ABSOLUTE VALUES OF TOEPLITZ OPERATORS AND HANKEL OPERATORS

TAKAHIKO NAKAZI

ABSTRACT. Nehari's theorem for norms of bounded Hankel operators is revisited. Using it, the absolute values of Toeplitz operators are studied. This gives a theorem of Widom and Devinatz for invertible Toeplitz operators.

1. **Introduction.** Let U be the open unit disc in the complex plane and let ∂U be the boundary of U. If f is analytic in U and $\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$ is bounded for $0 \leq r < 1$, then $f(e^{i\theta})$, which we define to be $\lim_{r\to 1} f(re^{i\theta})$, exists almost everywhere on ∂U . If

$$\lim_{r\to 1} \int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta = \int_{-\pi}^{\pi} \log^+ |f(e^{i\theta})| d\theta,$$

then f is said to be of the class N_+ . The set of all boundary functions in N_+ is again denoted by N_+ . For $0 , the Hardy space <math>H^p$ is defined as $N_+ \cap L^p$ where L^p denotes $L^p(d\theta)$. Put $H_0^p = \{ f \in H^p : f(0) = 0 \}$.

P denotes the orthogonal projection from L^2 to H^2 . Let $\phi \in L^{\infty}$. We define the Hankel operator H_{ϕ} on H^2 by $H_{\phi}f = (I - P)(\phi f)$ and the Toeplitz operator T_{ϕ} on H^2 $T_{\phi}f = P(\phi f)$.

In Section 2 we show that if $H_{\phi}^*H_{\phi} \leq T_{\nu}$ then there exists a function k in H^{∞} such that $|\phi + k|^2 \leq \nu$ a.e. If ν is constant, this gives Nehari's theorem [7]. In Section 3 we give necessary and sufficient conditions such that there exists a nonzero function h in H^{∞} such that $T_{\phi}^*T_{\phi} \geq T_{h}^*T_{h}$. If h is constant, this gives a theorem of Widom and Devinatz (cf. [3, p. 187]). In Section 4 we study relations between ϕ and ψ when $H_{\phi}^*H_{\phi} = H_{\psi}^*H_{\psi}$ and $T_{\phi}^*T_{\phi} = T_{\psi}^*T_{\psi}$.

In this paper we also consider the above problems when the symbols ϕ are unbounded. For $\phi \in L^2$ we denote by M_{ϕ} the multiplication operator densely defined on L^2 . For $\phi \in L^2$ let H_{ϕ} denote the Hankel operator densely defined on H^2 by $(H_{\phi}f, g) = (M_{\phi}f, g), f \in H^{\infty}$ and $g \in \overline{H}_0^{\infty}$ and T_{ϕ} denote the Toeplitz operator densely defined by $(T_{\phi}f, g) = (M_{\phi}f, g), f \in H^{\infty}$ and $g \in H^{\infty}$.

For any $\phi \in L^2$, we define $H_{\phi}^* H_{\phi}, T_{\phi}^* T_{\phi}$ and $T_{|\phi|^2}$ as follows: for any $f, g \in H^{\infty}$, $(H_{\phi}^* H_{\phi} f, g) = (H_{\phi} f, H_{\phi} g), (T_{\phi}^* T_{\phi} f, g) = (T_{\phi} f, T_{\phi} g), \text{ and } (T_{|\phi|^2} f, g) = (\phi f, \phi g).$ The function $|\phi|^2$ is not necessarily in L^2 but we can define $T_{|\phi|^2}$ as a densely defined operator on H^2 . This was pointed out by the referee. When ϕ is in L^{∞} , both H_{ϕ} and T_{ϕ} are bounded linear operators on H^2 which were defined previously. We use the following lemmas several times.

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education. Received by the editors May 28, 1990.

[©] Canadian Mathematical Society 1991.

TAKAHIKO NAKAZI

LEMMA 1. Suppose $\phi \in H^{\infty}$. If ϕ has at least two functions in H^{∞} which give $\gamma = \text{dist}(\phi, H^{\infty})$, then there exists a function k in H^{∞} such that $\log (\gamma - |\phi + k|) \in L^1$.

