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Abstract

We show that for an oriented 4-dimensional Poincaré complex X with finite fundamental
group, whose 2-Sylow subgroup is abelian with at most 2 generators, the homotopy type of
X is determined by its quadratic 2-type.
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1. Introduction

An oriented 4-dimensional Poincaré complex is a finite CW complex with a fundamental
class [X] ∈ H4(X; Z) such that

− ∩ [X] : C4−∗(X; Z[π1(X)]) → C∗(X; Z[π1(X)])

is a chain equivalence. For many fundamental groups, Hambleton and Kreck [HK88,
theorem 1·1] classified oriented 4-dimensional Poincaré complexes up to orientation-
preserving (o.p.) homotopy equivalence, in terms of isomorphism classes of pairs consisting
of the Postnikov 2-type TX and a homology class t ∈ H4(TX), the image of [X] under some
3-connected map X → TX . Baues and Bleile [BB08, corollary 3·2] showed that this result
indeed holds for all fundamental groups.

One could be tempted to view this as a complete classification. However, it is often desir-
able in applications to have a classification in terms of more readily computable invariants.
The standard suite of invariants of an oriented 4-dimensional Poincaré complex X are those
which comprise the quadratic 2-type:

[π1(X), π2(X), kX , λX],
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where π2(X) is considered as a Z[π1(X)]-module, kX ∈ H3(π1(X); π2(X)) is the k-invariant
of X and λX is the equivariant intersection form on π2(X). Since recording the first three is
equivalent to knowing the Postnikov 2-type, investigations into the homotopy classification
reduce to asking whether t ∈ H4(TX) is determined by λX .

We recall the history of the homotopy classification problem for oriented simply-
connected 4-dimensional Poincaré complexes. Whitehead and Milnor [Whi49, Mil58]
classified them in the simply-connected case, and later Wall [Wal67, theorem 5·4] did
the same for those with cyclic fundamental groups of prime order. Hambleton and Kreck
[HK88] showed that oriented 4-dimensional Poincaré complexes with finite cyclic funda-
mental group of arbitrary order, and more generally with a finite fundamental group with
4-periodic cohomology, are classified up to o.p. homotopy equivalence by their quadratic
2-type. [Bau88] generalised this further to the case where only the 2-Sylow subgroup of the
fundamental group has 4-periodic cohomology.

We consider the case where the 2-Sylow subgroup is abelian with at most two generators.
Note that abelian groups with at most two generators have 4-periodic cohomology if and
only if they are cyclic, so this improves previous results.

THEOREM 1·1. Let π be a finite group such that the 2-Sylow subgroup is abelian with at
most two generators. Then two oriented 4-dimensional Poincaré complexes with fundamen-
tal group π are orientation-preserving homotopy equivalent if and only if their quadratic
2-types are isomorphic.

Our proof of Theorem 1·1 is based on the following result, which was proven by
Hambleton-Kreck [HK88, theorem 1·1(i)], with a hypothesis removed by Teichner [Tei92]
(see also [KT21, corollary 1·5]). Let � be Whitehead’s quadratic functor, whose definition
we recall in Section 2.

THEOREM 1·2 ([HK88, Tei92]). If Z⊗Z[π1(X)] �(π2(X)) is torsion free, then oriented 4-
dimensional Poincaré complexes with fundamental group π are o.p. homotopy equivalent if
and only if their quadratic 2-types are isomorphic.

By Theorem 1·2, to prove Theorem 1·1 it suffices to show that Z⊗Z[π1(X)] �(π2(X)) is tor-
sion free. Here is an outline of our proof of this fact, which will occupy us for the remainder
of the article, together with signposts as to where in the paper each step is carried out. After
recalling the definition and some properties of �, Section 2 introduces tools for showing that
groups of the form Z⊗Zπ �(L) are torsion free. Section 3 applies them to L = π2(X), where
X is a 4-dimensional Poincaré complex. This section recalls the short exact sequence for
stable isomorphism classes of Zπ-modules 0 → ker d2 → π2(X) → coker d2 → 0, where d2

and d2 come from a free Zπ-module resolution (C∗, d∗) of Z and its dual respectively. At the
start of Section 4, we reduce the proof that Z⊗Z[π1(X)] �(π2(X)) is torsion free to showing
that K :=Z⊗Zπ �( ker d2) and CK :=Z⊗Zπ �(coker d2) are torsion free abelian groups,
for π a 2-Sylow subgroup of π1(X). The remainder of Section 4, which is the technical core
of the paper, then proves that the groups K and CK are torsion free for π any finite abelian
group with at most two generators, completing the proof that Z⊗Z[π1(X)] �(π2(X)) is torsion
free, and hence by Theorem 1·2 completing the proof of Theorem 1·1.

Remark 1·3. Note that for nonorientable 4-dimensional Poincaré complexes (or even man-
ifolds) the analogous statement to Theorem 1·1 does not hold even for π =Z/2, by
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4-manifolds with finite abelian fundamental group 3

[KKR92]. Nonetheless nonorientable closed 4-manifolds with fundamental group Z/2 were
classified up to homotopy equivalence by Hambleton, Kreck, and Teichner [HKT94].

After this article appeared as a preprint, the first and third authors, together with
Nicholson, proved the analogue of Theorem 1·1 for dihedral fundamental groups [KNR22].

We also note that the method of proof of Theorem 1·1 does not work for finite abelian
groups whose 2-Sylow subgroup requires more than two generators. As discussed in
Section 5, for π1(X) ∼=Z/2 ×Z/2 ×Z/2, the group Z⊗Z[π1(X)] �(π2(X)) is in general not
torsion free. This leads us to pose the following question.

Question 1·4. Let π be a finite abelian fundamental group whose 2-Sylow subgroup requires
more than two generators. Are there oriented 4-dimensional Poincaré complexes (or even
better, manifolds) with fundamental group π that are not homotopy equivalent but have
isomorphic quadratic 2-types?

2. Whitehead’s � groups

We recall the definition of Whitehead’s � functor from [Whi50], as well as a couple of
key lemmas that we shall use in computations of � groups.

Definition 2·1 (� groups). Let A be an abelian group. Then �(A) is an abelian group with
generators the elements of A. We write a as v(a) when we consider it as an element of �(A).
The group �(A) has the following relations:

{v(−a) − v(a) | a ∈ A} and

{v(a + b + c) − v(b + c) − v(c + a) − v(a + b) + v(a) + v(b) + v(c) | a, b, c ∈ A}.
In particular, v(0A) = 0�(A).

Remark 2·2. For X a 4-dimensional Poincaré complex with finite fundamental group π ,

π2(X) ∼= H2(X̃; Z) ∼= H2(X̃; Z) ∼= Hom(H2(X̃; Z), Z),

which is in particular a finitely generated free abelian group.

LEMMA 2·3 ([Whi50, p. 62]). If A is free abelian with basis B, then �(A) is free abelian
with basis

{v(b), v(b + b′) − v(b) − v(b′) | b 
= b′ ∈B}.
In this case, we will usually consider �(A) as the subgroup of symmetric elements of

A ⊗ A given by sending v(a) to a ⊗ a. Observe that v(b + b′) − v(b) − v(b′) corresponds to
the symmetric tensor b ⊗ b′ + b′ ⊗ b. For a Zπ-module A, the group π acts on �(A) ⊆ A ⊗ A
via

g ·
∑

i

(ai ⊗ bi) =
∑

i

(g · ai) ⊗ (g · bi).

To compute � groups we will mostly rely on the following lemma.

LEMMA 2·4 ([Bau88, lemma 4]). Let π be a group. If 0 → A → B → C → 0 is a
short exact sequence of Zπ-modules which are free as abelian groups, then there is a
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Zπ-module D, also free as an abelian group, and such that there are short exact sequences of
Zπ-modules

0 → �(A) → �(B) → D → 0

and

0 → A ⊗Z C → D → �(C) → 0.

For the direct sum of free abelian groups A, B, the short exact sequences in the previous
lemma split, so we have an isomorphism of Zπ-modules

�(A ⊕ B) ∼= �(A) ⊕ �(B) ⊕ (A ⊗Z B).

For computational purposes we will need that the map A ⊗Z C → D is given as follows. Pick
bases (as free abelian groups) {ai}, {cj} and {ai, c̃j} of A, C, and B respectively, where c̃j is a
lift of cj. Then ai ⊗ cj is sent to [ai ⊗ c̃j + c̃j ⊗ ai] ∈ D ∼= �(B)/�(A).

