colourability, Hamiltonian cycles, planarity
and Euler's formula, and it ends with Kuratowski's theorem on the characterisation of
non-planar graphs. My reason for supplying this intimidating list is that it highlights
a characteristic of discrete mathematics—the number of unfamiliar concepts and
relationships which must be assimilated before a pupil feels confident even in
understanding the problems which they are asked to solve. Naturally there are going
to be aspects of this in any area of mathematics—for example in mechanics and
statistics which are the parallel disciplines in the OCR set-up—but I think I am
justified in claiming that the burden is particularly irksome in this field.

The author, to do him credit, is well aware of this, and he uses the exercises to
clarify issues which might easily be overlooked. The first question in Exercise 2.1
reminds you that a cycle is a closed path, so it cannot visit the same vertex (apart
from the endpoints) twice. A second exercise emphasises that a loop contributes two
to the degree of its vertex. Much of the novel vocabulary is highlighted in this way,
although I did wonder if it was obvious that a graph which is ‘simply connected’ is
both simple (with no multiple edges or loops) and connected (with no isolated
vertices). After all, the adverb simply might be referring to a type of connection.

The author also makes effective use of Activities, whose purpose is to help
readers get into the thought process of new work they encounter, and Discussion
Points, which invite pupils to discuss particular issues with their fellow students and
teacher. An example of the first asks novices to show that, in any graph, the number
of odd vertices is always even, and one of the second is to find—in the course of
dialogue with their peers—the smallest number of edges for a simply-connected
graph with vertices. The tangible benefit of tackling such problems is that students
are encouraged to talk in the language of graph theory so that it eventually becomes
as familiar as the algebra or calculus they mastered earlier in their school career.

There is a peculiar flavour to the types of argument used in discrete
mathematics—a good deal of argument by contradiction and a need to identify, in
the midst of quite a complex problem, some key feature which permits progress
towards a solution. I strongly suspect that many teachers are likely to be just as
unfamiliar with many aspects of this course as are their students, and it will be a
steep learning curve for them as well. A real danger is that discrete mathematics
might degenerate into a collection of clever tricks without an overarching
mathematical structure, and the author, to his credit, works hard to avoid that.

Next I move on to the exercises in the book, as it is here that I have some
reservations (which may well be more pertinent to the subject than to this particular
text). As an example, take the concept of isomorphic graphs, defined as follows:-

Two graphs said to be isomorphic if one can be distorted in some way to

produce the other. Isomorphic graphs must have the same number of

vertices, each of the same degree, and their vertices must be connected in the
same way.

So to prove that two graphs are isomorphic, one displays a correspondence
which respects the criterion above. There might well be more than one, but that does
not matter. Much harder, it seems to me, is to show that they are not isomorphic.
There might well be obvious reasons for this—for example, graph A has a vertex of
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order 4 and graph B does not. However, what if there is no such egregious
distinction? The author suggests examining the adjacency matrices, which might
look different, but then you might be able to relabel the vertices and they turn out to
be the same. There were several places in this chapter where I looked at the solutions
and wondered about their rigour. One example asks the student to determine whether
a graph is planar, fully justifying their answer, and the solution states that it is not,
using Kuratowski's theorem, since it does not contain a subgraph which is a
subdivision (formed when you insert extra vertices into one for more edges) of Ks.
How do you know that? Have you looked at all possible subdivisions? This rather
worries me, wearing my Olympiad hat, as a sort of “Trust Me’ argument.

However, this sort of issue strikes me as generic for many of the subject areas
covered by the mantle of Discrete Mathematics, which probably has as many
undetermined problems as number theory, and one can hardly censure the author for
it. So, despite this reservation, I am sure that his book will turn out to be very useful
to those who are teaching the discipline for the first time, as well as whose who
aren't, and, of course, their students.
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Bounded gaps between primes by Kevin Broughan, pp. 590, £39.99 (paper), ISBN
978-1-108-79920-1, Cambridge University Press (2021).

Let p, denote the nth prime, and g, the nth gap between successive primes. The
twin-primes conjecture states that g, = 2 for infinitely many n. Being essentially an
additive problem concerned with primes which are defined, ostensibly, in terms of
multiplication only, such a basic problem is bound to be difficult. Indeed there was
no method to tackle the problem until G. H. Hardy and J. E. Littlewood created their
powerful circle method, which is particularly suitable for the investigation of such
additive problems. The method shows that knowledge of the distribution of primes in
arithmetic progressions, and exponential sums, will be central to the investigation of
the conjecture. If the argument can be completed successfully then not only is the
conjecture true, but the counting function for twin-primes has the asymptotic value
C, x/(logx)*, where the twin-primes constant C, = 1.32 is an explicitly defined
number. Computer counts of prime-twins up to various x of modest size show that
there is good agreement with the formula.

The prime number theorem shows that, for large n, the gap g, has the average
value logp,, so that ¢ = lim inf (gn/ log po) < 1. From their circle method,
together with the assumption of the Generalised Riemann Hypothesis (GRH), which
implies that the distribution of primes in arithmetic progressions is uniform with
respect to the moduli of the progressions, Hardy and Littlewood established in 1923
that ¢ < 1. The dependence on GRH was removed by P. Erdds in 1940 and, for the
remaining part of the twentieth century, the upper estimate for ¢ was duly brought
down, but ‘only’ to slightly better than ¢ < 1. We say ‘only’ because of the
spectacular achievements in the present century, and we put it in quotes because such
achievements are based on the many important ideas and results from distinguished
mathematicians in their approaches to the reduction of the bound. Thus, besides the
development in sieve methods, there is the important Bombieri-Vinogradov theorem
which shows that, in the distribution of primes up to x in arithmetic progressions,
there is uniformity with respect to the modulus varying up to nearly \x, at least in
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