PROOF. By a theorem of Adamyan, Arov and Krein (cf. [5, p. 160]) we may assume that dist $(\phi, H^{\infty}) = 1$ and $|\phi| = 1$. By the hypothesis, there exists a nonzero $k \in H^{\infty}$ such that $|\phi + 2k| \leq 1$ a.e. Since $|1/2\phi + k| \leq 1/2, 1/4 + \text{Re } \bar{\phi}k + |k|^2 \leq 1/4$ and hence 1 + 2 Re $\bar{\phi}k + |k|^2 + |k|^2 \leq 1$. This implies that $|\phi + k|^2 + |k|^2 \leq 1$. Thus $s = 1 - |\phi + k| \geq 1 - \sqrt{1 - |k|^2} \geq |k|^2/2$.

LEMMA 2. For any ϕ in $L^2 H_{\phi}^* H_{\phi} + T_{\phi}^* T_{\phi} = T_{|\phi|^2}$.

Lemma 2 is well known and obvious.

2. Norms of Hankel operators. The following theorem is an extension of Nehari's [7] to densely defined Hankel operators. If *B* is a linear operator densely defined on H^2 , that is, defined on H^{∞} , and $(Bf, f) \ge 0$ for any *f* in H^{∞} , then we write $B \ge 0$.

THEOREM 1. Suppose $\phi \in L^2$. Then

(1) For any k in H^2 , $H^*_{\phi} H_{\phi} \leq T_{|\phi+k|^2}$.

(2) If v is a nonnegative function in L^1 and $H^*_{\phi}H_{\phi} \leq T_{\nu}$, then there exists a function k in H^2 such that $|\phi + k|^2 \leq \nu$ a.e. and hence $H^*_{\phi}H_{\phi} \leq T_{|\phi+k|^2} \leq T_{\nu}$.

PROOF. (1) If $k \in H^2$ and $f \in H^\infty$ then for any $g \in \overline{H}_0^2(H_\phi f, g) = ((\phi + k)f, g)$. Letting g range over the unit ball in \overline{H}_0^2 , we get from this $||H_\phi f||_2 \leq ||(\phi + k)f||_2 = \sqrt{(T_{|\phi+k|^2}f, f)}$. Therefore, since $||H_\phi f||_2^2 = (H_\phi^*H_\phi f, f)$, we have $H_\phi^*H_\phi \leq T_{|\phi+k|^2}$.

(2) For $f \in H^{\infty}$ and $g \in \overline{H}_0^{\infty}$

$$\left| \int_{-\pi}^{\pi} \phi f \bar{g} d\theta / 2\pi \right|^2 = |(H_{\phi}f, g)|^2 \leq (H_{\phi}f, H_{\phi}f)(g, g)$$
$$\leq (vf, f)(g, g)$$

because $H_{\phi}^*H_{\phi} \leq T_{\nu}$. Let $\epsilon > 0$. Since $\nu + \epsilon$ is then $\geq \epsilon$ and in L^2 , there is an outer function h_{ϵ} in H^2 with $\nu + \epsilon = |h_{\epsilon}|^2$. Then, for $f \in H^{\infty}$ and $g \in \overline{H}_0^{\infty}$, we have by the previous relation

$$\left|\int_{-\pi}^{\pi} \phi h_{\epsilon}^{-1}(h_{\epsilon}f)\bar{g}d\theta / 2\pi\right|^{2} \leq \|h_{\epsilon}f\|_{2}\|g\|_{2}.$$

By Nehari's theorem [8] there exists a function l in H^{∞} such that $|\phi h_{\epsilon}^{-1} + l| \leq 1$ and $|\phi + h_{\epsilon}l|^2 \leq v + \epsilon$. By the standard limit process, we can find $k \in H^2$ such that $|\phi + k|^2 \leq v$.

In the proof of (2) of Theorem 1, we can use a lifting theorem of Cotlar and Sadosky [2].

COROLLARY 1. If $\phi \in L^{\infty}$ has at least two functions in H^{∞} which give dist (ϕ, H^{∞}) , then there exists a function $\psi \in H^{\infty}$ such that $H^*_{\phi}H_{\phi} + H^*_{\psi}H_{\psi} \leq \text{dist } (\phi, H^{\infty})$.