2·1. Showing that groups of the form Z⊗Zπ �(L)

The strategy to show that groups of the form Z⊗Zπ �(L) are torsion free is to reduce to
one of the cases in the next result, due to Hambleton and Kreck. See also their corrigendum
[HK18], where a mistake in the original proof is fixed.

THEOREM 2·5 ([HK88, theorem 2·1]). Let π be a finite group. Let L be one of the following:

(i) a finitely generated projective Zπ-module;

(ii) the augmentation ideal ker (ε : Zπ →Z);

(iii) Zπ/N, where N = ∑
g∈π g denotes the norm element.

Then Z⊗Zπ �(L) is torsion free.

We will also need the following proposition, which extends the third case of Theorem 2·5.

PROPOSITION 2·6. Let G and H be finite groups and let NH = ∑
h∈H h be the norm element

of H, considered in Z[G × H]. Then Z⊗Z[G×H] �(Z[G × H]/NH) is torsion free.

For a ZH-module A, let A[G] := {∑g∈G agg | ag ∈ A} be the Z[G × H]-module with the
addition and the action given by

⎛
⎝∑

g∈G

agg

⎞
⎠ +

⎛
⎝∑

g∈G

bgg

⎞
⎠ =

∑
g∈G

(ag + bg)g and (g′, h)

⎛
⎝∑

g∈G

agg

⎞
⎠ =

∑
g∈G

(hag)(g′g)

respectively. The proof of Proposition 2·6 starts with the following lemma.

LEMMA 2·7. Let G and H be finite groups and write π := G × H. Let A be a ZH-module
which is finitely generated and free as an abelian group. Consider the subset S′ of G of all
elements with g2 
= 1. Then we have a free involution on S′ given by g → g−1. Let S ⊆ G be
a set of representatives for S′/(Z/2). Then there is an isomorphism of Zπ-modules
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φ : �(A[G])
∼=−→ �(A)[G] ⊕

⊕
g∈S

(A ⊗Z A)[G] ⊕
⊕

g∈G\{1},g2=1

(A ⊗Z A)[G]/Flipg,

where the submodule Flipg := 〈(a ⊗ b) − (b ⊗ a)g | a, b ∈ A〉.
The special case H = 1 and A =Z is [HK88, lemma 2·2] and the proof is similar.

Proof. The inverse of φ is given as follows. Elements (a ⊗ a′)γ ∈ �(A)[G] are sent to aγ ⊗
a′γ , elements (a ⊗ a′)γ ∈ (A ⊗Z A)[G] in the factor indexed by g ∈ S are sent to aγ g ⊗
a′γ + a′γ ⊗ aγ g, and for g with g2 = 1 elements (a ⊗ a′)γ ∈ (A ⊗Z A)[G]/〈(a ⊗ b) − (b ⊗
a)g | a, b ∈ A〉 are again sent to aγ g ⊗ a′γ + a′γ ⊗ aγ g.

Since as an abelian group

�(A[G]) ∼=
⊕

g∈π/H
�(A) ⊕

⊕
{g,g′}⊆π/H,g 
=g′

A ⊗Z A,

it is easy to see that the above described map is surjective. That it is also injective follows
from a computation of the rank of the involved modules considered as abelian groups, since
both sides are free as abelian groups by Lemma 2·3.

Proof of Proposition 2·6. Let π := G × H. We have Z[π]/NH ∼= (ZH/NH)[G]. Thus by
Lemma 2·7 the abelian group Z⊗Zπ �(Z[π]/NH) is a direct sum of groups of the form

Z⊗ZH �(ZH/NH), Z⊗ZH (ZH/NH ⊗Z ZH/NH) and Z⊗Z〈H,g〉 (ZH/NH ⊗Z ZH/NH),

where in the last case the element g has order two and acts on ZH/NH ⊗Z ZH/NH by
flipping the two factors. The first of these is torsion free by Theorem 2·5.

As an abelian group, ZH/NH is free with Z-basis given by 1 · h for h ∈ H \ {1}. It is
straightforward to check that the map

Z⊗ZH (ZH/NH ⊗Z ZH/NH) →ZH/NH; 1 ⊗ ([λ] ⊗ [λ′]) → [λ′λ],

where the involution is determined by h = h−1, is well-defined and an isomorphism of
abelian groups. It follows that Z⊗ZH (ZH/NH ⊗Z ZH/NH) is a free abelian group.

Finally, the abelian group Z⊗Z〈H,g〉 (ZH/NH ⊗Z ZH/NH) can in the same way be identi-
fied with the orbits (ZH/NH)/(Z/2), where Z/2 acts by the involution. This abelian group is
also torsion free with Z-basis (H \ {1})/(Z/2), where Z/2 acts by inversion. This completes
the proof of Proposition 2·6.

2·2. Connection with Tate homology

Definition 2·8 (Tate homology). Given a finite group π and a Zπ-module A, the Tate
homology groups Ĥn(π ; A) are defined as follows. Let ·N : Aπ → Aπ denote multiplica-
tion with the norm element from the orbits Aπ :=Z⊗Zπ A to the π-fixed points of A, that is
(·N)(1 ⊗ a) = ∑

g∈π ga ∈ Aπ ⊆ A. Then:

Ĥn(π ; A) := Hn(π ; A) for n ≥ 1; Ĥ0(π ; A) := ker (·N);

Ĥ−1(π ; A) := coker(·N); and Ĥn(π ; A) := H−n−1(π ; A) for n ≤ −2.
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The following elementary observation will be central to our computations.

LEMMA 2·9. Let π be a finite group. For a Z-torsion free Zπ-module A, the torsion in
Z⊗Zπ A is precisely the zeroth Tate homology Ĥ0(π ; A).

Proof. Since the π-fixed points Aπ are again Z-torsion free, and torsion maps to torsion
under a homomorphism, the torsion in Z⊗Zπ A is contained in the kernel of multiplication
by the norm element N. The composition of the multiplication with N and the projection
Aπ →Z⊗Zπ A is given by multiplication with the group order. Hence all elements in the
kernel of multiplication with N are annihilated by multiplication with |π | and are thus torsion
elements. More precisely, suppose that 1 ⊗ a ∈ ker (·N) ⊆Z⊗Zπ A. Then in Z⊗Zπ A we
have:

|π |(1 ⊗ a) = |π | ⊗ a = 1 ⊗
∑
g∈π

ga = 1 ⊗ (·N)(1 ⊗ a) = 1 ⊗ 0 = 0.

So 1 ⊗ a is a torsion element.

LEMMA 2·10. For the sequences of coefficients in Lemma 2·4, Z⊗Zπ �(B) is torsion free
if Z⊗Zπ �(A), Z⊗Zπ �(C) and Z⊗Zπ (A ⊗Z C) are torsion free.

Proof. Consider the long exact sequence of Tate homology groups [Bro94, VI (5·1)]
corresponding to the sequence 0 → �(A) → �(B) → D → 0,

· · · → Ĥ1(π ; D) → Ĥ0(π ; �(A)) → Ĥ0(π ; �(B)) → Ĥ0(π ; D) → Ĥ−1(π ; �(A)) → · · ·
It follows that if Z⊗Zπ �(A) and Z⊗Zπ D are torsion free, i.e. Ĥ0(π ; �(A)) = Ĥ0(π ; D) = 0
by Lemma 2·9, then also Z⊗Zπ �(B) is torsion free. By the same argument, applied to the
short exact sequence 0 → A ⊗Z C → D → �(C) → 0, it follows from the assumptions that
Z⊗Zπ �(C) and Z⊗Zπ (A ⊗Z C) are torsion free, that Z⊗Zπ D is torsion free.

3. Application to 4-dimensional Poincaré complexes

Let X be a 4-dimensional Poincaré complex with finite fundamental group π . Let (C∗, d∗)
be a free Zπ-resolution of Z with C0 =Zπ , and with C1 and C2 finitely generated.
Then stably (possibly stabilising any of the three modules by a free module) there is an
extension

0 → ker d2 → π2(X) → coker d2 → 0,

as shown in [HK88, proposition 2·4]. Here the choice of resolution (C∗, d∗) does not mat-
ter since for any two choices of resolution the Zπ-modules ker d2 and coker d2 are stably
isomorphic; see for example [KPT22, lemma 5·2], which relies on [HAM93].

