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We prove that, given 2 < p < ∞, the Fourier coefficients of functions in
L2(T, |t|1−2/p dt) belong to �p, and that, given 1 < p < 2, the Fourier series of
sequences in �p belong to L2(T, |t|2/p−1 dt). Then, we apply these results to the
study of conditional Schauder bases and conditional almost greedy bases in Banach
spaces. Specifically, we prove that, for every 1 < p < ∞ and every 0 � α < 1, there is
a Schauder basis of �p whose conditionality constants grow as (mα)∞m=1, and there is
an almost greedy basis of �p whose conditionality constants grow as ((log m)α)∞m=2.
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1. Introduction

To contextualize the study carried out in this paper, we bring up a classical theorem
which applies, in particular, to Hilbert spaces.

Theorem 1.1 ([19, theorems 1 and 2] and [21, theorems 2 and 3]). Let X =
(xn)∞n=1 be a Schauder basis of superreflexive Banach space X. Suppose that X
is semi-normalized, i.e.,

inf
n

‖xn‖ > 0, sup
n

‖xn‖ < ∞.

Then, there are 1 < q � r < ∞ such that

• X is r-Besselian, that is, there exists a constant Cb such that

( ∞∑
n=1

|(x∗
n(f)|r

)1/r

� Cb‖f‖, f ∈ X,

where X ∗ = (x∗
n)∞n=1 is the dual Schauder basis of X ; and
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• X is q-Hilbertian, that is, there is another constant Ch such that

∥∥∥∥∥
∞∑

n=1

an xn

∥∥∥∥∥ � Ch

( ∞∑
n=1

|an|q
)1/q

; (an)∞n=1 ∈ c00.

In the language of linear operators, the basis X of X is r-Besselian if and only if
the coefficient transform

f �→ (x∗
n(f))∞n=1

is a bounded operator from X into �r, and it is q-Hilbertian if and only if the series
transform

(an)∞n=1 �→
∞∑

n=1

an xn

is a bounded operator from �q into X.
Theorem 1.1 leads naturally to pose the following general problem.

Problem 1.2. Let X be a semi-normalized Schauder basis of a superreflexive
Banach space X. The non-trivial intervals

JB [X , X] = {r ∈ [1,∞] : X is r-Besselian} and

JH [X , X] = {q ∈ [1,∞] : X is q-Hilbertian},

called the Besselian and Hilbertian intervals of X in X, respectively, contain valuable
information on the geometry of the basis X . So they are worth studying.

In this paper, we address problem 1.2 for the trigonometric system in Hilbert
spaces arising from power weights. Given λ ∈ R, we consider the weight

wλ : [−1/2, 1/2] → [0,∞], t �→ |t|λ.

If λ > −1 and n ∈ Z, then the trigonometric function

τn : [−1/2, 1/2] → C, τn(t) = e2πint,

belongs to the complex Hilbert space

Hλ = L2(wλ, C).

Moreover, the norm of τn does not depend on n. The natural arrangement of
the trigonometric system (τn)∞n=−∞ will be denoted by T , that is, T = (φn)∞n=0,
where φ2n = τ−n and φ2n+1 = τn+1 for all n ∈ N ∪ {0}. As we are also interested
in Hilbert spaces over R, we consider the real-valued counterpart of T . We define
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T R = (φR
n)∞n=0 by φR

0 = 1 and

φR

2k−1(t) = cos(2πkt), φR

2k(t) = sin(2πkt), t ∈ [−1/2, 1/2], k ∈ N.

Let us record the obvious relations between T and T R. We have

φR

2k−1 =
φ2k−1 + φ2k

2
, φR

2k =
φ2k−1 − φ2k

2i
, k ∈ N, and (1.1)

φ2k−1 = φR

2k−1 + iφR

2k, φ2k = φR

2k−1 − iφR

2k, k ∈ N. (1.2)

In the case when −1 < λ < 1, the conjugate-function operator

f =
∞∑

n=−∞
anτn �→ f̃ =

∞∑
n=−∞

sign(n)anτn

is bounded on Hλ [9] and, hence, T is a Schauder basis of Hλ. Of course, this
result can be derived from the fact that wλ is a Muckenhoupt A2 weight (see [20,
theorem 8]). Taking into consideration (1.1), we infer from [5, lemma 2.4] that T R

is a semi-normalized basis of both Hλ and its real-valued counterpart

HR

λ = L2(wλ, R).

Here, we contribute to the understanding of the trigonometric system by com-
puting the Besselian and Hilbertian intervals of T and T R regarded as systems in
Hλ and HR

λ, respectively. Namely, we will prove the following result.

Theorem 1.3. Let 0 � α < 1. Define 1 < qα � 2 � rα < ∞ by

qα =
2

1 + α
, rα =

2
1 − α

.

Then,

(i) JB [T ,H−α] = JB [T R,H−α] = JB [T R,HR

−α] = [2,∞],

(ii) JH [T ,H−α] = JH [T R,H−α] = JH [T R,HR

−α] = [1, qα],

(iii) JB [T ,Hα] = JB[T R,Hα] = JB[T R,HR

α] = [rα,∞], and

(iv) JH [T ,Hα] = JH [T R,Hα] = JH [T R,HR

α] = [1, 2].

Since parts (i) and (iv) of theorem 1.3 are elementary, our contribution consists
in proving parts (ii) and (iii). We also notice that, since the trigonometric system
is an orthogonal basis of L2([−1/2, 1/2]), the case α = 0 in theorem 1.3 is just a
consequence of combining Bessel’s inequality with Riesz–Fischer Theorem.

We complement our research by applying theorem 1.3 to the study of conditional
bases in �p-spaces. Since every Banach space with a Schauder basis has a condi-
tional Schauder basis by a classical theorem of Peczyński and Singer [27], to obtain
information on the structure of a given space by means of its conditional bases we
must study certain additional features of the bases. In this regard, focusing on the
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conditionality parameters of the bases is an inviting line of research. Let us abridge
the necessary terminology and background on this topic.

Given a Schauder basis X = (xn)∞n=1 of a Banach space X with dual basis
(x∗

n)∞n=1, we put

km = km[X , X] = sup
|A|�m

‖SA‖, m ∈ N,

where SA = SA[X , X] : X → X is the the coordinate projection on the finite subset
A ⊆ N, i.e.,

SA(f) =
∑
n∈A

x∗
n(f) xn, f ∈ X.

Since X is unconditional if and only if supm km < ∞, the growth of the sequence
(km)∞m=1 measures how far X is from being unconditional.

An application of theorem 1.1 gives that if X is superreflexive, then there is
0 � α < 1 such that

km[X , X] � mα, m ∈ N. (1.3)

(see theorem 2.5 and equation (2.4) below). In fact, this property characterizes
superreflexivity (see [5, corollary 3.6]). The authors of [16] proved that the estimate
(1.3) is optimal for Hilbert spaces and, more generally, �p spaces for 1 < p < ∞.
To be precise, Garrigós and Wojtaszczyk proved that for every 0 � α < 1 there is
a Schauder basis Xα of �p with

km[Xα, �p] � mα, m ∈ N.

However, they did not compute the exact growth of the numbers km. We will take
advantage of theorem 1.3 to complement their study. Namely, we will prove the
following.

Theorem 1.4. For every 0 � α < 1 and 1 < p < ∞ there is a Schuader basis Xα

of �p with

km[Xα, �p] ≈ mα, m ∈ N.