PROOF. By hypothesis, there exists $k \in H^{\infty}$ such that $\psi = (\gamma^2 - |\phi + k|^2)^{1/2} > 0$ a.e., where $\gamma = \text{dist } (\phi, H^{\infty})$. Hence by (1) of Theorem 1 $H_{\phi}^* H_{\phi} + H_{\psi}^* H_{\psi} \leq T_{|\phi+k|^2} + T_{\gamma^2 - |\phi+k|^2} \leq \gamma^2$.

3. Left invertible Toeplitz operators. There exists a nonzero function h in H^2 such that $T_{|\phi|^2} \ge T_h^* T_h$ if and only if $|\phi| \ge |h|$. In general $T_{|\phi|^2} \ge T_{\phi}^* T_{\phi}$ and so the following theorem is interesting.

THEOREM 2. Suppose $\phi \in L^2$. Then the following are equivalent.

(1) There exists a nonzero outer function h in H^2 such that $T_{\phi}^* T_{\phi} \ge T_h^* T_h$.

(2) $\log |\phi|$ is integrable, and there exists a function l in H^2 such that $|\phi| \ge |\phi + l|$ and $|\phi| \ne |\phi + l|$.

(3) ϕ has the form: $\phi = \phi_0 g$, where ϕ_0 is unimodular and g is an outer function in H^2 . Moreover there exists a nonzero function k in H^∞ such that $\|\phi_0 + k\|_\infty \leq 1$.

PROOF. (1) \Rightarrow (2). By the hypothesis and Lemma 2,

$$H_{\phi}^*H_{\phi} \leq T_{|\phi|^2 - |h|^2}.$$

By (2) of Theorem 1 there exists a nonzero function $l \in H^2$ such that $|\phi + l|^2 \leq |\phi|^2 - |h|^2$. Hence $\log |\phi| \in L^1$ and (2) is valid.

(2) \Rightarrow (3). Since log $|\phi|$ is integrable, ϕ has the form in (3): $\phi = \phi_0 g$. Since $|\phi| \ge |\phi + l|$ and $|\phi| \ne |\phi + l|$ for some $l \in H^2$, l is nonzero and $1 \ge |\phi_0 + g^{-1}l|$. Put $k = g^{-1}l$ then (3) follows.

(3) \Rightarrow (1). By the hypothesis and Lemma 1 there exists a function $e \in H^2$ such that $\log (1 - |\phi_0 + e|^2) \in L^1$. Hence $\log (|\phi|^2 - |\phi + ge|^2) \in L^1$. Since ge is in H^2 , by (1) of Theorem 1 $H^*_{\phi}H_{\phi} \leq T_{|\phi+ge|^2}$. By Lemma 2 $T^*_{\phi}T_{\phi} \geq T_{|\phi|^2 - |\phi+ge|^2}$. Since $\log (|\phi|^2 - |\phi + ge|^2) \in L^1$, there exists a nonzero function $h \in H^2$ such that $|\phi|^2 - |\phi + ge|^2 = |h|^2$ and hence $T^*_{\phi}T_{\phi} \geq T^*_hT_h$.

COROLLARY 2. Suppose ϕ is a unimodular. Then there exists a nonzero function h in H^2 such that $T^*_{\phi}T_{\phi} \ge T^*_hT_h$ if and only if ϕ has the form : $\phi = f/\bar{f}$ for some nonzero function f in H^2 .

PROOF. By a lemma of Koosis (cf. [5, pp. 161–163]), there exists a nonzero function k in H^{∞} such that $\|\phi + k\|_{\infty} \leq 1$ if and only if $\phi = f/\bar{f}$ for some nonzero function f in H^2 . Hence Theorem 2 implies the corollary.

The following is a corollary of the proof of Theorem 2 and generalizes a theorem of Devinatz and Widom ([3, p. 187] and [2]) to unbounded symbols.

TAKAHIKO NAKAZI

COROLLARY 3. Suppose $\phi \in L^2$. Then the following are equivalent.

(1) There exists a function h in H^2 such that $T^*_{\phi}T_{\phi} \ge T^*_hT_h$ and h^{-1} is in H^{∞} .

(2) There exists a function l in H^2 and a positive constant ϵ such that $|\phi| \ge \epsilon + |\phi + l|$ a.e.

(3) ϕ has the form: $\phi = \phi_0 g$ where ϕ_0 is a unimodular function and g is an outer function in H^2 . Moreover g^{-1} is in H^{∞} and dist $(\phi_0, H^{\infty}) < 1$.