LEMMA 3·1. For every finite group π , and for every choice of free resolution (C∗, d∗),
ker d2 and coker d2 are torsion free abelian groups.

Proof. Let (C∗, d∗) be a free Zπ-resolution of Z with C0 =Zπ and C1 and C2 finitely gen-
erated, as above. Then ker d2 is a subgroup of a finitely generated free abelian group, and so
is torsion free.
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Let K be a finite 2-dimensional CW complex with fundamental group π . Then the cellular
chain complex C∗(K; Zπ) is a start of a free resolution of Z as a Zπ-module. In particular
H2(K; Zπ) is stably isomorphic to coker d2 and hence it suffices to show that H2(K; Zπ)
is torsion free as an abelian group. Since π is finite, H2(K; Zπ) ∼= H2(K̃; Z). By universal
coefficients the latter group is isomorphic to Hom(H2(K̃; Z), Z), which as required is torsion
free.

The next lemma combined with Lemma 3·1 and Lemma 2·9 implies that the torsion sub-
groups of Z⊗Zπ �( ker d2) and Z⊗Zπ �(coker d2) only depend on the stable isomorphism
classes of ker d2 and coker d2 respectively, and thus only depend on the group π .

LEMMA 3·2. Let A be a Zπ-module that is free as an abelian group. Then Ĥ0(π ; �(A)) only
depends on the stable isomorphism type of A.

Proof. We have �(A ⊕Zπ) ∼= �(A) ⊕ �(Zπ) ⊕ (Zπ ⊗Z A). By Theorem 2·5,
Ĥ0(π ; �(Zπ)) = 0. Furthermore, Ĥ0(π ; Zπ ⊗Z A) is the torsion in Zπ ⊗Zπ A ∼= A
which was torsion free by assumption. Hence Ĥ0(π ; �(A ⊕Zπ)) ∼= Ĥ0(π ; �(A)).

We need the following elementary observation in the proof of the next proposition.

LEMMA 3·3 ([Bro94, III (5·7)]). Let M be a left Zπ-module, consider Zπ as a left rank one
free module, and let M ⊗Z Zπ be the Zπ-module where π acts via the diagonal action. Let
(M ⊗Z Zπ)r be the Zπ-module where π acts just on Zπ by left multiplication and π acts
trivially on M. Then the map

ψ : M ⊗Z Zπ → (M ⊗Z Zπ)r; m ⊗ g → g−1m ⊗ g

is a Zπ-module isomorphism.

Proof. The map sending m ⊗ g → gm ⊗ g gives an inverse. That both are Zπ-linear is
straightforward to check.

PROPOSITION 3·4. The abelian group ker d2 ⊗Zπ coker d2 is torsion free for every finite
group π .

Proof. This was noticed by Bauer [Bau88, p. 5], but was not proven there. We give the
argument here. Consider the exact sequence

0 →Z
N−→ C0 d1−→ C1 d2−→ C2 → coker d2 → 0.

By Lemma 3·3, ker d2 ⊗Z Ci is Zπ-module isomorphic to ( ker d2 ⊗Z Ci)r the module with
the same underlying abelian group but where the π action is trivial on ker d2 and acts
as usual on Ci. Since ker d2 is free as a Z-module, this is free as a Zπ-module. Hence
Ĥj(π ; ker d2 ⊗Z Ci) = 0 for all i,j by [Bro94, VI (5·3)]: if A is a free Zπ-module, then
Ĥj(π ; A) = 0 for all j ∈Z. Now, from the long exact sequence in Tate homology groups and
dimension shifting [Bro94, III·7] we get

Ĥ0(π ; ker d2 ⊗Z coker d2) ∼= Ĥ−3(π ; ker d2 ⊗Z Z).
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A similar argument shifting dimension upwards shows that Ĥ−3(π ; ker d2) ∼= Ĥ0(π ; Z) =
0. Hence Ĥ0(π ; ker d2 ⊗Z coker d2) = 0, which is equivalent to the statement of the
proposition by Lemma 2·9, since Z⊗Zπ ( ker d2 ⊗Z coker d2) ∼= ker d2 ⊗Zπ coker d2.

COROLLARY 3·5. Assume that Z⊗Zπ �( ker d2) and Z⊗Zπ �(coker d2) are torsion free.
Then Z⊗Zπ �(π2(X)) is torsion free.

Proof. The torsion in Z⊗Zπ �(π2(X)) equals Ĥ0(π ; �(π2(X)) by Lemma 3·1 and
Lemma 2·9. By Lemma 3·1 again and Lemma 3·2, this torsion only depends on the sta-
ble isomorphism class of π2(X), and therefore we may consider the stable exact sequence
0 → ker d2 → π2(X) → coker d2 → 0. By Lemma 2·10, Z⊗Zπ �(π2(X)) is torsion free if
Z⊗Zπ �( ker d2), Z⊗Zπ �(coker d2) and Z⊗Zπ ( ker d2 ⊗Z coker d2) are torsion free. The
first two hold by assumption, the latter holds by Proposition 3·4.

As stated in the introduction, by [KT21, corollary 1·5], to show Theorem 1·1 it suffices to
show that Z⊗Z[π1(X)] �(π2(X)) is torsion free. We will therefore want to show that Z⊗Zπ

�( ker d2) and Z⊗Zπ �(coker d2) are torsion free in the cases we consider. We will use the
following lemma several times.

LEMMA 3·6. Let π be a finite group. Let 0 → A → B → C → 0 be a short exact sequence
of Zπ-modules such that B is torsion free as a Z-module and such that Z⊗Zπ A is torsion
free. In this case the sequence

0 →Z⊗Zπ A →Z⊗Zπ B →Z⊗Zπ C → 0

is exact. Assume that for every (nontrivial) torsion element t ∈Z⊗Zπ C, of order k say, there
is a preimage b ∈Z⊗Zπ B of t such that the preimage a ∈Z⊗Zπ A of kb ∈Z⊗Zπ B is not
divisible by k. Then Z⊗Zπ B is a torsion free Z-module.

Proof. We have an exact sequence

H1(π ; C) →Z⊗Zπ A →Z⊗Zπ B →Z⊗Zπ C → 0.

As π is finite, H1(π ; C) is a torsion group [Bro94, III (10·2)]. Since Z⊗Zπ A is torsion free,
the map H1(π ; C) →Z⊗Zπ A is trivial and thus the sequence

0 →Z⊗Zπ A →Z⊗Zπ B →Z⊗Zπ C → 0

is exact.
Since Z⊗Zπ A is torsion free, every nontrivial torsion element in Z⊗Zπ B has to map to

a nontrivial torsion element in Z⊗Zπ C. Now suppose for a contradiction that Z⊗Zπ B has
torsion. Let t′ ∈Z⊗Zπ B be a nontrivial torsion element mapping to t ∈Z⊗Zπ C of order k.
Let b ∈Z⊗Zπ B be a preimage as in the assumption, and let a ∈Z⊗Zπ A be the preimage
of kb, where by assumption a is not divisible by k. Then b − t′ maps to 0 ∈Z⊗Zπ C. Let
a′ ∈Z⊗Zπ A be the preimage of b − t′. Furthermore, kt′ maps to kt = 0 ∈Z⊗Zπ C and is
torsion, thus kt′ is trivial in Z⊗Zπ B. Hence ka′ maps to k(b − t′) = kb. Thus a = ka′. But
ka′ is divisible by k, contradicting the assumption on a = ka′. It follows that Z⊗Zπ B is a
torsion free Z-module, as desired.
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Remark 3·7. Suppose the torsion in Z⊗Zπ C is generated by a single element x of order n.
The following observation allows us to simplify what we have to check to apply the second
half of Lemma 3·6. The order of the multiple t = 	x is n/gcd (n, 	). Let b ∈Z⊗Zπ B be a
preimage of x. Then 	b is a preimage of t = 	x. If the preimage a′ of (n/gcd (n, 	)	b) in
Z⊗Zπ A is divisible by n/gcd (n, 	), then the preimage a of n b would also be divisible by
n/gcd (n, 	) (since n/gcd (n, 	) is coprime to 	/gcd (n, 	)). Hence to show that Z⊗Zπ B is
torsion free in the case that the torsion in Z⊗Zπ C is cyclic, it suffices to check that the
preimage a is not divisible by any divisor of n.