Another way to get information on the structure of a given space by means of
its conditional bases is to restrict the discussion on their existence by imposing cer-
tain distinctive properties. These additional properties can be imported to Banach
space theory from greedy approximation theory, where we find interesting types
of bases, such as almost greedy bases, which are suitable to implement the greedy
algorithm and yet they need not be unconditional. In this regard, we point out that
superreflexivity can also be characterized in terms of the conditionality parameters
of almost greedy bases. In fact, since the GOW-method invented in [16] gives rise
to almost greedy bases, we can safely replace ‘quasi-greedy’ with ‘almost greedy’ in
[5, corollary 3.6]. Thereby, a Banach space X is superreflexive if and only if every
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almost greedy basis Y of a Banach space Y finitely representable in X satisfies

km[Y, Y] � (log m)α, m � 2, (1.4)

for some α < 1. As well as (1.3), the estimate (1.4) is optimal in the sense that for
every 0 � α < 1 and every 1 < p < ∞ there is an almost greedy basis Yα of �p with

km[Yα, �p] � (log m)α, m ∈ N

(see [16, theorem 1.2]). In this paper, we improve this result by computing the
growth of the sequence (km)∞m=1. To be precise, we will prove the following result.

Theorem 1.5. Let 1 < p < ∞, and let |1/2 − 1/p| � α < 1. Then, there is an
almost greedy basis Yα of �p with

km[Yα, �p] ≈ (log m)α, m � 2.

Note that theorem 1.5 is, in a sense, the almost greedy counterpart of
theorem 1.4.

The article is structured in three more sections. In § 2, we record some general
results on Hilbertian an Besselian intervals, as well as some general results on con-
ditionality parameters. Section 3 revolves around the proof of theorem 1.3. Section
4 is devoted to prove theorem 1.4. In turn, § 5 is geared towards the proof of
theorem 1.5.

Throughout this paper, we employ standard notation and terminology commonly
used in Fourier Analysis, Functional Analysis and Approximation Theory, as the
reader will find, e.g., in the monographs [7, 25, 29]. Other more specific terminology
will be introduced in context when needed.

2. Preliminary results

For broader applicability, we will consider problem 1.2 within a setting more general
than that of Schauder bases. A biorthogonal system in a Banach space X over the
real or complex field F is a sequence O = (xn,x∗

n)∞n=1 in X × X
∗ with x∗

n(xk) = δn,k

for all (n, k) ∈ N
2. The Besselian and Hilbertian intervals of the biorthogonal system

O are defined analogously to those of a Schauder basis. The interval JB [O, X] is
nonempty, that is, ∞ ∈ JB [O, X], if and only if (x∗

n)∞n=1 is norm-bounded. Similarly,
1 belongs to JH [O, X], so that JH [O, X] 
= ∅, if and only if (xn)∞n=1 is norm-bounded.
Notice that (xn)∞n=1 and (x∗

n)∞n=1 are simultaneously norm-bounded if and only if
(xn)∞n=1 is semi-normalized and

sup
n

‖xn‖‖x∗
n‖ < ∞. (2.1)

If (2.1) holds, we say that the biorthogonal system O is M -bounded.
If X = (xn)∞n=1 is a Schauder basis with dual basis (x∗

n)∞n=1 then, since the par-
tial sum projections with respect to X are uniformly bounded, (xn,x∗

n)∞n=1 is an
M -bounded biorthogonal system.
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Given a biorthogonal system O = (xn,x∗
n)∞n=1, the set

J [O, X] := JH [O, X] ∩ JB [O, X]

is either empty or a singleton. In fact, if r ∈ J [O, X], then (xn)∞n=1 is equivalent to
the unit vector system of �r. The Radamacher type and cotype of the space enables
us to obtain more significant information.

Proposition 2.1. Suppose that O = (xn,x∗
n)∞n=1 is a semi-normalized M -bounded

biorthogonal system in a Banach space X of type r0 and cotype q0, 1 � r0 � 2 �
q0 � ∞. Then JH [O, X] ⊆ [1, q0] and JB [O, X] ⊆ [r0,∞].

Proof. Suppose that O is r-Besselian. Then,

m1/r = Ave
εn=±1

( ∞∑
k=1

|x∗
k

(
m∑

n=1

εn xn

)
|r
)1/r

� Ave
εn=±1

∥∥∥∥∥
m∑

n=1

εn xn

∥∥∥∥∥ �
(

m∑
n=1

‖xn‖r0

)1/r0

≈ m1/r0 .

for m ∈ N. Consequently, r � r0. Similarly, if O is q-Hilbertian,

m1/q0 ≈
(

m∑
n=1

‖xn‖q0

)1/q0

� Ave
εn=±1

∥∥∥∥∥
m∑

n=1

εn xn

∥∥∥∥∥ � m1/q

for m ∈ N. Hence, q � q0. �

In the case when X = �p, 1 � p � ∞, proposition 2.1 gives that the Hilbertian
interval of the biorthogonal system O is contained in [1, max{2, p}], and its Besselian
interval is contained in [min{2, p},∞]. If p = 2, this information allows us to draw
apart the Hilbertian and Besselian intervals of any biorthogonal system of X. If
p 
= 2, to obtain a similar result we must take advantage of the concavity and
convexity properties of the lattice structure induced on X by its unit vector system.

Following [25], we say that a quasi-Banach lattice X satisfies an upper (resp.,
lower) r-estimate, where 1 � r � ∞, if there is a constant C > 0 such that for
every choice of finitely many disjoint elements (fj)m

j=1 in X we have ‖f‖ � CN
(resp. N � C‖f‖), where

f =
m∑

j=1

fj and N =

⎛⎝ m∑
j=1

‖fj‖r

⎞⎠1/r

.

It is clear that if 1 � r � 2 (resp., 2 � r � ∞) and the Banach lattice X has
Radamacher type (resp., cotype) r, then it satisfies an upper (resp., lower)
r-estimate.

Given a set A ⊆ [1,∞], we put

A′ = {q′ := q/(q − 1) : q ∈ A},

and we say that A and A′ are conjugate sets.
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Proposition 2.2. Let X be a Banach space with an unconditional basis U =
(uj)∞j=1. Suppose that the lattice structure on X induced by U satisfies a lower
r0-estimate and an upper q0-estimate, 1 � q0 � r0 � ∞. Then JH [O, X] ⊆ [1, r0]
and JB[O, X] ⊆ [q0,∞] for any semi-normalized M -bounded biorthogonal system
O = (xn,x∗

n)∞n=1 in X. In particular, if X = �p, 1 � p � ∞, then JB [O, X] ⊆ [p,∞]
and JH [O, X] ⊆ [1, p] (we replace �∞ with c0 if p = ∞).

Proof. Let U∗ = (u∗
j )∞j=1 be the dual basis of U . Suppose that O is q-Hilbertian, 1 �

q � ∞. By the Cantor diagonal technique, passing to a subsequence we can suppose
that (u∗

j (xn))∞n=1 converges for every j ∈ N. Then, replacing xn with x2n − x2n−1

and x∗
n with (x∗

2n − x∗
2n−1)/2 we can suppose that limn u∗

j (xn) = 0 for every j ∈ N.
By the Bessaga-Pe�lczyński Selection Principle (see, e.g., [7, proposition 1.3.10]),
passing to a subsequence we can suppose that (xn)∞n=1 is equivalent to a block
basic sequence with respect to U , say Y = (yn)∞n=1. On the one hand, the mapping

(an)∞n=1 �→
∞∑

n=1

an yn

defines a bounded operator from �q into X. On the other hand, since Y is semi-
normalized, there is a constant C such that

‖f‖r0 � C

∥∥∥∥∥
∞∑

n=1

an yn

∥∥∥∥∥ , f = (an)∞n=1 ∈ c00.