PROOF. (1) \Rightarrow (2). There exists a positive constant ϵ_1 such that $T_h^*T_h \ge T_{\epsilon_1}^*T_{\epsilon_1}$. As in the proof of Theorem 2, there exists a function $l \in H^2$ such that $|\phi + l|^2 \le |\phi|^2 - \epsilon_1^2$. This implies (2).

(2) \Rightarrow (3). Since $|g| \ge |\epsilon|, g^{-1}$ belongs to H^{∞} and $1 \ge |g^{-1}| + |\phi_0 + g^{-1}l|$. This implies dist $(\phi_0, H^{\infty}) < 1$.

(3) \Rightarrow (1). There exists a function $e \in H^2$ and a positive constant ϵ such that $\epsilon + |\phi + eg|^2 \leq |\phi|^2$. Hence $T_{\phi}^* T_{\phi} \geq T_{\epsilon}^* T_{\epsilon}$ and this implies (1).

By a theorem of Douglas [4, Theorem 1], when $\phi \in L^{\infty}$, range $[T_{\phi}^*] \supset$ range $[T_{h}^*]$ if and only if $T_{\phi}^*T_{\phi} \ge T_{\lambda h}^*T_{\lambda h}$ for some $\lambda > 0$. Hence Theorem 2 gives necessary and sufficient conditions for that range $[T_{\phi}^*]$ contains range $[T_{h}^*]$ for some nonzero function h in H^{∞} .

If $T_{\phi}^*T_{\phi} \ge T_h^*T_h$ for some outer function h in H^2 , then $T_{\phi}^*T_{\phi} \ge T_u$ where $u = |h|^2$. From this view point, we wish to generalize Theorem 2.

THEOREM 3. Suppose $\phi \in L^2$. There exists a nonnegative, nonzero function u in L^1 such that $T^*_{\phi}T_{\phi} \ge T_u$ if and only if there exists a nonzero function h in H^2 such that $T^*_{\phi}T_{\phi} \ge T^*_hT_h$.

PROOF. By the remark above, it is sufficient to show the part of 'only if'. If $T_{\phi}^* T_{\phi} \ge T_u$, by Lemma 2 $T_{|\phi|^2-u} \ge H_{\phi}^* H_{\phi}$. By (2) of Theorem 1 there exists a function g in H^2 such that $|\phi|^2 - u \ge |\phi + g|^2$. Since u is nonzero, the g is nonzero and $2|\phi||g| \ge 2Re\bar{\phi}(-g) \ge |g|^2$. Hence $\log |\phi|$ is integrable and so $\phi = \phi_0 k$ where ϕ_0 is a unimodular and k is an outer function in H^2 . This implies $1 \ge ||\phi_0 + k^{-1}g||_{\infty}$. Now Theorem 2 proves the 'only if' part.

4. Absolute values of H_{ϕ} and T_{ϕ} . In this section we are interested in the converse inequality: $T_{\phi}^*T_{\phi} \leq T_h^*T_h$ where $\phi \in L^2$ and $h \in H^2$. Then we will consider when two Toeplitz operators have the same absolute values.

THEOREM 4. Let ϕ be a function in L^2 . There exists a nonzero function h in H^2 such that $T^*_{\phi}T_{\phi} \leq T^*_hT_h$ if and only if $|\phi| \leq |h|$.