4. Proof of the main theorem

Proof of Theorem 1·1. Recall that by [KT21, corollary 1·5], to show Theorem 1·1 it it
suffices to show that Z⊗Z[π1(X)] �(π2(X)) is torsion free.

Corollary 3·5 implies that it is enough to show that Z⊗Zπ �( ker d2) and Z⊗Zπ

�(coker d2) are torsion free, where (C∗, d∗) is a free Zπ-resolution of Z with C0 =Zπ ,
and C1 and C2 finitely generated. By Lemma 2·9, we therefore have to show that

Ĥ0(π ; �( ker d2)) = 0 and Ĥ0(π ; �(coker d2)) = 0.

As observed by Bauer [Bau88], it suffices to show this for a 2-Sylow subgroup G of
π . For every non-cyclic finite abelian group π with two generators, we shall show in
Proposition 4·1 and Proposition 4·11 below that Ĥ0(π ; �( ker d2)) and Ĥ0(π ; �(coker d2))
vanish. In particular this holds for π the two generator abelian 2-Sylow subgroup of some
larger group.

We also need to check 1-generator finite abelian groups, i.e. finite cyclic groups. This was
done by Hambleton and Kreck [88] but we repeat the argument here. Let C be the cyclic
group of order k generated by t and as ever let N = ∑k−1

i=0 ti be the norm element. There is a
free resolution whose first few terms are

· · · →ZC
1−t−−→ZC

·N−→ZC
1−t−−→ZC →Z→ 0.

Therefore ker d2 ∼= 〈1 − t〉 ∼=ZC/N and coker d2 ∼=ZC/N. By Theorem 2·5 (iii), we
have that Z⊗ZC �(ZC/N) is torsion free as required. Modulo Proposition 4·1 and
Proposition 4·11 below, this completes the proof of Theorem 1·1.

4·1. The computation of Ĥ0(π ; �( ker d2))

In this section we show the following:

PROPOSITION 4·1. For every finite abelian group with two generators π ,
Ĥ0(π ; �( ker d2)) = 0.

As explained above, we may assume that |π | is a power of 2 for the purpose of the proof
of Theorem 1·1, but we do not need this assumption for Proposition 4·1.

Proof. For the group π = 〈a, b | an, bm, [a, b]〉 let Na := ∑n−1
i=0 ai and Nb := ∑m−1

i=0 bi.

Let C2
d2−→ C1

d1−→ C0 be the chain complex of Zπ-modules corresponding to the pre-
sentation 〈a, b | an, bm, [a, b]〉. Extend this to the standard free resolution of Z as a
Zπ-module:
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By exactness, ker d2 ∼= im d3 ∼= C3/ ker d3 ∼= coker d4. From this it follows that ker d2 is
isomorphic to

(Zπ)4/〈(Na, 0, 0, 0), (b − 1, 1 − a, 0, 0), (0, Nb, Na, 0), (0, 0, b − 1, 1 − a), (0, 0, 0, Nb)〉.
Define

M1 := (Zπ)2/〈(Na, 0), (0, Nb)〉 and M2 := (Zπ)2/〈(1 − a, 0), (Nb, Na), (0, b − 1)〉.
The inclusion of the outer two summands of (Zπ)4 induces a short exact sequence

0 → M1 → ker d2 → M2 → 0. (4·2)

For M2 we have a short exact sequence

0 →Zπ/〈1 − a〉 → M2 →Zπ/〈Na, b − 1〉 → 0. (4·3)

In both these sequences, a quick check is required to see that the map on the left is indeed
injective.

Claim. We have that Z⊗Zπ �(M2) is torsion free, that is Ĥ0(π ; �(M2)) = 0.

The proof of this claim takes more than a page. To prove the claim, we want to apply
Lemma 3·6 to the short exact sequence

0 → �(Zπ/〈1 − a〉) → �(M2) → D → 0 (4·4)

coming from Lemma 2·4. We will use the other sequence

0 →Zπ/〈1 − a〉 ⊗Z Zπ/〈Na, b − 1〉 → D → �(Zπ/〈Na, b − 1〉) → 0, (4·5)

from Lemma 2·4 as well, to compute the torsion in Ĥ0(π ; D).
We check that (4·4) satisfies the hypotheses of Lemma 3·6 that �(M2) and Z⊗Zπ

�(Zπ/〈1 − a〉) are torsion free as Z-modules. Let Ca, Cb denote the cyclic subgroups of
π generated by a and b respectively, so π ∼= Ca × Cb. Note that as abelian groups Zπ/〈1 −
a〉 ∼=ZCb and Zπ/〈Na, b − 1〉 ∼=ZCa/Na. In particular both are torsion free abelian groups.
It follows from the extension (4·3) that M2 is also torsion free, then Lemma 2·3 implies that
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�(M2) is torsion free. Furthermore, we have

Ĥ0(π ; �(Zπ/〈1 − a〉)) ∼= Ĥ0(π ; �(ZCb)) ∼= Ĥ0(Cb; �(ZCb)).

The second isomorphism follows by observing that Ĥ0(π ; �(ZCb)) is the torsion in Z⊗Zπ

�(ZCb), while Ĥ0(Cb; �(ZCb)) is the torsion in Z⊗ZCb �(ZCb). But the action of Zπ

on �(ZCb) factors through the homomorphism Zπ →Zπ/〈1 − a〉 ∼=−→ZCb, so tensoring
over Zπ and tensoring over ZCb yield isomorphic groups. Now, Ĥ0(Cb; �(ZCb)) = 0 by
Lemma 2·9 and Theorem 2·5(i), so Z⊗Zπ �(Zπ/〈1 − a〉) is torsion free. This completes
the proof that (4·4) satisfies the hypotheses from the first sentence of Lemma 3·6 that �(M2)
and Z⊗Zπ �(Zπ/〈1 − a〉) are torsion free as Z-modules.

We continue proving the claim that Z⊗Zπ �(M2) is torsion free. The first part of
Lemma 3·6 now gives us a short exact sequence

0 →Z⊗Zπ �(Zπ/〈1 − a〉) →Z⊗Zπ �(M2) →Z⊗Zπ D → 0. (4·6)

To apply this sequence, we need to understand the torsion in Z⊗Zπ D, which we do
next.

By tensoring over Zπ with Z, the sequence (4·5) gives rise to a long exact sequence
ending in:

· · · →Z⊗Zπ (Zπ/〈1 − a〉 ⊗Z Zπ/〈Na, b − 1〉) →Z⊗Zπ D →
Z⊗Zπ �(Zπ/〈Na, b − 1〉) → 0.

We noted above that Zπ/〈Na, b − 1〉 ∼=ZCa/Na. Since the action of Zπ on this mod-

ule factors through Zπ →Zπ/〈b − 1〉 ∼=−→ZCa, the same holds for the Zπ action on
�(ZCa/Na), and so Z⊗Zπ �(ZCa/Na) ∼=Z⊗ZCa �(ZCa/Na). This latter group is torsion
free by Theorem 2·5 (iii). Therefore the torsion in Z⊗Zπ D comes from

Z⊗Zπ (Zπ/〈1 − a〉 ⊗Z Zπ/〈Na, b − 1〉) ∼=Zπ/〈1 − a〉 ⊗Zπ Zπ/〈Na, b − 1〉
∼=Zπ/〈1 − a, Na, b − 1〉 ∼=Z/n.

The image of the generator 1 ⊗ 1 of Zπ/〈1 − a〉 ⊗Zπ Zπ/〈Na, b − 1〉 in Z⊗Zπ D has as
a preimage in Z⊗Zπ �(M2) the element [(1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0)]. Here we represent
elements of Z⊗Zπ �(M2) as symmetric tensors in (Zπ)2 ⊗Z (Zπ)2: each element of (Zπ)2

determines an element of M2, so we obtain an element of �(M2) ⊆ M2 ⊗Z M2. The square
brackets around [(1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0)] indicate taking orbits under the π action
i.e. the element 1 ⊗ ((1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0)) ∈Z⊗Zπ �(M2). From now on we will
use this square bracket notation to denote the classes of elements in various quotients of
tensor products of free Zπ-modules.