We infer that q � r0.
The above argument proves the Hilbertian part. In order to prove the Besselian

part, we assume that q0 > 1; otherwise there is nothing to prove. Since every semi-
normalized block basic sequence (zn)∞n=1 with respect to U satisfies the estimate∥∥∥∥∥

∞∑
n=1

an zn

∥∥∥∥∥ � C‖f‖q0 , f = (an)∞n=1 ∈ c00,

for some constant C, U does not have any block basic sequence equivalent to the unit
vector system of �1. By [7, theorem 3.3.1], U∗ is a basis of X

∗. By [25, proposition
1.f.5], U∗ induces on X

∗ a lattice structure which satisfies a lower q′0-estimate.
Let O∗ denote the biorthogonal system (x∗

n, hX(xn))∞n=1, where hX : X → X
∗∗ is

the bidual map. By the already proved Hilbertian part, JH [O∗, X∗] ⊆ [1, q′0]. By
duality, JB [O, X] ⊆ (JH [O∗, X∗])′. Consequently, JB [O, X] ⊆ [1, q′0]′ = [q0,∞].

We conclude the proof by noticing that �p satisfies both a lower and an upper
p-estimate. �

To establish our results as accurately as possible, we will need notions more
general than p-Besselian and p-Hilbertian bases. A sequence space will be a Banach
space or, more generally, a quasi-Banach space U ⊆ F

N for which the unit vector
system

E = (en)∞n=1

is a normalized 1-unconditional basis. We say that a biorthogonal system O in
a Banach space X is U-Besselian (resp., U-Hilbertian) if the coefficient transform
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(resp., the series transform) is a bounded operator from X into U (resp., from U

into X).
Given sequences X = (xn)∞n=1 and Y = (yn)∞n=1 in Banach spaces X and Y,

respectively, their direct sum is the sequence X ⊕ Y = (un)∞n=1 in X ⊕ Y given by

u2n−1 = (xn, 0), u2n = (0,yn), n ∈ N.

We put X 2 = X ⊕ X , and we call X 2 the square of X . If X is a semi-normalized
Schauder basis of X, and Y is a semi-normalized Schauder basis of Y, then X ⊕ Y is
a seminormalized Schauder basis of X ⊕ Y whose dual basis is, modulus the natural
identification of (X ⊕ Y)∗ with X

∗ ⊕ Y
∗, X ∗ ⊕ Y∗. Given biorthogonal systems O =

(xn,x∗
n)∞n=1 and R = (yn,y∗

n)∞n=1 in Banach spaces X and Y, respectively, their
direct sum is the biorthogonal system O ⊕R in X ⊕ Y whose first and second
components are (xn)∞n=1 ⊕ (yn)∞n=1 and (x∗

n)∞n=1 ⊕ (y∗
n)∞n=1, respectively.

The rotation of a sequence X = (xn)∞n=1 in a Banach space X will be the sequence
X� = (yn)∞n=1 given by

y2n−1 =
x2n−1 − x2n√

2
, y2n =

x2n−1 + x2n√
2

, n ∈ N.

If X is Schauder basis, then X� is a Schauder basis with dual basis (X ∗)�. Given
a biorthogonal system O = (xn,x∗

n)∞n=1 in X, its rotation is the biorthogonal sys-
tem O� in X whose first and second components are the rotations of (xn)∞n=1 and
(x∗

n)∞n=1, respectively.
We say that a sequence space U is lattice isomorphic to its square if the unit

vector system of U is equivalent to its square.
Lemma 2.3 below, whose straightforward proof we omit, gathers some properties

of these notions that we will need.

Lemma 2.3. Let U be a sequence space, and let O = (xn,x∗
n)∞n=1 be a biorthogonal

system in a Banach space X. Suppose that O is U-Besselian (resp., U-Hilbertian).

(i) if (λn)∞n=1 is a semi-normalized sequence in F, then the perturbed system
(λn xn, λ−1

n x∗
n)∞n=1 is U-Besselian (resp., U-Hilbertian).

(ii) Suppose that U is lattice isomorphic to its square. Then, the rotated system O�
is U-Besselian (resp., U-Hilbertian). Moreover, if R is a U-Besselian (resp.,
U-Hilbertian) biorthogonal system of a Banach space Y, then O ⊕R is a
U-Besselian (resp., U-Hilbertian) biorthogonal system of X ⊕ Y.

(iii) Suppose that U and X are real-valued spaces. Then, O is a U
C-Besselian

(resp., Hilbertian) biorthogonal system in the complexification X
C of X.

The authors of [5] introduced an alternative quantitative measure of the uncon-
ditionality of a biorthogonal system O = (xn,x∗

n)∞n=1 which is more accurate in
some situations. Set

N[m] = {n ∈ Z : 1 � n � m}
and define

k̃m = k̃m[O, X] := sup{‖SA(f)‖ : ‖f‖ � 1, supp(f) ⊆ N[m], A ⊆ N}.
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We have k̃m � km for all m ∈ N, and supm k̃m = supm km.
If O and R are biorthogonal systems in Banach spaces X and Y, then

k̃m[O ⊕R, X ⊕ Y] = max{k̃�m/2�[O, X], k̃	m/2
[R, Y]}, (2.2)

km[O ⊕R, X ⊕ Y] = max{km[O, X],km[R, Y]}. (2.3)

Loosely speaking, we could say that O ⊕R inherits naturally the properties of O
and R. In contrast, ‘rotating’ O ⊕R gives rise to more interesting situations. Set
O �R := (O ⊕R)� and define

δ̃m[O, X,R, Y] = sup
A⊆N[m]

(an)n∈A∈F
A\{0}

‖
∑

n∈A an xn‖
‖
∑

n∈A an yn‖
, m ∈ N,

δm[O, X,R, Y] = sup
|A|�m

(an)n∈A∈F
A\{0}

‖
∑

n∈A an xn‖
‖
∑

n∈A an yn‖
, m ∈ N.

Lemma 2.4. Let O and R be biorthogonal systems in Banach spaces X and Y

respectively. Then

k2m[O �R, X ⊕ Y] � 1
2

max{δm[O, X,R, Y], δm[R, Y,O, X]}, and

k̃2m[O �R, X ⊕ Y] � 1
2

max{δ̃m[O, X,R, Y], δ̃m[R, Y,O, X]}.

Proof. Proceed as in the proof of [2, proposition 4.5]. �

The parameters (δm)∞m=1 also serve to estimate the conditionality parameters of
Schauder bases, or biorthogonal systems, squeezed between two sequence spaces. If
U1 and U2 are sequence spaces, we set

δm[U1, U2] = δm[E , U1, E , U2], m ∈ N.

Lemma 2.5. Let X be a biorthogonal system of the Banach space X. Suppose that
X U1-Hilbertian and U2-Besselian. Then,

km[X , X] � δm[U1, U2].

Proof. Let C1 be the norm of the series transform, and C2 be the norm of the
coefficient transform. Pick f ∈ X and A ⊆ N with |A| � m. We have

‖SA(f)‖ � C1‖(x∗
n(f)1A(n))∞n=1‖U1

� C1δm[U1, U2]‖(x∗
n(f)1A(n))∞n=1‖U2

� C1δm[U1, U2]‖(x∗
n(f))∞n=1‖U2

� C1C2δm[U1, U2]‖f‖.

�
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The following consequence of lemma 2.5, whose straightforward proof we omit,
single out an argument that we will use several times.

Corollary 2.6. Let X be a basis of a Banach space X, and let U1 and U2

be sequence spaces. Suppose that X U1-Hilbertian and U2-Besselian, and that
km[X , X] � δm[U1, U2] for m ∈ N. Then,

(i) km[X , X] ≈ δm[U1, U2] for m ∈ N; and

(ii) if U
′
1 and U

′
2 are sequence spaces with

inf
m

δm[U′
1, U

′
2]

δm[U1, U2]
= 0,

then either X is not U
′
1-Hilbertian or X is not U

′
2-Besselian.