PROOF. If $|\phi| \leq |h|$ then $T_{|\phi|^2} \leq T_h^*T_h$ and hence $T_{\phi}^*T_{\phi} \leq T_h^*T_h$ by Lemma 2. Conversely suppose $T_{\phi}^*T_{\phi} \leq T_h^*T_h$. For any $\epsilon > 0$, there exists an outer function $h_{\epsilon} \in H^2$ such that $|h_{\epsilon}|^2 = |h|^2 + \epsilon$. Then for any $f \in H^{\infty} ||P(\phi f)||_2 \leq ||h_{\epsilon}f||_2$. If $g = h_{\epsilon}^{-1}f$ then $g \in H^{\infty}$ and hence $||P(\phi h_{\epsilon}^{-1}f)||_2 \leq ||f||_2$. Thus $\sup \{|\int \phi h_{\epsilon}^{-1}f\bar{g}d\theta/2\pi|; f \in H^{\infty}, g \in H^{\infty}, ||f||_2 \leq 1$ and $||g||_2 \leq 1\} \leq 1$. Put $A = \{f\bar{g}; f \in H^{\infty}, g \in H^{\infty}, g$ $||f||_2 \leq 1$ and $||g||_2 \leq 1$ } and $B = \{s \in L^{\infty}; ||s||_1 \leq 1$ and $\log |s| \in L^1\}$. If we show that A is dense in B and then A is dense in the unit ball of L^1 , $||\phi h_{\epsilon}^{-1}||_{\infty} \leq 1$ and $|\phi| \leq |h_{\epsilon}|$. As $\epsilon \to 0$ $|\phi| \leq |h|$. If $s \in B$ then there exists an outer function $g \in H^{\infty}$ such that $s = s_0 g \bar{g}, |s_0| = 1$ and $||g||_2 \leq 1, s_0$ can be uniformly approximated by the set of quotients of inner functions [5, p. 217]. This implies that A is dense in B.

THEOREM 5. Suppose ϕ and ψ are in L^2 .

(1) If $T_{\phi}^{*}T_{\phi} = T_{\psi}^{*}T_{\psi}$ then $|\phi| = |\psi|$.

(2) Suppose $\log |\phi|$ is integrable. If $T_{\phi}^*T_{\phi} = T_{\psi}^*T_{\psi}$, then $\phi = \phi_0 h$ and $\psi = \psi_0 h$, where h is an outer function in H^2 , and both ϕ_0 and ψ_0 are unimodular. Moreover $T_{\phi_0}^*T_{\phi_0} = T_{\psi_0}^*T_{\psi_0}$.

(3) Suppose ϕ and ψ are unimodular. If $T_{\phi}^*T_{\phi} = T_{\psi}^*T_{\psi}$ then for any g in H^{∞} there exists a function f in H^{∞} such that $|\phi + g| \ge |\psi + f|$.

PROOF. (1) For any $\epsilon > 0$ there exists an outer function $h_{\epsilon} \in H^2$ such that $|\psi| + \epsilon = |h_{\epsilon}|$. By Theorem 4 $T_{\psi}^* T_{\psi} \leq T_{h_{\epsilon}}^* T_{h_{\epsilon}}$ and so $T_{\phi}^* T_{\phi} \leq T_{h_{\epsilon}}^* T_{h_{\epsilon}}$. Again by Theorem 4 $|\phi| \leq |h_{\epsilon}| = |\psi| + \epsilon$ and $|\phi| \leq |\psi|$ because ϵ is arbitrary. Thus $|\phi| = |\psi|$.

(2) If $\log |\phi| \in L^1$, by (1) ϕ and ψ have the forms: $\phi = \phi_0 h$ and $\psi = \psi_0 h$. Hence $T_h^*(T_{\phi_0}^*T_{\phi_0} - T_{\psi_0}^*T_{\psi_0})T_h = 0$. Since T_h has the dense range, $T_{\phi_0}^*T_{\phi_0} = T_{\psi_0}^*T_{\psi_0}$. (3) Since ϕ and ψ are unimodular, by Lemma 2 $T_{\phi}^*T_{\phi} = T_{\psi}^*T_{\psi}$ implies $H_{\phi}^*H_{\phi} = H_{\psi}^*H_{\psi}$. Theorem 1 implies (3).

The author thanks the referee for pointing out several mistakes and errors.

REFERENCES

- 1. M. Cotlar and C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, Proc. Symp. Pure Math. AMS 35: I (1979), 383–407.
- 2. A. Devinatz, Toeplitz operators on H² spaces, Trans. Amer. Math. Soc. 112 (1964), 304-317.
- R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972.
- 4. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–416.
- 5. J. Garnett, Bounded Analytic Functions, Academic Press, New York, N.Y., 1981.
- 6. P. Koosis, Weighted quadratic means of Hilbert transforms, Duke Math. J. 38 (1971), 609-634.
- 7. Z. Nehari, On bounded billinear forms, Ann. of Math. 65 (1957), 153-162.
- S. C. Power, Hankel Operators On Hilbert Space, Research Notes in Math. 64, Pitman Advanced Publishing Program, 1982.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan