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ABSTRACT. In this paper, a molecular-dynamics sea-ice model is used to study contact and force
networks in fragmented sea ice, composed of separate floes with power-law size distribution. The
momentum equations for individual floes, taking into account floe/floe collisions (with Hertzian contact
mechanics), are formulated in a way suitable for a computationally efficient numerical algorithm,
allowing simulation of systems of thousands of floes. The simulations are performed for a number of
scenarios: pure convergence without wind, through a jamming phase transition; constant wind at a
constant ice concentration; and an idealized marginal ice zone. An analysis of the statistical properties
of the contact and force networks reveals a highly localized, intermittent character of internal stress in
the ice, as well as the role of the size-dependent response of floes to the forcing in formation of spatial
patterns of internal stress at lower ice concentrations. The results provide a valuable starting point for
formulating improved rheology models for fragmented sea ice.

INTRODUCTION
Contrary to perennial ice pack covering the central Arctic
Ocean, seasonal sea ice is relatively thin and has lower
mechanical strength, and is therefore easily fragmented into
separate floes. Whereas compact ice cover can be success-
fully modeled as a continuous medium (with various versions
of a viscous–plastic or, recently, elasto-brittle rheology), at ice
concentrations A < 1 the ‘macroscopic’, large-scale dynam-
ics of ice is a complex, emergent result of ‘microscopic’
processes taking place at a floe level. Ice cover composed of
separate floes constitutes an example of a very complex
granular medium, composed of particles – ice floes –
interacting with each other and with the surrounding ‘inter-
stitial’ fluids (air and water) via a number of mechanisms.
One of the most crucial (and computationally challenging)
properties of that granular material is its very strong poly-
dispersity. The observed floe-size distributions (FSD) are
heavy-tailed, typically of power-law type (although other
distributions (e.g. from the Weibull family) have also been
proposed) with an exponent � < 2 (e.g. Toyota and others,
2006, 2011; Steer and others, 2008; Herman, 2010). In com-
bination with a floe-size-dependent response to the external
forcing, this strong variability of floe sizes contributes to the
complex character of sea-ice dynamics, typical for seasonal
ice and the marginal ice zone (MIZ). Selected aspects of that
behavior have recently been numerically analyzed by
Herman (2011, 2012), in studies that concentrated on floe-
cluster formation and collision patterns in sea ice.

In this work, the simple hard-disk model developed by
Herman (2011, 2012) is reformulated in a more general,
easily extendable form, and its simplistic, computationally
inefficient collision scheme is replaced with a more realistic
floe/floe interaction model, based on Hertzian contact
mechanics. As previously, sea ice is modeled as a two-
dimensional (2-D) granular material composed of disk-
shaped, inelastic ‘particles’ (floes) with a power-law size
distribution, moving on the sea surface under a prescribed
external forcing. Numerically, the model is based on the
LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator) library, and allows systems with thousands of

particles within a model domain subjected to various types
of deformation (convergence, shear, etc.) to be simulated.

This paper concentrates on patterns of forces (force
networks) between ice floes, and the corresponding internal
stress in ice subject to selected types of external forcing:
pure convergence without wind; constant wind forcing at a
constant ice concentration, without large-scale strain; and a
simplified MIZ with constant wind forcing at an acute angle
to the ice edge. The results are analyzed in the context of
phenomena known from other types of polydisperse granu-
lar materials. They provide interesting clues for formulating
models parameterizing internal stress in fragmented ice
cover.

MOLECULAR-DYNAMICS SEA-ICE MODEL
Let us consider an ensemble of N disk-shaped ice floes with
a constant density, �, and with variable thickness, hi, and
radii, ri, for i ¼ 1, � � � ,N. The motion of the floes on the sea
surface (assumed 2-D) is influenced by (1) the external body
and surface forces and (2) the floe/floe interaction forces. In
the following, �f s, i and �f b, i denote density of the surface and
body forces, measured in Nm�2 and Nm�3, respectively.
The floe/floe interaction force, bF ij, results from inelastic

collisions of the floes. For two floes, i and j, bF ij is nonzero if
and only if those two floes are in contact. Let CiðtÞ denote
the set of all floes in contact with floe i at a certain time
instant, t. It is useful to express the force between i and j as a
sum of two components, normal and tangential to the plane
of contact, denoted as bF ij, n and bF ij, t, respectively. bF ij, n

contributes to the translational motion of floes i and j, andbF ij, t to their rotation.

Momentum equations for ice floes
The general form of the linear momentum equation of the ith
floe is (e.g. Leppäranta, 2005):

mi
dui

dt
¼ �mif k� ui þ

Z
Si

�f s, i ds þ
Z
Vi

�f b, i dv þ
X
j2CiðtÞ

bF ij, n, ð1Þ
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where mi ¼ ��hir2i is the mass of the floe, ui is the velocity
of its mass center, t is time, f is the Coriolis parameter, k is a
unit vector pointing vertically upward and Si and Vi are the
surface and volume of the floe. Analogously, the angular
momentum equation can be written as

mi
r2i
2
d!i

dt
¼ k �

Z
Si
r �f s, i ds þ

Z
Vi

r � f b, i dv þ
X
j2CiðtÞ

r ij�bF ij, t

0
@

1
A,

ð2Þ
where !i denotes the angular velocity of floe i, r the
distance from the floe’s center and r ij a vector pointing from
its center to the contact point with floe j.

External forcing acting on the floes
In this work it is assumed that there are no external body
forces (�f b, i � 0) and that four terms contribute to the total
surface forcing, �f s, i:

�f s, i ¼ �ha, i þ �hw, i þ �va, i þ �vw, i : ð3Þ
The atmospheric and oceanic skin drag, �ha, i and �hw, i , act
on the upper and lower surface of the floe, respectively (with
surface area of both equal to �r2i ). The atmospheric body
drag, �va, i , acts on the floe’s edges above the waterline and,
in the case of deformed ice, on the slopes of ridges. Here we
assume that the vertical area exposed to �va, i equals �rihf, i,
where hf, i ¼ hið�w � �Þ=�w is the floe’s freeboard and �w is
water density. Analogously, the oceanic body drag, � vw, i,
acts on the floe’s edges below the waterline and on the
slopes of keels, and the area exposed to it equals
�riðhi � hf, iÞ.

The terms on the right-hand side of Eqn (3) are calculated
as

�ha, i ¼ �aChajuajua, �hw, i ¼ �wChwðuw � uiÞ, ð4Þ

� va, i ¼ �aCvajuajua, �vw, i ¼ �wCvwðuw � uiÞ, ð5Þ
where �a denotes the air density, ua and uw are the wind and
current velocities, respectively, and Cha, Chw, Cva and Cvw

are drag coefficients at the horizontal and vertical surfaces of
the floe.

Thus, the final form of Eqns (1) and (2) is (see also
Leppäranta, 2005):

mi
dui

dt
¼�mif k � ui þ �ri�a riCha þ hf, iCva

� �juajua

þ �ri�w
h
riChw þ hi � hf, i

� �
Cvw

i
ðuw � uiÞ

þ
X
j2CiðtÞ

bF ij, n,

ð6Þ

mi
r2i
2
d!i

dt
¼ �� r

3
i

2
�w riChw þ hi � hf, i

� �
Cvw

� �
!i

þk �
X
j2CiðtÞ

r ij � bF ij, t:
ð7Þ

As analyzed by Herman (2011, 2012) (for a simplified case
without the Coriolis force and without rotational motion of
the floes), the response of the floes to the forcing is size-
dependent, with larger floes generally having larger equi-
librium velocity directed at wider angles to the wind, and
reacting more slowly to changes in forcing. In situations with
wide, heavy-tailed floe-size distributions, this fact is respon-
sible for a number of important phenomena, including

formation of force networks at concentrations below the
jamming transition, discussed in this work.

Floe/floe contact mechanics

Each of the normal and tangential forces, bF ij, n and bF ij, t, in
Eqns (6) and (7) is a sum of two terms:

bF ij, n ¼ bF ij, n, c þ bF ij, n, d, bF ij, t ¼ bF ij, t, s þ bF ij, t, d: ð8Þ

The two normal forces are the Hertzian contact force bF ij, n, c

and the damping force bF ij, n, d. Analogously, the components

of the tangential force are the shear force bF ij, t, s and the

damping force bF ij, t, d. According to Hertzian mechanics,
the forces between the interacting objects depend on the
distance, �, between their edges: the forces equal zero for
� � 0 and increase proportionally to j�j3=2 for � < 0. Details
of the Hertzian model in a general context are given by, for
example, Brilliantov and others (1996), Zhang and Makse
(2005), Schwager (2007) and Zhou (2011). In sea-ice
studies, (elements of) this model were used, for example,
by Hopkins and Thorndike (2006) and Fortt and Schulson
(2011). From the point of view of this study, the Hertzian
contact model has two advantages. Firstly, it is suitable for
polydisperse systems and, secondly, the coefficients in the
formulations of the terms of Eqn (8) are functions of well-
defined material properties of the particles (in this case, sea
ice). The material properties of sea ice used in the
simulations were obtained by Schulson (1999).

The numerical model
Replacement of the hard-disk approach used by Herman
(2011, 2012) by the more advanced collision model de-
scribed at the start of this section has some very important
(predominantly positive) consequences for the numerical
implementation of the model. Whereas hard-disk algorithms
progress from one collision to the next, which makes them
extremely computationally expensive in situations with high
collision rates, the present approach allows the use of a
constant time-step, �t, limited by the characteristic collision
duration in the analyzed system. Thus, the model run times
are, firstly, predictable and, secondly, to a large degree inde-
pendent of the details of a particular model configuration.

The numerical model has been built based on the
LAMMPS library (Plimpton, 1995; http://lammps.sandia.
gov/), one of the classical molecular dynamics programs,
designed for large systems of particles interacting through a
variety of short- or long-range forces. The code is highly
parallel, based on neighbor lists and effective spatial
decomposition techniques. For the purpose of this work,
LAMMPS has been extended to disk-shaped particles in 2-D
domains. For all N particles, the Newton equations of
motion, Eqns (6) and (7), are solved by means of the
velocity–Verlet integrator.

A list of the model parameters used in the simulations is
given in Table 1.

CONTACT AND FORCE NETWORKS
Global, large-scale properties of granular materials can be
characterized by a number of measures. From the point of
view of this work, two very useful properties are the contact
fabric tensor and the stress tensor. The contact fabric tensor,
R, is defined as an average vector outer product of unit
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normal vectors at contact between particles within a given
domain (Madadi and others, 2004; Zhang and others, 2010;
Bi and others, 2011; Shaebani and others, 2012). According
to the formulation used by Zhang and others (2010), suitable
for disk-shaped particles:

R ¼ 1
Nn

XNn

i¼1

X
j2CiðtÞ

nij � nij, ð10Þ

where nij ¼ r ij=jr ijj is a unit normal vector pointing from the
center of disk i to the contact point with disk j and Nn is the
number of floes with at least two contacts (called ‘non-rattler
grains’). The fraction of non-rattler grains is denoted
fnr ¼ Nn=N. Bi and others (2011) showed that fnr controls
phase transitions in sheared granular materials. The average
contact number per particle, �c, and the measure of
anisotropy of the contact network, �a, can be obtained from
the eigenvalues of R, �1 and �2, as �c ¼ �1 þ �2 and
�a ¼ ð�1 � �2Þ=�c.

Analogously, the stress tensor, �, is defined as:

� ¼ 1
S

XNn

i¼1

X
j2Ci

nij � F ij, ð11Þ

where S denotes the surface area of the system and F ij is the
sum of terms in Eqn (8). The pressure, p, and shear stress, � ,
can be obtained from the principal stresses, 	1 and 	2, as
p ¼ ð	1 þ 	2Þ=2 and � ¼ ð	2 � 	1Þ=2.

Whereas the interpretation and usage of the stress tensor,
�, are well established in numerical modeling of sea ice, the
meaning of tensor R requires some explanation. In granular
materials subject to external stresses, grains form (generally
inhomogeneous) contact networks and the external load is
carried by so-called force chains: elongated, filament-like
structures built of linearly arranged grains touching their
neighbors. The response of a granular material to a particular
type of deformation (shear, compression, etc.) depends on
the statistical measures of the force network; �c and �a are
among the most basic measures, describing its stability and
anisotropy. For example, a regular ‘mesh’ of identical,

densely packed disk-shaped particles has �c ¼ 6 (each
particle has six neighbors arranged around its perimeter)
and �a ¼ 0 (there is no asymmetry in the structure of the
contact network). Simple stability arguments show that
�c � 3 is necessary for a granular material to be able to resist
stress (to stabilize the position of a given grain, it has to be
‘held in place’ by at least three neighbors). The values of
�a > 0 indicate that the force chains are arranged in a
preferable direction, and that the ‘stiffness’, or strength, of
the material along that direction is higher than in other
directions.

MODELING RESULTS
Jamming phase transition in pure convergence
Before we proceed to more complex situations, it is useful to
analyze the time evolution of a system of floes subjected to
pure convergence, without wind. As we will see below, this
scenario allows us to define two clearly separated regimes,
or states, of sea ice.

Figure 1a shows the evolution of the internal pressure, p,
with increasing ice concentration, A. Initially, floe/floe
collisions are sporadic, and the corresponding levels of
internal stress are close to zero. Increasing A leads to
decreasing floe/floe distances and higher collision rates. The
relationship between p and A is approximately exponential,
until a certain limiting value of A, denoted AJ, is reached,
marking the onset of a rapid, hyperexponential increase of
pressure. As in other granular systems (Pica Ciamarra and
others, 2010), the exact numerical value of AJ depends on
the geometrical and material properties of the particles (in
this case, exponent � of the FSD, which determines the
packing efficiency of floes on the sea surface, and the elastic
and damping coefficients that influence the repulsive force

Table 1. Physical and numerical model parameters used in the
simulations

Parameter Symbol Value Unit

Ice density � 910 kgm–3

Water density �w 1025 kgm–3

Air density �a 1.23 kgm–3

Air/ice skin-drag coefficient Cha 2.0�10�3 —
Air/ice form-drag coefficient Cva 2.0�10�3 —
Water/ice skin-drag coefficient Chw 1.0�10�3 m s–1

Water/ice form-drag coefficient Cvw 1.0�10�3 m s–1

Wind speed juaj 10 m s–1

Surface current speed juwj 0.0 m s–1

Coriolis parameter f 1.3�10�4 s�1

Ice thickness h 1.5 m
FSD slope � 1.8 —
Mean floe radius r 4.0 m
Elastic modulus of sea ice E 9.0�109 Pa
Poisson’s ratio 
 0.33 —
Static yield criterion � 0.7 —

Number of floes N 20000 —
Time-step �t 0.002 s
Number of ensemble model runs Nens 5 –

Fig. 1. Jamming transition in sea ice under pure convergence for
dA=dt ¼ 0:04 h�1: (a) evolution of pressure, pðAÞ; (b) rank-order
distribution of floe/floe distances, �, below and above AJ, in the
three situations marked with dots in (a).
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between interacting floes), as well as on the path along
which the system is driven towards the jammed state.
However, in the analyzed cases the value of AJ was found to
be relatively stable, between 0.918 and 0.921. It is worth
noting that, due to the high packing efficiency of floes with
wide size distributions, AJ is higher than typically obtained
in monodisperse granular materials.

Qualitative differences between the states below and
above AJ manifest themselves in marked differences in
properties of the networks of contact forces between the
floes. Before the onset of jamming, there is still enough free
space that the repulsive forces generated during collisions
make it impossible for permanent floe/floe contact to
develop. Snapshots of the unjammed system show forces
only between pairs of floes undergoing a collision at that
particular time instant (Fig. 2a). Accordingly, floe/floe
distances tend to be small, but larger than zero (Fig. 1b),
the mean contact number �c ’ 1 (binary collisions) and the
non-rattler fraction fnr ’ 0 (Fig. 3). When the system
approaches AJ, formation of ‘clusters’ of floes with larger
numbers of neighbors (Fig. 2b) leads to increasing p, �c and
fnr. At AJ, the force network percolates the whole system
(Fig. 2c), the distances between a large number of neighbor-
ing floes drop to zero (Fig. 1b) and �c exceeds 3, which is the
minimum value necessary to stabilize the positions of the
floes (the number of neighbors of individual floes is roughly
proportional to their perimeters). Obviously, under pure
convergence �a and � remain close to zero (not shown).

The jamming transition thus separates two very different
regimes. Below AJ, in the unjammed state, floe/floe
collisions are the dominant source of the internal stress.
Moreover, because the floes have some space to move
independently of their neighbors, the size-dependent re-
sponse of individual floes to external forcing plays an
important role in the macroscopic behavior of sea ice
(Herman, 2011, 2012). Above AJ, owing to the existence of
a system-size force network, the ice possesses a certain
stiffness, or robustness, and can resist certain levels of stress
without undergoing irreversible deformation. (Of course, the
results become unrealistic at some A	 AJ, when the load
exceeds the ice strength and the floes break, raft on top of
each other, etc.)

Fig. 3. Evolution of the mean contact number, �c, and the fraction of
non-rattler floes, fnr, with ice concentration, A, during the pure-
convergence simulation.

Fig. 2. Simulated distribution of instantaneous forces between ice
floes under pure convergence, at A equal to (a) 0.908, (b) 0.914 and
(c) 0.920, i.e. in situations corresponding to those marked with dots
in Figure 1. For each floe i, a line is drawn from its center to the
center of floe j if j 2 CiðtÞ. For clarity the plots show only fragments
of the modeled system.
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It is worth noting that even in the jammed state, the
fraction of force-bearing floes, fnr, is still much lower than 1
(Fig. 3). The percolated force network has an openwork
structure, with patches of unjammed (usually relatively
small) floes surviving among force-bearing floes up to A far
above AJ (Fig. 2c). The consequences of this force-network
property on point measurements of stress in the ice are
briefly discussed in the final section.

Force networks under uniform wind
In order to illustrate the role of the size-dependent response
of the ice floes to external forcing, let us analyze a simple
case of ice under a uniform wind with juaj ¼ 10m s�1 and a
constant ice concentration, A (varied between model runs).
The simulations presented below were performed within
square domains with periodic boundaries. Tests with other
types of boundary conditions and in domains of different
sizes showed that the results were not sensitive to the
formulation of the boundary conditions.

Snapshots of the system in a quasi-equilibrium state for
two selected values of A (Fig. 4) show that wind-forced sea
ice has features resembling those present in the transitional
phase preceding the jamming transition in the case analyzed
above (Fig. 2b). Although the force networks do not
percolate the entire model domain, ‘locally jammed’ sub-
regions develop with above-average density of the contact
and force networks. The similarity manifests itself in the
values of pressure (cf. Figs 5a and 1a) and �c (Figs 5b and 3).
However, in many ways the wind-forced scenarios are
different from the pure-convergence case. Importantly, with
decreasing A and increasing role of the size-dependent
response of individual floes, the force and contact networks
become more localized and more asymmetric. For
A <
0.84, characteristic bands of densely packed floes
develop, with higher-than-average p and �c, separated by
regions of locally lower ice concentration and sporadic,
binary collisions (Fig. 4a). Contrary to the convergence case,
the system has significant values of the shear stress, � , and
anisotropy, �a (Fig. 5), which increases with decreasing A
(from almost zero at A ¼ AJ). Thus, wind-forced sea ice
possesses some features resembling the shear-jammed states
in 2-D granular materials, described by Zhang and others
(2010) and Bi and others (2011).

Force networks in a marginal ice zone
Finally, a set of simulations representing a simplified MIZ
was performed, assuming that the floes along the lower
boundary of the model domain, representing the fast-ice
edge, are stationary (‘frozen’). Periodic boundary conditions
were applied to the left and right boundaries. As previously,
the wind velocity juaj ¼ 10m s�1 in all simulations; the
wind direction relative to the ice edge was kept constant in
each individual model run, but varied between simulations.
All simulations were performed until a quasi-stationary state
was reached.

The modeled across-ice-edge (y-direction) profiles of
along-ice-edge ice velocity, uxðyÞ, are similar to those
produced by other models (Feltham, 2005). At first, ice
velocity changes smoothly across the width of the MIZ, but
this stage is short-lived. The final velocity profile is
characterized by a narrow region of strong velocity gradients,
separating stationary ice adjacent to the model boundary
from the outer zone, moving with an approximately constant
speed, dependent on the alongshore wind velocity (Fig. 6). It
should be noted that the motionless inner zone is not limited
to the floes arbitrarily declared as ‘frozen’, but extends into
the MIZ and comprises a strip of jammed floes.

Probably one of the most striking features of the model
behavior is the erratic character of the internal stress.
Although many general, global characteristics of the mod-
eled MIZ remain stable in time, the area-averaged stress
undergoes irregular changes, with uneven cycles of stress
build-up and sudden drops (Fig. 7), corresponding to
localized jamming events. Unloading of jams can also be
seen in Figure 6: during local rearrangements of floes some
of them (usually smaller ones) acquire speeds larger than
the equilibrium speed corresponding to their position within
the MIZ. Importantly, as shown in Figure 7b, although the
changes of p and � are correlated (with a correlation
coefficient of 0.68), their instantaneous ratio varies con-
siderably from close to 1 up to 
12.

Interestingly, the pressure levels, although more than
two orders of magnitude higher than in the simple

Fig. 4. Simulated distribution of instantaneous forces between ice
floes subject to a constant wind with ua, x ¼ 10m s�1 and ua, y ¼ 0,
at A equal to (a) 0.82 and (b) 0.90. For clarity, the plots show only
fragments of the modeled system.
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wind-forced cases analyzed above, still remain within the
range corresponding to the transitional regime just below AJ

(Figs 7 and 1a). Also, independently of the wind direction,
�c ’ 1:6 and �a 2 ð0:04, 0:08Þ, i.e. statistical properties of
the contact networks remain relatively stable in all analyzed
cases. Importantly, they are not sensitive to details of the
model configuration. In particular, changes in the material
properties of the ice (provided that they remain within
reasonable limits) influence the model behavior in the
initial phase of the simulations, but their significance is very
limited after a dynamic equilibrium is reached under a
specified forcing.

Finally, it is worth noticing that the MIZ simulations
described above were initialized with floes having random
positions and sizes drawn from a single, prescribed FSD
(Table 1), whereas in real-world MIZs the average floe size
and the shape parameters of the FSD depend on the distance
from the ice edge (e.g. Lu and others, 2008; Toyota and
others, 2011). In the idealized cases analyzed here, if the
simulations are carried out for a sufficiently long time, the
largest/smallest floes tend to migrate towards the inner/outer
sections of the MIZ, suggesting the existence of an inherent
sorting mechanism transferring largest floes to regions of
lower average flow velocities (although I do not suggest that

a similar mechanism is responsible for the observed changes
of the FSD properties across MIZs).

DISCUSSION AND CONCLUSIONS
One of the most important conclusions from this work
concerns the irregular, ‘unpredictable’ character of stress in
fragmented sea ice. The simulations show that even in
idealized situations with constant forcing, internal stress has
very high spatial and temporal variability. Moreover, this
variability manifests itself at various spatial scales, from
individual floes up to much larger sub-regions in the ice
cover. Due to the openwork nature of force networks in sea
ice, even a compact ice cover consists of force-bearing and
‘free’ floes with very different stress levels. Lower ice
concentrations favor formation of patches of relatively high

Fig. 5. Statistical measures of the force and contact networks in
simulations with constant wind: (a) pressure, p, and shear stress, � ;
(b) mean contact number, �c; and (c) anisotropy measure, �a.

Fig. 7. (a) Fragments of simulated time series of pressure, p, and
shear stress, � , and (b) their ratio, p=� , in the MIZ under stationary
wind forcing (juaj ¼ 10m s�1 and ua, y ¼ �5m s�1).

Fig. 6. Along-ice-edge ice velocity of individual floes, ui, xðyÞ,
simulated with three different wind directions (in all cases,
juaj ¼ 10m s�1 and ua, y denotes the cross-shore component of ua).
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stress among more loosely packed floes. In MIZ simulations,
even the domain-averaged stress undergoes erratic fluctu-
ations with high magnitude. This aspect of the modeling
results is in agreement with the results of point measure-
ments of stress in sea ice, which demonstrate low correlation
between stress measured at neighboring locations (e.g.
Richter-Menge and others, 2002).

Another important aspect of the results presented in this
study is that, if we allow for a size-dependent response of ice
floes to the forcing, the system maintains a certain level of
internal stress, even under uniform forcing. This behavior is
qualitatively different from that predicted by the existing
collisional rheology models (Shen and others, 1984, 1986;
Lu and others, 1989). Due to unrealistic assumptions that all
ice floes are uniformly distributed on the sea surface, and
that they react to the forcing in the same way, those models
predict nonzero internal stress in sea ice only if the forcing is
spatially nonuniform, i.e. under macroscopic strain of the
floe field. In view of deficiencies of existing collisional-
rheology parameterizations, the model formulated here
provides a valuable starting point for formulating more
reliable rheology models, suitable for fragmented sea ice
with variable concentrations.
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