For further reference, we record the value of the parameters δm in some important
cases. Given a sequence f = (an)∞n=1 ∈ F

N and an increasing map π : N → N, let
fπ = (bn)∞n=1 ∈ F

N be the sequence defined by bn = ak if n = π(k) for some k ∈ N,
and bn = 0 otherwise. A sequence space S is said to be subsymmetric if fπ ∈ S

for every f ∈ S and every increasing map π : N → N, and we have ‖fπ‖S = ‖f‖S.
In general, δm[S1, S2] = δ̃m[S1, S2] whenever S1 and S2 are subsymmetric sequence
spaces. As �p-spaces are concerned, we have

δm[�q, �r] = δ̃m[�q, �r] = m1/q−1/r, m ∈ N, 0 < q � r � ∞. (2.4)

Note that �p is not locally convex space in the case when 0 < p < 1. However,
the parameters δ and δ̃ still make sense in the nonlocally convex setting. Other
subsymmetric sequence spaces of interest for us are Lorentz sequence spaces. Notice
that ∥∥∥∥∥

m∑
n=1

1
n1/p

en

∥∥∥∥∥
�p,q

= H1/q
m , m ∈ N, 0 < p < ∞, 0 < q � ∞, (2.5)

where Hm =
∑m

n=1 1/n is the mth harmonic number. Combining this identity with
Hölder’s inequality we obtain

δm[�p,q, �p,r] = H1/q−1/r
m , m ∈ N, 0 < p < ∞, 0 < q � r � ∞. (2.6)

We also record the weighted version of (2.6). Given 0 < q � ∞ and a weight
w = (wn)∞n=1 whose primitive weight (sn)∞n=1 is doubling, the Lorentz sequence
space d1,q(w) is the quasi-Banach space consisting of all sequences f ∈ c0 whose
non-increasing rearrangement (an)∞n=1 satisfies

‖f‖d1,q(w) =

( ∞∑
n=1

(snan)q wn

sn

)1/q

< ∞,

with the usual modification in q = ∞. If w = (n1/p−1)∞n=1, then d1,q(w) = �p,q up
to an equivalent norm. We have

δm[d1,q(w), d1,r(w)] = (Hm[w])1/q−1/r, m ∈ N, 0 < q � r � ∞, (2.7)
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where Hm[w] =
∑m

n=1 wn/sn. If

srm � 2sm, m ∈ N,

for some integer r, in which case we say that (sm)∞m=1 has the lower regularity
property (LRP for short), the growth of the sequence (Hm[w])∞m=1 can be computed.

Lemma 2.7. Let w be a weight whose primitive sequence (sm)∞m=1 has the LRP,
and let 0 < q � ∞. Then,

‖f‖d1,q(w) ≈
( ∞∑

n=1

(snan)q 1
n

)1/q

for every f ∈ c0 with non-increasing rearrangement (an)∞n=1. In particular,
Hm[w] ≈ Hm for m ∈ N.

Proof. Let w′ = (w′
n)∞n=1 be the weight defined by w′

n = sn/n, and let (s′n)∞n=1 be
its primitive sequence. Since (sn)∞n=1 has the LRP, sn ≈ s′n for n ∈ N. Consequently,
‖f‖d1,q(w) ≈ ‖f‖d1,q(w′) for f ∈ c0 (see, e.g., [3, §9.2]). Since w′

n/s′n ≈ 1/n for n ∈ N,
the desired equivalence of quasi-norms holds. To obtain the equivalence for Hm[w],
we apply the equivalence between quasi-norms with q = 1 and

an =

{
1/sn if n � m,

0 if n > m,

where m runs over N. �

We conclude this preliminary section with another equivalence for the quasi-
norms of weighted Lorentz sequence spaces.

Lemma 2.8 (see [3, equation (8.3)]). Let w be a weight whose primitive sequence
(sn)∞n=1 is doubling, and let 0 < q < ∞. Then

‖f‖d1,q(w) ≈
( ∞∑

n=1

aq
n(sq

n − sq
n−1)

)1/q

for every f ∈ c0 with non-increasing rearrangement (an)∞n=1.

3. Fourier coefficients of functions in L2(T, |t|λ dt), |λ| < 1

With the aid of proposition 2.1, we make our first move toward the proof of
theorem 1.3.

Lemma 3.1. Let 0 � α < 1. Then,

JB [T ,H−α] = [2,∞] and JH [T ,Hα] = [1, 2].

Proof. By proposition 2.1 (or proposition 2.2), it suffices to prove that T is a
2-Besselian basis of H−α, and a 2-Hilbertian basis of Hα. Taking into account
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that T is a 2-Besselian basis of H0, the former assertion is a consequence of the
embedding H−α ⊆ H0. In turn, since T is a 2-Hilbertian basis of H0, the latter
assertion follows from the embedding H0 ⊆ Hα. �

The authors of [16] computed the norm in Hλ, −1 < λ < 1, of the Dirichlet
kernel (Dm)∞m=0 defined by

Dm =
m∑

n=−m

τn =
2m∑
n=0

φm =
2m∑
n=0

φR

m, m ∈ N.

For the reader’s ease, we record this result of Garrigós and Wojtaszczyk that we
will use a couple of times.

Lemma 3.2 (see [16, lemma 3.7]). Let −1 < λ < 1. Then

‖Dm‖Hλ
≈ m(1−λ)/2, m ∈ N.

As a matter of fact, lemma 3.2 provides valuable information on the Besselian
and Hilbertian intervals of the trigonometric system in Hλ. Recall that, given
0 � α < 1, qα = 2/(1 + α) and rα = 2/(1 − α).

Lemma 3.3. Let 0 � α < 1. Then,

JB[T ,Hα] ⊆ [rα,∞] and JH [T ,H−α] ⊆ [1, qα].

Proof. Pick s ∈ [1,∞] and suppose that T is a s-Besselian basis of Hα (resp.,
a s-Hilbertian basis of H−α). Then,

sup
m

‖
∑m

n=−m en‖s

‖Dm‖Hα

< ∞
(

resp., sup
m

‖Dm‖H−α

‖
∑m

n=−m en‖s
< ∞

)
.

Since ‖
∑m

n=−m en‖s ≈ m1/s for m ∈ N, we infer from lemma 3.2 that 1/s �
(1 − α)/2 (resp., (1 + α)/2 � 1/s). Hence, rα � s (resp., s � qα). �

To help the reader to grasp the issue of the optimality of lemma 3.3, we note
that combining the embedding

Hα ⊆ Lq([−1/2, 1/2]), 0 < α < 1, 1 � q < qα,

which follows from Hölder’s inequality, with Hausdorff–Young inequality, and taking
into account that rα and qα are conjugate exponents, yields (rα,∞] ⊆ JB [T ,Hα].
So, only whether the trigonometric system is a rα-Besselian basis of Hα is in
doubt. To answer this question, we need to introduce some terminology. Let E =
{a ∈ F : |a| = 1}. The fundamental function of a basis X = (xn)∞n=1 of a Banach
space X is defined as

ϕm[X , X] = sup
{
‖1ε,A[X ]‖ : ε ∈ E

A, |A| � m
}

,

where, for A ⊆ N finite and scalars ε = (εn)n∈A ∈ E
A,

1ε,A[X , X] =
∑
n∈A

εn xn.

Theorem 3.4 below is the last step on our route toward proving theorem 1.3.
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Theorem 3.4. Let 0 < α < 1.

(i) The Fourier coefficient transform

f �→ f̂ =

(∫ 1/2

−1/2

f(t) e−2πint dt

)∞

n=−∞

is a bounded operator from Hα into �rα,2.

(ii) The Fourier series transform

(an)∞n=−∞ �→
∞∑

n=−∞
an τn

is a bounded operator from �qα,2 into H−α.

Proof. Let −1 < λ < 1. We have H∗
λ = H−λ via the dual pairing

(f, g) �→
∫ 1/2

−1/2

f(t)g(t) dt, f ∈ Hλ, g ∈ H−λ.

Moreover, T , regarded as a basis of H−λ, is the dual basis of the own system T
regarded as a basis of Hλ. Consequently, by duality, it suffices to prove (ii). To
that end, we pick 0 < α < β < 1. Given A ⊆ Z we set

Jn[A] = {1 + |n − k| : k ∈ A}, n ∈ A.

Since, for some constant Cβ ,

|ŵ−β(n)| � Cβ

(1 + |n|)1−β
, n ∈ Z, (3.1)

(see [16, lemma A.2]), for every m ∈ N, every A ⊆ Z with |A| � m, and every
ε = (εn)n∈A ∈ T

A we have

‖1ε,A[T ,H−β ]‖2 =
∑

(n,k)∈A2

εnεkŵ−β(k − n)

� Cβ

∑
n∈A

∑
k∈A

1
(1 + |n − k|)1−β

� 2Cβ

∑
n∈A

∑
j∈Jn[A]

1
j1−β

� 2Cβm

m∑
j=1

1
j1−β

� 2Cβ

β
m1+β .
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We have obtained

ϕm[T ,H−β ] �
√

2Cβ

β
m1/qβ , m ∈ N.

Therefore, by [11, theorem 1.2], the Fourier series transform is a bounded operator
from �qβ ,1 into H−β .

By orthogonality, the Fourier series transform is a bounded operator from �2 into
H0. Pick 0 < θ < 1. By interpolation (by means of the real method) the Fourier
series transform is a bounded operator from �q,2 into H−γ , where

1
q

=
θ

qβ
+

1 − θ

2
, γ = θβ.

(see [10, theorems 5.3.1 and 5.4.1]). If we choose θ = α/β, then γ = α and

1
q

=
α(1 + β)

2β
+

β − α

2β
=

1 + α

2
,

that is, q = qα. �

Proof of theorem 1.3. By lemma 2.3 and the identities (1.1) and (1.2), it suffices
to prove the assertions involving the trigonometric system T . Since �p ⊆ �p,2 for
p � 2, and �p,2 ⊆ �p for p � 2, theorem 3.4 gives that rα ∈ JB [T ,Hα] and qα ∈
JH [T ,H−α]. In light of lemmas 3.3 and 3.1, the proof is over. �

Theorem 1.3 says, in particular, that qα is the optimal index q such that the
trigonometric system in H−α if q-Hilbertian, and rα is the optimal index r such
that the trigonometric system in Hα if r-Besselian. What remains of this section
is devoted to proving that the estimates obtained in theorem 3.4 are also optimal
in the ‘secondary’ index. To that end, we need to compute, up to equivalence, the
Fourier coefficients of the power weight wλ, −1 < λ < 0.

Lemma 3.5 (cf. equation (3.1)). Let 0 < α < 1. Then,

ŵ−α(n) ≈ 1
(1 + |n|)1−α

, n ∈ Z.

Proof. Pick n ∈ N. We have ŵ−α(−n) = ŵ−α(n) and

ŵ−α(n) = 2
∫ 1/2

0

cos(2πnt)
tα

dt =
2α

n1−α
An,
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where An =
∫ n

0
cos(πx)x−α dx. Set G(k, x) = (k + x − 1)−α − (k − x)−α for k ∈ N

and 0 < x < 1/2. We have

An =
n∑

k=1

∫ k

k−1

cos(πx)
xα

dx

=
n∑

k=1

(−1)k−1

∫ 1

0

cos(πx)
(k − 1 + x)α

dx

=
n∑

k=1

(−1)k−1

∫ 1/2

0

G(k, x) cos(πx) dx.

Since (G(k, x))∞k=1 is nonnegative and nonincreasing for each x ∈ (0, 1/2), an appli-
cation of Leibniz test for alternating series gives that there exists limn An ∈ (0,∞),
and that An > 0 for all n ∈ N. �

Remark 3.6. The precise value of A(α) := limn An, where (An)∞n=1 is as in the
proof of lemma 3.5, is known. Namely,

A(α) = πα−1 cos
(

(1 − α)π
2

)
Γ(1 − α), 0 < α < 1,

(see [29, §2, equation (3.10)]).

Proposition 3.7. Let 0 < α < 1, 0 < p < ∞, and 0 < q � ∞.

(i) The Fourier coefficient transform is a bounded operator from Hα into �p,s if
and only if p > rα, or p = rα and s � 2.

(ii) The Fourier series transform is a bounded operator from �p,s into H−α if
and only if p < qα, or p = qα and s � 2.

Proof. Since �p1,s1 ⊆ �p2,s2 if p1 < p2, or p1 = p2 and s1 � s2, in light of theorem
3.4 it suffices to prove that

• if the coefficient transform is bounded from Hα into �rα,s, then s � 2; and that

• if Fourier series transform is a bounded operator from �qα,s into H−α, then
s � 2.

Since the former assertion can be deduced from the latter by duality, it suffices to
prove the latter one.

Let (fm)∞m=1 be the sequence of trigonometric polynomials defined by

fm(t) =
m∑

n=1

1
n1/qα

e2πint,
−1
2

� t � 1
2
, m ∈ N.
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By lemma 3.5, for m ∈ N we have

‖fm‖2
H−α

=
∑

1�n,k�m

ŵ−α(k − n)
(nk)(1+α)/2

≈
m∑

n=1

n∑
k=1

(1 + n − k)α−1

(nk)(1+α)/2

=
m∑

n=1

Dn

n(1+α)/2
,

where

Dn =
n∑

k=1

1
k(1+α)/2

1
(1 + n − k)1−α

.

Set

Bn =
∫ n

0

dx

x(1+α)/2(n − x)1−α
, n ∈ N, and

Rn = − 1
n1−α

− 1
n(1+α)/2

+
2/(1 − α)
(n − 1)1−α

+
1/α

(n − 1)(1+α)/2
, n ∈ N, n � 2.

We have

Bn =
β((1 − α)/2, α)

n(1−α)/2
, n ∈ N,

Dn � Bn � Dn + Rn, n ∈ N, n � 2, and

0 = lim
n

n(1−α)/2Rn.

We infer that Dn ≈ n−(1−α)/2 for n ∈ N. Consequently,

‖fm‖H−α
≈ H1/2

m , m ∈ N. (3.2)

Suppose that the Fourier series transform is a bounded operator from �qα,s into
H−α. Combining (3.2) with (2.5) gives s � 2. �

4. Conditionality parameters of Schauder bases

The trigonometric system T , regarded as a sequence in Hλ, 0 < |λ| < 1, is the first
example of a conditional Schauder basis of a Hilbert space arisen in the literature
(see [17]). In hindsight, that T is not unconditional can be deduced from combining
the papers [22], where it is proved that every semi-normalized unconditional basis
of �2 is equivalent to its unit vector system, and [1], where it is proved that T ,
regarded as a sequence in Hλ, is not equivalent to the unit vector system of �2.
Notice that the last-mentioned result can be deduced from theorem 1.3, and also
from lemma 3.2. So, it shouldn’t be surprising that theorem 1.3 enables us to move
forward with the theory of conditional bases.
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Theorem 4.1. For each 1 < q � 2 � r < ∞ there is a q-Hilbertian r-Besselian
Schauder basis X of �2 with

km[X , �2] ≈ k̃m[X , �2] ≈ m1/q−1/r, m ∈ N.

Moreover, X is not �q1-Hilbertian for any q1 > q nor �r1-Besselian for any r1 < r.

Proof. Pick 0 < α < 1 with rα = r, and 0 < β < 1 with qβ = q. By theorem 1.3,
lemma 2.3 and lemma 2.4, the rotated system X := T R � T R is a q-Hilbertian and
r-Besselian Schauder basis of the Hilbert space H := H−β ⊕ Hα with

2k̃2m[X ,H ] � dm := δ̃m[T R,H−β , T R,Hα], m ∈ N.

In turn, by lemma 3.2,

d2m+1 �
‖Dm‖H−β

‖Dm‖Hα

≈ m(1+β)/2−(1−α)/2 = m1/q−1/r, m ∈ N.

We infer that k̃m[X ] � m1/q−1/r for m ∈ N. In light of (2.4), an application of
corollary 2.6 puts an end to the proof. �

We will derive theorem 1.4 from the first of the two consequences of theorem 4.1
that we record below. The second one will be used in § 5.

Corollary 4.2. Let X be a Banach space with a Schauder basis B, and let 0 � α0 <
1. Suppose that km[B, X] � mα0 for m ∈ N, and that X contains a complemented
subspace isomorphic to �p for some 1 < p < ∞. Then, for each α ∈ [α0, 1), there is
a Schauder basis X of X with km[X , X] ≈ mα for m ∈ N.

Corollary 4.3. Let X be a Banach space with a Schauder basis B, and let 1 <
p < ∞. Let 1 < q0 � min{2, p} and max{2, p} � r0 < ∞. Suppose that

• B is q0-Hilbertian and r0-Besselian,

• km[B, X] � m1/q0−1/r0 for m ∈ N, and

• X contains a complemented subspace isomorphic to �p.

Then, for each 1 < q � q0 and each r0 � r < ∞, there is a Schauder basis X of X

such that

(i) km[X , X] ≈ k̃m[X , X] ≈ m1/q−1/r for m ∈ N,

(ii) X is q-Hilbertian r-Besselian, and

(iii) X is not �q1-Hilbertian for any q1 > q nor �r1-Besselian for any r1 < r.

Before proceeding with the proof of these results, it will be convenient to intro-
duce some notation. Given a sequence X = (xn)∞n=1 in a Banach space X we
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set

X (m) = (xn)m
n=1, m ∈ N.

If (Xj)∞j=1 are Banach spaces, we denote by Lj the canonical embedding of Xj into∏∞
j=1 Xj , j ∈ N. For each j ∈ N, let Xj = (xj,n)mj

n=1 be a finite family in the Banach
space Xj . We denote by

⊕∞
j=1 Xj = (yk)∞k=1 the natural arrangement of the family

xj,n := Lj(xj,n), j ∈ N, 1 � n � mj ,

that is, yk = xj,n if k =
∑j−1

i=1 mi + n. Given a Schauder basis X and a sequence
m = (mj)∞j=1 in N we set

X (m) =
∞⊕

j=1

X (mj).

Lemma 4.4. Let X = (xj)∞j=1 be a Schauder basis of a Banach space X, m =
(mj)∞j=1 be a sequence in N, and U be a sequence space. Set

Y :=

⎛⎝ ∞⊕
j=1

[xn : 1 � n � mj ]

⎞⎠
U

.

(i) X (m) is a Schauder basis of Y.

(ii) If m is unbounded, then km[X (m), Y] = km[X , X].

(iii) Let 1 � q � ∞. Suppose that both X and the unit vector system of U

are q-Hilbertian (resp., q-Besselian). Then, X (m) is q-Hilbertian (resp.,
q-Besselian) regarded as a basis of Y.

(iv) Suppose that
∑j−1

i=1 mi � mj for j ∈ N. Let δ : (0,∞) → (0,∞) be a doubling
function such that k̃m[X , X] � δ(m) for m ∈ N. Then, k̃m[X (m), Y] � δ(m)
for m ∈ N.

Proof. Parts (i) and (ii) are straightforward, and (iii) follows from the natural
isometry between (

⊕∞
j=1 �

mj
q )q and �q. To prove (iv), proceed as in the proof of

[4, lemma 2.3]. �

Proof of corollaries 4.2 and 4.3. To prove corollary 4.2, we choose 1 < q � 2 � r <
∞ such that α = 1/q − 1/r. Then, both to prove corollary 4.2 and corollary 4.3, we
consider the Schauder basis Xq,r of �2 provided by theorem 4.1. For each m ∈ N,
let Hm be the subspace of �2 spanned by X (m)

q,r . Set m = (2j)∞j=1. By (2.3), and
(2.4), lemma 4.4 and corollary 2.6, the sequence B ⊕ X (m) is a Schauder basis of
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Y := X ⊕ (
⊕∞

n=1 H2n)
p

satisfying the desired properties. We have( ∞⊕
n=1

H2n

)
p

≡
( ∞⊕

n=1

�2
n

2

)
p

� �p

(see [26, proof of theorem 7]). In turn, since �p is isomorphic to its square, X ⊕ �p �
X. We infer that Y � X. �

Proof of theorem 1.4. Apply corollary 4.2 in the case where X is �p and B is its unit
vector system, so that α0 = 0. �

5. Conditionality parameters of almost greedy bases

Let us draw reader’s attention to the existence of an almost greedy counterpart of
theorem 1.1. Namely, the authors of [8] proved the following result.

Theorem 5.1 (see [8, theorems 1.1 and 3.16]). Let X be an almost greedy basis of
a superreflexive Banach space, and let w be the weight whose primitive sequence
is the fundamental function (ϕm)∞m=1 of X . Then, there are 1 < r � s < ∞ such
that X is d1,r(w)-Hilbertian and d1,s(w)-Besselian. Moreover, for every 1 < t < ∞,
d1,t(w) is a superreflexive Banach space.

In light of theorem 5.1, lemma 2.5 and equation (2.7), looking for embeddings
involving Lorentz sequence spaces is a reasonable way of obtaining upper estimates
for the conditionality parameters of almost greedy bases. Here, we focus on almost
greedy bases arising from the so-called DKK-method invented in [12].

Let (X, ‖·‖X) be a Banach space with a semi-normalized Schauder basis X =
(xn)∞n=1, and let (S, ‖·‖S) be a symmetric or, more generally, subsymmetric sequence
space. Let (Λm)∞m=1 be the fundamental function of the unit vector system of S,
that is,

Λm = ‖
m∑

j=1

ej‖S, m ∈ N.

Let σ = (σn)∞n=1 be an ordered partition of N, i.e., a partition into integer intervals
with

max(σn) < min(σn+1), n ∈ N.

The averaging projection Pσ : F
N → F

N associated with the ordered partition σ can
be expressed as

Pσ(f) =
∞∑

n=1

〈v∗
n, f〉vn,

where

vn =
1

Λ|σn|

∑
j∈σn

ej , v∗
n =

Λ|σn|
|σn|

∑
j∈σn

ej , n ∈ N, (5.1)
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and 〈·, ·〉 is the natural dual pairing defined by

〈f, g〉 =
∞∑

n=1

anbn, f = (an)∞n=1 ∈ F
N, g = (bn)∞n=1 ∈ F

N, fg ∈ �1.

Let Qσ = IdFN − Pσ be the complementary projection. We define ‖·‖X ,S,σ on c00

by

‖f‖X ,σ,S = ‖Qσ(f)‖S +

∥∥∥∥∥
∞∑

n=1

v∗
n(f) xn

∥∥∥∥∥ ‖X, f ∈ c00.

The completion of the normed space (c00, ‖·‖X ,S,σ) will be denoted by Y[X , S, σ].
This method for building Banach spaces was invented in [12]. The authors of [4]
delved into its study and named it the DKK-method. For the purposes of this
paper, it will be necessary to achieve some new properties of the unit vector system
of Y[X , S, σ]. To properly enunciate them, we introduce some terminology. Let us
regard the functionals on S as sequences acting on S through the natural dual
pairing. With this convention, we have c00 ⊆ S

∗ ⊆ �∞, and the closed subspace of
S
∗ spanned by c00 is a subsymmetric sequence space that we denote by S

∗
0. Let

(Γm)∞m=1 be the fundamental function of the unit vector system of S
∗
0, that is,

Γm =

∥∥∥∥∥∥
m∑

j=1

ej

∥∥∥∥∥∥
S∗

, m ∈ N.

By [24, proposition 3.a.6],

m

Λn
= cmΓm, 1 � cm � 2, m ∈ N. (5.2)

Recall that the dual basis Y∗ of a Schauder basis Y of a Banach space Y is a
Schauder basis of the Banach space it spans in Y

∗, and Y∗∗ is equivalent to Y (see
[7, corollary 3.2.4]). In particular, we have (S∗

0)∗0 = S up to an equivalent norm.
Note also that the operator Pσ is self-adjoint, i.e.,

〈f, Pσ(g)〉 = 〈Pσ(f), g〉, f, g ∈ F
N, fg ∈ �1.

Consequently, Qσ also is self-adjoint.

Proposition 5.2. Let X be a Schauder basis of a Banach space X, S be a subsym-
metric sequence space, and σ = (σn)∞n=1 be an ordered partition of N. Then, the
unit vector system E is a Schauder basis of Y[X , S, σ] whose dual basis is equiva-
lent to the unit vector system of Y[B, S∗

0, σ], where B is a suitable perturbation of
X ∗ = (x∗

n)∞n=1, that is, B = (cn x∗
n)∞n=1 for some semi-normalized sequence (cn)∞n=1

in (0,∞).
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Proof. By [4, theorem 3.6], the mapping

(g, x) �→ g +
∞∑

n=1

x∗
n(x) vn, g ∈ c00 ∩ Qσ(S), x ∈ X, |supp(x)| < ∞.

defines an isomorphism from Qσ(S) ⊕ X onto Y[X , S, σ]. In turn, since Pσ and Qσ

are complementary linear bounded projections on S (see [24, proposition 3.a.4]),
the map

u∗ �→ (u∗(Qσ(en))∞n=1

defines an isomorphism from (Qσ(S))∗ onto

U := {f ∈ S
∗ : Pσ(f) = 0}.

We infer that, if we regard the functionals in (Y[X , S, σ])∗ as sequences acting on
Y[X , S, σ] by means of the natural dual pairing 〈·, ·〉, the mapping

f �→ T (f) :=

(
(〈f,Qσ(en)〉)∞n=1,

∞∑
n=1

〈f,vn〉x∗
n

)
(5.3)

defines an isomorphism from (Y[X , S, σ])∗ onto U × X
∗. In (5.3), we use the

convention that x∗ =
∑∞

n=1 an x∗
n means that x∗ ∈ X

∗ and (an)∞n=1 ∈ F
N satisfy

x∗(x) =
∑∞

n=1 an x∗
n(x) for every x ∈ X finitely supported.

Since Qσ is selft-adjoint,

(〈f,Qσ(en)〉)∞n=1 = (〈Qσ(f), en〉)∞n=1 = Qσ(f), f ∈ F
N.

If (u∗
n)∞n=1 are the vectors defined as in (5.1) corresponding to the subsymmetric

space S
∗
0, and (cn)∞n=1 is as in (5.2), then vn = cnu∗

n for all n ∈ N. Summing up,
we have

T (f) =

(
Qσ(f),

∞∑
n=1

〈u∗
n, f〉 cn x∗

n

)
, f ∈ (Y[X , S, σ])∗.

Let X
∗
0 denote the subspace of X

∗ spanned by X ∗. Applying [4, theorem 3.6] with
the Schauder basis B = (cn x∗

n)∞n=1 of X
∗
0, the subsymmetric sequence space S

∗
0, and

the partition σ gives that the mapping

f �→
(

Qσ(f),
∞∑

n=1

〈u∗
n, f〉 cn x∗

n

)
, f ∈ c00,

extend to an isomorphism from Y[B∗, S∗
0, σ] onto Qσ(S∗

0) ⊕ X
∗
0. We infer that

Y[B∗, S∗
0, σ] is, up to an equivalent norm, the closed subspace of (Y[X , S, σ])∗

spanned by c00. �

Lemma 5.3. Suppose that a sequence space U satisfies an upper q-estimate, 1 �
q < ∞, and let (ϕm)∞m=1 denote the fundamental function of its unit vector system.
Then, (ϕq

m/m)∞m=1 is essentially decreasing.
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Proof. We have

ϕkm � Ck1/qϕm, k, m ∈ N.

where C is upper q-estimate constant of U. Given n, m ∈ N with n > m, we pick
k ∈ N with km < n � (k + 1)m. Then,

ϕq
n

n
�

ϕq
(k+1)m

km
� Cq k + 1

k

ϕq
m

m
� 2Cq ϕq

m

m
.

�

Besides the LRP, we will use the upper regularity property (URP for short) of
sequences of positive scalars. We say that a sequence (sm)∞m=1 has the URP for
short if there is r ∈ N such that

srm � 1
2
rsm, m ∈ N.

Lemma 5.4. Suppose that a sequence space U satisfies an upper q-estimate for some
q > 1 (resp., a lower r-estimate for some r < ∞). Suppose also that the unit vector
system of U is a democratic basis. Then, its fundamental function has the URP
(resp., the LRP).

Proof. Just combine [25, propositions 1.f.3 and 1.f.7] with [13, proposition 4.1]. �

Lemma 5.5. Suppose that a sequence space U satisfies an upper q-estimate, 1 � q <
∞, and let w be the weight whose primitive sequence is the fundamental function
of the unit vector system of U. Then, d1,q(w) ⊆ U continuously.

Proof. Pick f = (an)∞n=1 ∈ c00. Put t = maxn |an|, and for each k ∈ N consider the
set

Ek = {n ∈ N : t2−k < |an| � t2−k+1}.

Notice that (Ek)∞k=1 is a partition of {n ∈ N : an 
= 0}. Set nk = |Ek| (n0 = 0) and
mk =

∑k
j=1 nj , so that, if (bn)∞n=1 is the non-increasing rearrangement of f ,

{n ∈ N : t2−k < bn � t2−k+1} = {n ∈ N : 1 + mk−1 � n � mk}.

For n ∈ N, let sn = ϕn[E , U] and w′
n = sr

n − sr
n−1. Let C be the upper C-estimate

constant of U. Using Abel’s summation formula gives

‖f‖q = ‖
∞∑

k=1

∑
n∈Ek

an en‖q

� Cq
∞∑

k=1

‖
∑

n∈Ek

an en‖q
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� Cq
∞∑

k=1

(t2−k+1smk
)q

= (2tC)q
∞∑

k=1

2−kq
k∑

j=1

(sq
mj

− sq
mj−1

)

=
(2tC)q

1 − 2−q

∞∑
j=1

2−jq(sq
mj

− sq
mj−1

)

=
(4C)q

2q − 1

∞∑
j=1

mj∑
n=1+mj−1

(t2−j)q(sq
n − sq

n−1)

� (4C)q

2q − 1

∞∑
n=1

bq
n(sq

n − sq
n−1).

Applying lemma 2.8 puts an end to the proof. �

Proposition 5.6. Let X be a Schauder basis of a Banach space X, S be a
subsymmetric sequence space, and σ = (σn)∞n=1 be an ordered partition of N with

m−1∑
n=1

|σn| � D|σm|, m ∈ N,

for some D ∈ N. Let 1 < q < ∞. Suppose that S satisfies an upper q-estimate, that
X q-Hilbertian, and that (Λm)∞m=1 has the LRP. Then, the unit vector system of
Y[X , S, σ] is d1,q(w)-Hilbertian, that is,

d1,q(w) ⊆ Y[X , S, σ]

continuously, where w = (Λn − Λn−1)∞n=1.

Proof. Taking into account that Qσ is bounded on S, we infer from lemma 5.5 that
there is a constant C0 such that

‖Qσ(f)‖S � C0‖f‖d1,q(w), f ∈ c00.

By lemma 5.3, there is a constant C1 such that

1
C1

Λq
n

n
� Tm := inf

j�m

Λq
j

j
, n � m.

Therefore, if n ∈ N and j ∈ σn,

Λq
|σn|
|σn|

� (D + 1)
Λq

(D+1)|σn|
(D + 1)|σn|

� (D + 1)C1Tj .

By lemma 2.7, there is a constant C2 such that
∞∑

j=1

Λq
jb

q
j

j
� Cq

2‖f‖
q
d1,q(w), (bj)∞j=1 non-increasing rearrangement of f.
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Let C3 be the norm of the series transform with respect to X , regarded as an oper-
ator from �q into X. Pick f = (aj)∞j=1 ∈ c00, and let (bj)∞j=1 be its non-increasing
rearrangement. Using Hölder’s inequality and the rearrangement inequality we
obtain

‖
∞∑

n=1

〈v∗
n, f〉xn‖q � Cq

3

∞∑
n=1

|〈v∗
n, f〉|q

� Cq
3

∞∑
n=1

Λq
|σn|
|σn|

∑
j∈σn

|aj |q

� (D + 1)Cq
1Cq

3

∞∑
j=1

Tj |aj |q

� (D + 1)Cq
1Cq

3

∞∑
j=1

Tjb
q
j

� (D + 1)Cq
1Cq

3

∞∑
j=1

Λq
j

j
bq
j

� (D + 1)Cq
1Cq

2Cq
3‖f‖

q
d1,q(w).

Summing up, we obtain ‖f‖Y[X ,S,σ] � C‖f‖d1,q(w), where

C = C0 + (1 + D)1/qC1C2C3.

�

Proposition 5.7. Let X be a Schauder basis of a Banach space X, S be a
subsymmetric sequence space, and σ = (σn)∞n=1 be an ordered partition of N with

m−1∑
n=1

|σn| � |σm|, m ∈ N. (5.4)

Let 1 < r < ∞. Suppose that S satisfies a lower r-estimate, that X is r-Besselian,
and that (Λm)∞m=1 has the URP. Then, the unit vector system of Y[X , S, σ] is
d1,r(w)-Besselian, that is,

Y[X , S, σ] ⊆ d1,r(w)

continuously, where w = (Λn − Λn−1)∞n=1.

Proof. Let w∗ be the weight whose primitive sequence is (Γm)∞m=1. By
[25, proposition 1.f.r], S

∗
0 satisfies an upper r′-estimate. In turn, by duality, X ∗ is

an r′-Hilbertian. Hence, any perturbation Y of X ∗ is r′-Hilbertian. An application
of proposition 5.6 gives

d1,r′(w∗) ⊆ Y[Y, S∗
0, σ]. (5.5)

By lemma 5.4, (Λn)∞n=1 has the LRP. Consequently, by [8, theorem 3.10] and
equation (5.2), d1,r′(w∗) is, via the natural dual pairing, and up to an equivalent
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norm, the dual space of d1,r(w). In turn, by proposition 5.2, we can choose Y so that
Y[Y, S∗

0, σ] is, via the natural dual pairing, and up to an equivalent norm, the dual
space of Y[X , S, σ]. Therefore, dualizing (5.5) yields the desired embedding. �

Our next result must be regarded as a paradigm to prove the existence of almost
greedy bases whose conditionality parameters grow as a given sequence.

Lemma 5.8. Let X be a Banach space with a Schauder basis B, Let S be a subsym-
metric sequence space, and let 1 < q � r < ∞. Suppose that B is both q-Hilbertian
and r-Hilbertian, and that k̃m[B, X] � m1/q−1/r for m ∈ N. Suppose also that S

satisfies an upper q-estimate and a lower r-estimate, and that it is complemented
in X. Let w be a weight whose primitive sequence is equivalent to the fundamental
function (Λm)∞m=1 of S. Then, X has an almost greedy basis X such that

(i) ϕ[X , X](m) ≈ Λm for m ∈ N,

(ii) km[X , X] ≈ k̃m[X , X] ≈ (log m)1/q−1/r for m � 2,

(iii) X is d1,q(w)-Hilbertian and d1,r(w)-Besselian.

(iv) X is not d1,q1(w)-Hilbertian for any q1 > q nor d1,r1(w)-Besselian for any
r1 < r.

Proof. The unconditional basis V = (vn)∞n=1 of Pσ(S) is q-Hilbertian and
r-Besselian. Therefore, by lemmas 2.3, 5.4, propositions 5.6 and 5.7,

d1,q(w) ⊆ Y := Y[B ⊕ V, S, σ] ⊆ d1,r(w),

provided that the ordered partition σ = (σn)∞n=1 satisfies (5.4). Choose σ so that

log

(
m∑

n=1

|σn|
)

� m, m ∈ N,

also holds. Then, by (2.2) and [4, proposition 3.8 and theorem 3.17], the unit
vector system is an almost greedy basis of Y with fundamental function equivalent
to (Λm)∞m=1, and we have

k̃m[E , Y] � (log m)1/q−1/r, m � 2.

Applying [4, theorem 3.6], and using that S is isomorphic to its square, gives

Y � Qσ(S) ⊕ X ⊕ Pσ(S) � X ⊕ S � X.

Combining equation (2.7), lemma 2.7 and corollary 2.6 puts an end to the proof. �

Theorem 5.9, of which theorem 1.5 is a simple consequence, lies within the line
of research initiated by Konyagin and Telmyakov [23] of finding conditional quasi-
greedy bases in general Banach spaces. This topic has evolved towards the more
specific quest of finding quasi-greedy bases with suitable conditionality parameters.
The reader will find a detailed account of this process in the papers [4–6, 12, 14,
15, 18, 28].
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Theorem 5.9. Let X be a Banach space with a Schauder basis B, and let 1 <
p < ∞ be such that X has a complemented subspace isomorphic to �p. Let 1 <
q0 � min{2, p} and max{2, p} � r0 < ∞. Suppose that B is q0-Hilbertian and r0-
Besselian, and that km[X , X] � m1/q0−1/r0 for m ∈ N. Then, X has, for any 1 <
q � q0 and r0 � r < ∞, an almost greedy basis X such that

(i) ϕ[X , X](m) ≈ m1/p for m ∈ N,

(ii) km[X , X] ≈ (log m)1/q−1/r for m � 2,

(iii) X is �p,q(w)-Hilbertian and �p,r(w)-Besselian, and

(iv) X is not �p,q1-Hilbertian for any q1 > q nor �p,r1-Besselian for any r1 < r.

Proof. Just combine corollary 4.3 with lemma 5.8. �

Proof of theorem 1.5. We apply theorem 5.9 in the case where X is �p and B is its
unit vector system, so that we can choose q0 = min{2, p} and r0 = max{2, p}. If
α0 = 1/q0 − 1/r0, then for any α ∈ [α0, 1) there are 1 < q � q0 and r0 � r < 1 such
that 1/q − 1/r = α. Since α0 = |1/2 − 1/p|, we are done. �
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10 J. Bergh and J. Löfström. Interpolation spaces. An introduction. Grundlehren der Mathe-
matischen Wissenschaften, vol. 223 (Berlin, New York: Springer-Verlag, 1976).
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