Since the generator of Zπ/〈1 − a〉 ⊗Zπ Zπ/〈Na, b − 1〉 has order n, by exactness of (4·6),
we have that

[n((1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0))] ∈Z⊗Zπ �(M2)

lies in the image of Z⊗Zπ �(Zπ/〈1 − a〉), in the sequence (4·6). To apply Lemma 3·6
together with Remark 3·7, we have to show that [n((1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0))] has
preimage in Z⊗Zπ �(Zπ/〈1 − a〉) that is not divisible by n nor any of its factors. Let · be
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the usual involution sending g → g−1. We find the preimage of [n((1, 0) ⊗ (0, 1) + (0, 1) ⊗
(1, 0))]:

[n((1, 0) ⊗ (0, 1) + (0, 1) ⊗ (1, 0))] = [(Na, 0) ⊗ (0, 1) + (0, 1) ⊗ (Na, 0)]

=
n−1∑
i=0

[
(ai, 0) ⊗ (0, 1) + (0, 1) ⊗ (ai, 0)

] =
n−1∑
i=0

[
(1, 0) ⊗ (0, a−i) + (0, a−i) ⊗ (1, 0)

]
= [(1, 0) ⊗ (0, Na) + (0, Na) ⊗ (1, 0)] = [(1, 0) ⊗ (0, Na) + (0, Na) ⊗ (1, 0)]

= [−(1, 0) ⊗ (Nb, 0) − (Nb, 0) ⊗ (1, 0)].

Here the first equation uses that a acts trivially on the first factor, so multiplication by n and
by Na are equivalent. The second and fourth equations use the definition of Na. The third
equation uses that we have tensored with Z over Zπ . In general, if Zπ acts diagonally on
a tensor product L ⊗Z L of Zπ-modules, in the tensored down module Z⊗Zπ (L ⊗ L) the
relation [a ⊗ (λb)] = [(λa) ⊗ b] holds, where λ ∈Zπ and a, b ∈ L. The fifth equation uses
that Na = Na. The sixth and final equation uses the second relation of M2.

The preimage element 1 ⊗ Nb + Nb ⊗ 1 is not divisible in Z⊗Zπ �(Zπ/〈1 − a〉) ∼=
Z⊗ZCb �(ZCb). This follows from the concrete description of �(ZCb) as a ZCb-module
from [HK88, lemma 2·2]; see also Lemma 2·7. Now by Lemma 3·6 and Remark 3·7,
Z⊗Zπ �(M2) is torsion free, so Ĥ0(π ; �(M2)) is trivial. This completes the proof of the
claim.

Now we show that Z⊗Zπ �( ker d2) is torsion free, as desired for the proposition. We
want to apply the short exact sequence (4·2). By Lemma 2·4 we have a Zπ-module E and
short exact sequences

0 → �(M1) → �( ker d2) → E → 0 (4·7)

and

0 → M1 ⊗Z M2 → E → �(M2) → 0. (4·8)

Claim. The short exact sequence (4·7) satisfies the hypotheses from the first sentence of
Lemma 3·6. That is, �( ker d2) and Z⊗Zπ �(M1) are torsion free as Z-modules.

We have M1 ∼=Zπ/Na ⊕Zπ/Nb and hence M1 is torsion free. We saw above, just below
(4·5), that M2 is torsion free. Then the short exact sequence 0 → M1 → ker d2 → M2 → 0,
or alternatively Lemma 3·1, implies that ker d2 is torsion free. Therefore �( ker d2) is torsion
free by Lemma 2·3. Next, M1 ∼=Zπ/Na ⊕Zπ/Nb implies that

�(M1) ∼= �(Zπ/Na) ⊕ �(Zπ/Nb) ⊕ (Zπ/Na ⊗Z Zπ/Nb).

The groups �(Zπ/Na) and �(Zπ/Nb) are still torsion free after applying Z⊗Zπ by
Proposition 2·6. The group

Z⊗Zπ (Zπ/Na ⊗Z Zπ/Nb) ∼=Zπ/Na ⊗Zπ Zπ/Nb ∼=Zπ/〈Na, Nb〉
is torsion free with Z-basis given by {aibj | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1}. Therefore Z⊗Zπ

�(M1) is torsion free. This completes the proof of the claim that (4·7) satisfies the hypotheses
of the first sentence of Lemma 3·6.
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Next we compute the torsion in Z⊗Zπ E, i.e. Ĥ0(π ; E). The short exact sequence (4·8)
gives rise to a long exact sequence:

· · · → Ĥ0(π ; M1 ⊗Z M2) → Ĥ0(π ; E) → Ĥ0(π ; �(M2)) → · · ·
By the claim above, Ĥ0(π ; �(M2)) = 0. We have

Z⊗Zπ (M1 ⊗Z M2) ∼= M1 ⊗Zπ M2 ∼= (Zπ/Na ⊗Zπ M2) ⊕ (Zπ/Nb ⊗Zπ M2).

Using the description of M2 in terms of generators and relations,

M2 := (Zπ)2/〈(1 − a, 0), (Nb, Na), (0, b − 1)〉,
it follows that

Zπ/Na ⊗Zπ M2 ∼= (Zπ)2/〈(1 − a, 0), (Nb, 0), (0, b − 1), (Na, 0), (0, Na)〉
∼= (Z/n)Cb/Nb ⊕ZCa/Na.

Similarly,

Zπ/Nb ⊗Zπ M2 ∼=ZCb/Nb ⊕ (Z/m)Ca/Na.

It follows that the torsion in Z⊗Zπ E has preimages in Z⊗Zπ �( ker d2) of the form

[(1, 0, 0, 0) ⊗ (0, λ, 0, 0) + (0, λ, 0, 0) ⊗ (1, 0, 0, 0)

+ (0, 0, 0, 1) ⊗ (0, 0, λ′, 0) + (0, 0, λ′, 0) ⊗ (0, 0, 0, 1)]

with λ ∈ZCb and λ′ ∈ZCa. Here we represent elements of Z⊗Zπ �( ker d2) as symmetric
tensors in (Zπ)4 ⊗Z (Zπ)4, which determine elements in �( ker d2) ⊆ ker d2 ⊗Z ker d2. As
above square brackets indicate taking orbits under the π action, that is the corresponding
element of Z⊗Zπ �( ker d2).

Claim. The torsion in Z⊗Zπ E is generated by the elements

[(1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1, 0, 0, 0)]

and

[(0, 0, 0, 1) ⊗ (0, 0, 1, 0) + (0, 0, 1, 0) ⊗ (0, 0, 0, 1)],

that is, elements corresponding to the first two summands in the sum above with λ= 1, and
the final two summands with λ′ = 1.

Now we prove the claim. Using the relation (b − 1, 1 − a, 0, 0) in ker d2, in ker d2 ⊗Z

ker d2 we have

(1 − b, 0, 0, 0) ⊗ (1 − b, 0, 0, 0) = (0, 1 − a, 0, 0) ⊗ (0, 1 − a, 0, 0).

Hence the same relation holds in �( ker d2). We have

(0, 1 − a, 0, 0) ⊗ (0, 1 − a, 0, 0) =(0, 1, 0, 0) ⊗ (0, 1, 0, 0) − (0, a, 0, 0) ⊗ (0, 1, 0, 0)

− (0, 1, 0, 0) ⊗ (0, a, 0, 0) + (0, a, 0, 0) ⊗ (0, a, 0, 0).
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In Z⊗Zπ �( ker d2) the last element represents the same element as (0, 1, 0, 0) ⊗ (0, 1, 0, 0)
since we can act diagonally with a−1. Hence in Z⊗Zπ �( ker d2) we have

[(0, 1 − a, 0, 0) ⊗ (0, 1 − a, 0, 0)] = [(0, 1 − a, 0, 0) ⊗ (0, 1, 0, 0)

+ (0, 1, 0, 0) ⊗ (0, 1 − a, 0, 0)].

Using the same relation as before, we have

[(0, 1 − a, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (0, 1 − a, 0, 0)]

= [(1 − b, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1 − b, 0, 0, 0)]

= [(1, 0, 0, 0) ⊗ (0, 1 − b−1, 0, 0) + (0, 1 − b−1, 0, 0) ⊗ (1, 0, 0, 0)].

Using that (1 − b, 0, 0, 0) ⊗ (1 − b, 0, 0, 0) ∈ �(M1), in the quotient Z⊗Zπ E this element is
trivial. Hence in Z⊗Zπ E we have

[(1, 0, 0, 0) ⊗ (0, λ, 0, 0) + (0, λ, 0, 0) ⊗ (1, 0, 0, 0)]

= [(1, 0, 0, 0) ⊗ (0, |λ|, 0, 0) + (0, |λ|, 0, 0) ⊗ (1, 0, 0, 0)],

where |λ| = ∑m−1
i=0 λbi ∈Z for λ= ∑m−1

i=0 λbibi. An analogous argument shows that

[(0, 0, 0, 1) ⊗ (0, 0, λ′, 0) + (0, 0, λ′, 0) ⊗ (0, 0, 0, 1)]

= [(0, 0, 0, 1) ⊗ (0, 0, |λ′|, 0) + (0, 0, |λ′|, 0) ⊗ (0, 0, 0, 1)],

in the quotient Z⊗Zπ E, where |λ′| = ∑n−1
i=0 λ

′
ai ∈Z for λ′ = ∑m−1

i=0 λ′
aiai. This shows that

the torsion in Z⊗Zπ E is generated by [(1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1, 0, 0, 0)]
and [(0, 0, 0, 1) ⊗ (0, 0, 1, 0) + (0, 0, 1, 0) ⊗ (0, 0, 0, 1)], which completes the proof of the
claim.

We continue proving that Z⊗Zπ �( ker d2) is torsion free, by applying Lemma 3·6. Let
xa := ∑n−1

i=1 (n − i)ai. A short computation shows that n − Na = xa(a−1 − 1). Then using the
relations (Na, 0, 0, 0) and (b − 1, 1 − a, 0, 0) in ker d2, we have:

[n((1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1, 0, 0, 0))]

= [(n − Na, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (n − Na, 0, 0, 0)]

= [(−xa(1 − a−1), 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (−xa(1 − a−1), 0, 0, 0)]

= [(−xa, 0, 0, 0) ⊗ (0, 1 − a, 0, 0) + (0, 1 − a, 0, 0) ⊗ (−xa, 0, 0, 0)]

= [(−xa, 0, 0, 0) ⊗ (1 − b, 0, 0, 0) + (1 − b, 0, 0, 0) ⊗ (−xa, 0, 0, 0)]

= [(xa, 0, 0, 0) ⊗ (b − 1, 0, 0, 0) + (b − 1, 0, 0, 0) ⊗ (xa, 0, 0, 0)].

This corresponds to the element

[(xa, 0) ⊗ (b − 1, 0) + (b − 1, 0) ⊗ (xa, 0)] ∈Z⊗Zπ �(M1). (4·9)

Here, similarly to above, we represent elements of Z⊗Zπ �(M1) by elements of (Zπ)2 ⊗Z

(Zπ)2.
If m = 2, we will compute presently that [2((1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗

(1, 0, 0, 0))] lies in the image of Z⊗Zπ �(M1), so the order of [(1, 0, 0, 0) ⊗ (0, 1, 0, 0) +
(0, 1, 0, 0) ⊗ (1, 0, 0, 0)] in Z⊗Zπ E is at most 2, regardless of n. To see this, we compute
that
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(2, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (2, 0, 0, 0)

= (Nb + (1 − b), 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (Nb + (1 − b), 0, 0, 0)

and using the relations (0, Nb, Na, 0) and (Na, 0, 0, 0) in ker d2:

[(Nb, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (Nb, 0, 0, 0)]

= [(1, 0, 0, 0) ⊗ (0, Nb, 0, 0) + (0, Nb, 0, 0) ⊗ (1, 0, 0, 0)]

= [(1, 0, 0, 0) ⊗ (0, 0, −Na, 0) + (0, 0, −Na, 0) ⊗ (1, 0, 0, 0)]

= −[(Na, 0, 0, 0) ⊗ (0, 0, 1, 0) + (0, 0, 1, 0) ⊗ (Na, 0, 0, 0)] = 0.

Hence

[(2, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (2, 0, 0, 0)]

= [(1 − b, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1 − b, 0, 0, 0)]

= [(1, 0, 0, 0) ⊗ (0, 1 − b, 0, 0) + (0, 1 − b, 0, 0) ⊗ (1, 0, 0, 0)].

We computed above that this equals [(1 − b, 0, 0, 0) ⊗ (1 − b, 0, 0, 0)], which corresponds
to the element [(1 − b, 0) ⊗ (1 − b, 0)] ∈Z⊗Zπ �(M1). This completes the proof that
[2((1, 0, 0, 0) ⊗ (0, 1, 0, 0) + (0, 1, 0, 0) ⊗ (1, 0, 0, 0))] lies in the image of Z⊗Zπ �(M1).

Similarly, with xb := ∑m−1
i=1 (m − i)bi, we have

[m((0, 0, 0, 1) ⊗ (0, 0, 1, 0) + (0, 0, 1, 0) ⊗ (0, 0, 0, 1))]

= [(0, 0, 0, xb) ⊗ (0, 0, 0, a − 1) + (0, 0, 0, a − 1) ⊗ (0, 0, 0, xb)],

which corresponds to the element

[(0, −xb) ⊗ (0, (a − 1)λ′) + (0, (a − 1)λ′) ⊗ (0, −xb)] ∈Z⊗Zπ �(M1). (4·10)

Moreover, if n = 2, 2[(0, 0, 0, 1) ⊗ (0, 0, 1, 0) + (0, 0, 1, 0) ⊗ (0, 0, 0, 1)] is the image of
[(0, 1 − a) ⊗ (0, 1 − a)] ∈Z⊗Zπ �(M1).

Since the elements (4·9) and (4·10) (or their m = 2, n = 2 analogues) live in different
direct summands in the decomposition

Z⊗Zπ �(M1) ∼=Z⊗Zπ �(Zπ/Na) ⊕Z⊗Zπ �(Zπ/Nb) ⊕ (Zπ/Na ⊗Zπ Zπ/Nb),

we can check their divisibility separately and apply Remark 3·7 to each summand.
Again, the arguments are the same with the roles of a and b interchanged. Hence we only

consider

[xa ⊗ (b − 1) + (b − 1) ⊗ xa] ∈Z⊗Zπ �(Zπ/Na)

if m 
= 2 and [(1 − b) ⊗ (1 − b)] if m = 2.
In the latter case we have Z⊗Zπ �(Zπ/Na) ∼=Z⊗ZCa �(ZCa/Na) ⊕ZCa/〈Na, g − g〉 by

Lemma 2·7 with G = Cb, H = Ca, and A =ZCa/Na. This is a straightforward application of
the lemma, once one has observed that

Z⊗Zπ

(
(ZCa/Na ⊗Z ZCa/Na)[Cb]/Flipb

) ∼=ZCa/〈Na, g − g〉.
The image of [(1 − b) ⊗ (1 − b)] = 2[1 ⊗ 1] + [1 ⊗ b + b ⊗ 1] under the projection to
ZCa/〈Na, g − g〉 is 1, which if n is even is indivisible. To see that 1 is indivisible, using
the basis given by [ak] with k 
= 0, we have 1 = ∑n−1

i=1 ai = ∑n/2−1
i=1 2ai + an/2. If n is
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even, due to the coefficient of an/2 we see that 1 is indivisible. If n is odd, we obtain
1 = ∑n−1

i=1 ai = ∑(n−1)/2
i=1 2ai, so the element is divisible by 2. However, for n odd we have

shown that both n times and 2 times the image of the element [(1, 0, 0, 0) ⊗ (0, 1, 0, 0) +
(0, 1, 0, 0) ⊗ (1, 0, 0, 0)] in Z⊗Zπ E is trivial. It follows that this image is in fact trivial in
Z⊗Zπ E, so we do not have to consider it for our application of Lemma 3·6.

Now let us consider the case m 
= 2. Let S be as in Lemma 2·7, again with G = Cb, H = Ca,
and A =Z[Ca]/Na. Assume that b ∈ S. By Lemma 2·7 we have

Z⊗Zπ �(Zπ/Na) ∼=Z⊗ZCa �(ZCa/Na) ⊕
⊕

S

ZCa/Na ⊕ L,

where L ∼=ZCa/〈Na, g − g〉 if the order m of b is even and L = 0 otherwise. Here we use
the observation from above to find L and that ZCa/Na ⊗ZCa ZCa/Na. In this direct sum
decomposition, [xa ⊗ (b − 1) + (b − 1) ⊗ xa] corresponds to

[xa ⊗ 1 + 1 ⊗ xa] ∈Z⊗ZCa �(ZCa/Na) plus xa ∈ (ZCa/Na)b∈S.

In other words, the projection to (ZCa/Na)b∈S is xa. Since xa ∈ZCa/Na is indivisible, so is
[xa ⊗ (b − 1) + (b − 1) ⊗ xa]. Now using Lemma 3·6, we conclude that there is no torsion
in Z⊗Zπ �( ker d2). By Lemma 2·9 we therefore have Ĥ0(π ; �( ker d2)) = 0.

4·2. The computation of Ĥ0(π ; �(coker d2))

In this section we show the following, which will complete the proof of Theorem 1·1.

PROPOSITION 4·11. For every finite abelian group with two generators π ,
Ĥ0(π ; �(coker d2)) = 0.

Again we may assume that |π | is a power of 2, but we also do not need this assumption
for Proposition 4·11.

Proof. Let π = 〈a, b | an, bm, [a, b]〉. As before, let C2
d2−→ C1

d1−→ C0 be the chain complex
corresponding to the presentation 〈a, b | an, bm, [a, b]〉. Let d2 : C1 = HomZπ (C1, Zπ) →
C2 = HomZπ (C2, Zπ) be the dual of d2. The module

M := coker d2 ∼= (Zπ)3/〈(Na, 1 − b, 0), (0, 1 − a, Nb)〉
fits into an extension

0 →Zπ/N ⊕Zπ/N → M →Z→ 0, (4·12)

where N is the norm element in Zπ . The injection is given by the inclusion of the first and
third summands in the presentation of M above, given by d2. The surjection is given by the
projection to the second summand.

By Lemma 2·4 there is a Zπ module D and short exact sequences

0 → �(Zπ/N ⊕Zπ/N) → �(M) → D → 0 (4·13)

and

0 → (Zπ/N ⊕Zπ/N) ⊗Z Z→ D → �(Z) → 0. (4·14)
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As in Section 4·1, we will show that the first satisfies the conditions of Lemma 3·6, and use
the second to compute the torsion in Z⊗Zπ D. Then we will apply the first again, tensored
with Z⊗Zπ , together with Lemma 3·6, to deduce that Z⊗Zπ �(M) is torsion free.

Claim. The short exact sequence (4·13) satisfies the hypotheses of the first sentence of
Lemma 3·6. That is �(M) and Z⊗Zπ �(Zπ/N ⊕Zπ/N) are torsion free as Z-modules.

First, Zπ/N ⊕Zπ/N and Z are torsion free abelian groups, and therefore so is M.
Alternatively, apply Lemma 3·1. It follows that �(M) is torsion free by Lemma 2·3. Next,
we have

�(Zπ/N ⊕Zπ/N) ∼= �(Zπ/N) ⊕ �(Zπ/N) ⊕ (Zπ/N ⊗Z Zπ/N).

By Theorem 2·5 (iii), Z⊗Zπ �(Zπ/N) is torsion free. Additionally

Z⊗Zπ (Zπ/N ⊗Z Zπ/N) ∼=Zπ/N ⊗Zπ Zπ/N ∼=Zπ/N

is torsion free (as an abelian group) and thus Z⊗Zπ �(Zπ/N ⊕Zπ/N) is torsion free. This
completes the proof of the claim that the short exact sequence (4·13) satisfies the hypotheses
of the first sentence of Lemma 3·6.

We therefore have a short exact sequence:

0 →Z⊗Zπ �(Zπ/N ⊕Zπ/N) →Z⊗Zπ �(M) →Z⊗Zπ D → 0. (4·15)

We will use this later in conjunction with Lemma 3·6, to deduce that Z⊗Zπ �(M) is torsion
free.

Next, we use the extension (4·14) to compute the torsion in Z⊗Zπ D. Using �(Z) ∼=Z,
the extension gives a long exact sequence ending with:

· · · → Ĥ1(π ; D) → Ĥ1(π ; Z)
∂−→ Ĥ0(π ; Zπ/N ⊕Zπ/N) → Ĥ0(π ; D) → Ĥ0(π ; Z) = 0.

(4·16)
The above boundary map ∂ in the long exact sequence of Tate homology groups is the
boundary map from standard homology, noting that it has image in the subgroup ker (·N) of
the orbits Aπ = H0(π ; A), where A =Zπ/N ⊕Zπ/N. We compute ∂ as follows. Let C∗ be

a free Zπ-module resolution of Z with C1 ∼= (Zπ)2 (a−1,b−1)−−−−−−→ C0 ∼=Zπ . In the next diagram
we show part of the short exact sequence of chain complexes from which one computes the
map ∂ .

1 ⊗Z (Z / ⊕ Z / ) 1 ⊗Z 1 ⊗Z Z

0 ⊗Z (Z / ⊕ Z / ) 0 ⊗Z 0 ⊗Z Z

1⊗IdZ / ⊕Z / 1⊗Id 1⊗IdZ=0

We have Ĥ1(π ; Z) ∼= C1 ⊗Zπ Z/im(d2 ⊗ IdZ) ∼=Z/n ⊕Z/m and Ĥ0(π ; Zπ/N ⊕Zπ/N) ∼=
Z/|π | ⊕Z/|π |. In the extension (4·14), a preimage of 1 ∈Z∼= �(Z) in D ∼=
�(M)/�(Zπ/N ⊕ 0 ⊕Zπ/N) is given by [(0, 1, 0) ⊗ (0, 1, 0)]. Here we represent elements
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of �(M) by elements of (Zπ)3 ⊗Z (Zπ)3; these in turn determine elements of D since D is
a quotient of �(M). Under the map

1 ⊗Z (Z )2 ⊗Z ⊕ ([−(0, 1, 0) ⊗ (0, 1, 0)], 0)

0 ⊗Z Z ⊗Z [( − 1) ((0, 1, 0) ⊗ (0, 1, 0))]

1⊗Id

the element [−(0, 1, 0) ⊗ (0, 1, 0)] in the first factor of D ⊕ D is sent by d1 ⊗ IdD to
[(a − 1)((0, 1, 0) ⊗ (0, 1, 0))]. This tells us the image of (−1, 0) ∈Z/n ⊕ 0 ⊆Z/n ⊕Z/m ∼=
Ĥ1(π ; Z) under ∂ . To describe this image precisely, we consider the following diagram.

Z / ⊕ Z /

1( ; Z) 0( ; Z / ⊕ Z / ) Z ⊗Z (Z / ⊕ Z / )

Here, the map ι is the identification Zπ/N ⊕Zπ/N ∼= (Zπ/N ⊕Zπ/N) ⊗Z Z followed by
the map from (4·5), and T is the inclusion of the torsion subgroup by Lemma 2·9. Then the
computations above show that (−1, 0) ∈Z/n ⊕ 0 ⊆Z/n ⊕Z/m ∼= Ĥ1(π ; Z) is sent under the
composition T ◦ ∂ to

p(ι−1((a − 1)((0, 1, 0) ⊗ (0, 1, 0)))).

Here as above the element (a − 1)((0, 1, 0) ⊗ (0, 1, 0)) ∈ D is represented as an element in
�(M), which in turn is represented by an element of (Zπ)3 ⊗Z (Zπ)3. To express this as
an element in Z⊗Zπ (Zπ/N ⊕Zπ/N), we will now compute. Using the relation [(0, 1 −
a, Nb)] = 0 in M we have:

0 =[(0, 1 − a, Nb) ⊗ (0, −a, 0) − (0, 1, Nb) ⊗ (0, 1 − a, Nb)]

=[(0, 1 − a, Nb) ⊗ (0, −a, 0) − (0, 1, Nb) ⊗ (0, −a, 0) − (0, 1, Nb) ⊗ (0, 1, Nb)]

=[(0, 1, Nb) ⊗ (0, −a, 0) + (0, −a, 0) ⊗ (0, −a, 0)

− (0, 1, Nb) ⊗ (0, −a, 0) − (0, 1, Nb) ⊗ (0, 1, Nb)]

=[(0, −a, 0) ⊗ (0, −a, 0) − (0, 1, Nb) ⊗ (0, 1, Nb)]

=[(0, a, 0) ⊗ (0, a, 0) − (0, 1, 0) ⊗ (0, 1, 0) − (0, 0, Nb) ⊗ (0, 0, Nb)

− (0, 1, 0) ⊗ (0, 0, Nb) − (0, 0, Nb) ⊗ (0, 1, 0)].

Hence we have:

[(a − 1)((0, 1, 0) ⊗ (0, 1, 0))]

= [(0, 0, Nb) ⊗ (0, 0, Nb) + (0, 1, 0) ⊗ (0, 0, Nb) + (0, 0, Nb) ⊗ (0, 1, 0)].

As D is the quotient of �(M) = �((Zπ ⊕Zπ ⊕Zπ/〈· · · 〉)) by �(Zπ/N ⊕ 0 ⊕Zπ/N), we
have in D:

[(a − 1)((0, 1, 0) ⊗ (0, 1, 0))] = [(0, 1, 0) ⊗ (0, 0, Nb) + (0, 0, Nb) ⊗ (0, 1, 0)].

This element has preimage (0, Nb) ⊗ 1 ∈ (Zπ/N ⊕Zπ/N) ⊗Z Z and thus when tensor-
ing with Z over Zπ , we get (0, m) ∈Z/|π | ⊕Z/|π | ∼= Ĥ0(π ; Zπ/N ⊕Zπ/N) ⊆Z⊗Zπ

(Zπ/N ⊕Zπ/N).
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Similarly, the generator of Z/m in Z/n ⊕Z/m ∼= Ĥ1(π ; Z) maps under the boundary map
∂ to (n, 0) ∈Z/|π | ⊕Z/|π |. Hence the torsion in Z⊗Zπ D, which equals Ĥ0(π ; D) ∼= coker∂
by Lemma 2·9 and (4·16), is isomorphic to Z/n ⊕Z/m.

Now recall the short exact sequence (4·15),

0 →Z⊗Zπ �(Zπ/N ⊕Zπ/N)
ψ−→Z⊗Zπ �(M)

θ−→Z⊗Zπ D → 0.

We want to apply the second half of Lemma 3·6 to deduce that Z⊗Zπ �(M) is torsion free.
The elements u := [(0, 1, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, 1, 0)] and v := [(0, 1, 0) ⊗ (1, 0, 0) +
(1, 0, 0) ⊗ (0, 1, 0)] are preimages under θ in Z⊗Zπ �(M) of the generators of the torsion in
Z⊗Zπ D.

Next we find the preimage under ψ of m times u = [(0, 1, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗
(0, 1, 0)]. The first equation of the following computation in Z⊗Zπ �(M) uses the identity
m − Nb = −yb(1 − b) in Zπ with yb := ∑m−1

i=0 ibi = b + 2b2 + · · · + (m − 1)bm−1.

[m((0, 1, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, 1, 0))]

= [(0, Nb − yb(1 − b), 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, Nb − yb(1 − b), 0)]

= [(Naxb, Nb, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (Naxb, Nb, 0)],

where the last equation uses that 0 = [(Na, 1 − b, 0)] in M. Since 0 = [(a − 1)((0, 1, 0) ⊗
(0, 1, 0))] ∈Z⊗Zπ �(M), the above computation for the boundary map ∂ yields

[−(0, 0, Nb) ⊗ (0, 0, Nb)] = [(0, 1, 0) ⊗ (0, 0, Nb) + (0, 0, Nb) ⊗ (0, 1, 0)].

Since we tensored with Z over Zπ , where Zπ acts diagonally on (Zπ)3 ⊗Z (Zπ)3, we
have

[(0, 1, 0) ⊗ (0, 0, Nb) + (0, 0, Nb) ⊗ (0, 1, 0)]

= [(0, Nb, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, Nb, 0)]

= [(0, Nb, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, Nb, 0)].

Combining these we get

[m((0, 1, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0, 1, 0))]

= [(Naxb, 0, 0) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (Naxb, 0, 0) − (0, 0, Nb) ⊗ (0, 0, Nb)].

To show that an element of a direct sum is indivisible, it is enough to check this in one
summand. Hence consider the image under the projection

Z ⊗Z Γ(Z / ⊕ Z / ) Z ⊗Z (Γ(Z / ) ⊕ Γ(Z / ) ⊕ (Z / ⊗Z Z / ))

Z ⊗Z (Z / ⊗Z Z / ) Z /

which for the preimage of mu is Nayb. An analogous computation shows that the preimage
underψ of n times v = [(0, 1, 0) ⊗ (1, 0, 0) + (1, 0, 0) ⊗ (0, 1, 0)] projects to Nbya ∈Zπ/N ∼=
Z⊗Zπ (Zπ/N ⊗Z Zπ/N), where ya := ∑n−1

i=0 iai.
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Claim. To complete the proof it suffices to show, for every k, 	 with gcd (k, 	) = 1, that
kNayb + 	Nbya is indivisible.

To see this, let a, b ∈Z and write K := gcd (na, mb). Then to check that au + bv is not
torsion in Z⊗Zπ �(M), as per Lemma 3·6, note that mn/K is the order of the image of
au + bv in Z⊗Zπ D. Indeed, we have(mn

K

)
(au + bv) =

(na

K

)
mu +

(
mb

K

)
nv,

and this maps to 0 in Z⊗Zπ D since both mu and nv do. Taking the preimage in Z⊗Zπ

�(Zπ/N ⊕Zπ/N), and then projecting to Z⊗Zπ (Zπ/N ⊗Z Zπ/N) ∼=Zπ/N, we obtain(na

K

)
Nayb +

(
mb

K

)
Nbya.

Write k := na/K and 	 := mb/K. Note that gcd (k, 	) = 1, since K = gcd (na, mb). Then it
suffices to show that kNayb + 	Nbya is indivisible. In particular, we see that it is enough to
show that kNayb + 	Nbya is indivisible for every pair of coprime integers k, 	. This completes
the proof of the claim.

Now we show the desired statement. As an abelian group, Zπ/N is isomorphic to the sub-
module of elements in Zπ whose coefficient at the identity group element is zero. Observe
that Nayb and Nbya lie in this submodule. Let k, 	 ∈Z be coprime integers. In kNayb + 	Nbya,
the coefficient of a1b0 = a is 	, while the coefficient of a0b1 = b is k (and the coefficient
in front of the trivial group element is zero). It follows that in Zπ/N, kNayb + 	Nbya can
only be divisible by gcd (k, 	) and its divisors. But gcd (k, 	) = 1 so kNayb + 	Nbya is indi-
visible, as desired. Hence there is no torsion in Z⊗Zπ �(M) by Lemma 3·6. Therefore
Ĥ0(π ; �(M)) = Ĥ0(π ; �(coker d2)) = 0 by Lemma 2·9.

5. Groups of order at most 16

For small groups the following computations were made by Hennes [Hen91] using a com-
puter program. For π = (Z/2)2, Z/2 ×Z/4, (Z/4)2 and D8, Z⊗Zπ �( ker d2 ⊕ coker d2) is
torsion free. For π = (Z/2)3, Z/2 × D8 and Z/4 ×Z/2 ×Z/2, Z⊗Zπ �( ker d2 ⊕ coker d2)
contains torsion.

For π = (Z/2)2 it was claimed in [Bau88, final remark] (without proof), that
Ĥ0(π ; �(coker d2)) ∼= (Z/2)2. By Hennes’ computation and also by our proof above, this
is not true.

We used an algorithm written by the third author in his bachelor thesis [Rup16] to calcu-
late Z⊗Zπ �( ker d2) for all groups π up to order 16. The algorithm was written in SageMath
and the source code together with output from the calculations can be found in the GitHub
repository [Rup]. There were no computations made of Z⊗Zπ �(coker d2).

Example 5·1. The following is a complete list of all groups of order at most 16 such that
Ĥ0(π ; �( ker d2)) is nontrivial. The group Q8 = 〈i, j, k | i2 = j2 = k2 = ijk〉 is the quaternion
group.

π Ĥ0(π ; �( ker d2))

Z/4 ×Z/2 ×Z/2 (Z/2)2

Z/2 ×Z/2 ×Z/2 ×Z/2 (Z/2)4

Q8 ×Z/2 (Z/2)4
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