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Abstract

To investigate the mechanisms driving recent changes in outlet glaciers in Antarctica, we mea-
sured the glacier front position, flow velocity and surface elevation of five outlet glaciers flowing
into Lützow-Holm Bay in East Antarctica. After a steady advance from 2008 to 2015, all the gla-
ciers synchronously retreated by 0.4–6.0 km between 2016 and 2018. The initiation of the retreat
coincided with the breakup of land-fast sea ice in Lützow-Holm Bay in 2016, which resulted in
the largest sea-ice loss in the region since 1998. Similar flow variations and surface elevation
changes were observed near the grounding line of Shirase, Skallen and Telen glaciers. The slow-
down in 2011–15 (by 13%) and the speedup in 2016–18 (by 7%) coincided with the respective
increase and decrease in surface elevation. Simultaneous retreat and acceleration after the
land-fast sea-ice breakup implies that sea ice has a significant influence on glacier dynamics.
Thickening/thinning observed near the grounding line was attributed to a reduced/enhanced
stretching flow regime during the deceleration/acceleration period. Our results demonstrate
that land-fast sea ice affects not only terminus positions, but also the flow speed and ice thickness
of the Antarctic glaciers.

1. Introduction

The Antarctic ice sheet has been losing mass for the past four decades, thereby contributing to
a rise in sea level of 14 ± 2.0 mm during the period 1979–2017 (Rignot and others, 2019). The
mass loss is caused by an increasing amount of ice discharge into the ocean, as observed in
West Antarctica, the Antarctic Peninsula and Wilkes Land in East Antarctica (Pritchard
and others, 2009; Smith and others, 2020a). In these regions, glacier flow has accelerated in
association with changes in temperature and circulation of the ocean and the atmosphere
(Gardner and others, 2018). The change in the flow regime of the glaciers has resulted in gla-
cier thinning due to enhanced horizontal stretching of ice, a process known as dynamic thin-
ning (Pritchard and others, 2009). Some of the large outlet glaciers in West Antarctica have
shown a significant acceleration upstream of the grounding line, which is attributed to a
loss of buttressing force from ice shelves. The ice shelves are thinning, and grounding lines
are retreating under the influence of increased basal melting by the intrusion of warm and
dense modified circumpolar deep water (mCDW) into the subshelf cavity (e.g. Shepherd
and others, 2004; Dutrieux and others, 2014; Christianson and others, 2016). These processes
have been studied on outlet glaciers flowing into the Amundsen Sea Embayment sector in
West Antarctica, a dominant contributor to sea-level rise from the Antarctic ice sheet
(Rignot and others, 2019; Shepherd and others, 2019). Grounding line retreat (Rignot and
others, 2014), flow acceleration (Mouginot and others, 2014) and thinning (Pritchard and
others, 2009; Smith and others, 2020a) have been observed in association with a strengthening
of CDW inflow to the bay (Jacobs and others, 2011).

Other studies suggested that glacier dynamics are also influenced by changes in stress bal-
ance induced by iceberg calving from the glacier or ice-shelf front. In the Antarctic Peninsula,
for example, rapid disintegration of Larsen A and B Ice Shelves triggered a significant speedup
of the outlet glaciers feeding into the ice shelves (Rignot, 2004), resulting in increased ice dis-
charge and mass loss (Wuite and others, 2015). To distinguish between these potential drivers
of the Antarctic ice mass loss, detailed observations are needed on the ice speed, the front pos-
ition and the ice thickness near the glacier front, since these factors control the discharge from
the ice sheet (Dupont and Alley, 2005; Fürst and others, 2016).

In contrast to the rapid changes in West Antarctica and the Antarctic Peninsula, outlet gla-
ciers in East Antarctica have been relatively stable according to observations over the past three
decades (The IMBIE team, 2018). Previous studies in East Antarctica showed a link between
glacier terminus variations and sea-ice concentrations (SIC) as well as air temperature (Miles
and others, 2013, 2016; Baumhoer and others, 2021). Land-fast sea ice plays a role in terminus
variations of glaciers in Antarctica, as it affects the stability of ice shelves by exerting buttres-
sing force on the glacier front. A change in the buttressing effect has the potential to modify
the glacier flow speed as well as the front position. For example, ice shelves in Porpoise Bay
simultaneously disintegrated after the breakup of land-fast sea ice in front of the glaciers
(Miles and others, 2017). Other studies of East Antarctica (Miles and others, 2013, 2016)
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and Antarctica as a whole (Baumhoer and others, 2021) showed
that long-term glacier advance and retreat coincided with positive
and negative anomalies of SIC, respectively. Sea ice in front of gla-
ciers also stabilize glacier termini by damping ocean swell reach-
ing to the glacier fronts. In the Antarctic Peninsula, the
disintegration of Larsen B Ice Shelf was deemed to be loss of
sea ice because open water allowed storm-generated ocean swell
to trigger extensive collapse of the ice shelf (Massom and others,
2018). An established link between sea ice and glacier change is
important for the response of the Antarctic ice sheet to the rapidly
changing climate, since land-fast sea ice is highly sensitive to cli-
mate change (Heil, 2006; Fraser and others, 2012; Aoki, 2017).
However, studies focused on the impact of sea ice on East
Antarctic glacier dynamics are scarce. Further studies are needed
to improve understanding of ongoing glacier changes and their
mechanisms in this region.

Lützow-Holm Bay, located in East Antarctica (69°S, 38°E), is
usually covered by land-fast sea ice, which has shown quasiperio-
dic breakup events at intervals of 10–20 years (Ushio, 2006; Aoki,
2017). These breakups are deemed to be affected by atmospheric
and oceanic conditions, including air temperature, southerly
winds, sea surface temperature, SIC in the pack-ice zone and
snowfall on the sea ice (Enomoto and others, 2002; Ushio,
2006; Aoki, 2017). The most recent breakup was observed in
April 2016, when a large portion of the fast ice in the bay retreated
(Fig. 1) (Aoki, 2017). Simultaneously, an iceberg conglomerate
detached from Shirase Glacier, suggesting the influence of sea
ice on the glacier terminus (Aoki, 2017). The breakup of land-fast
sea ice possibly affected other outlet glaciers in Lützow-Holm Bay,
but no investigations have been reported so far.

In this study, we carried out satellite observations of five outlet
glaciers flowing into Lützow-Holm Bay to investigate recent gla-
cier front variations with a focus on their relationship with sea-ice
conditions. Glacier front positions, flow velocity and surface ele-
vation in the period 1988–2020 were compared with SIC in
front of the glaciers. Based on the results, we discuss possible
influences of land-fast sea ice on the terminus position and
dynamics of the studied glaciers.

2. Study site

This study focuses on five marine-terminating outlet glaciers
flowing into Lützow-Holm Bay in East Antarctica: Shirase,
Skallen, Telen, Honnør and Langhovde glaciers (69.20–70.17°S
and 39.8–38.95°E) (Fig. 2). At the grounding line locations, the
maximum ice speed ranges from 70 m a−1 (Langhovde Glacier)
to 2200 m a−1 (Shirase Glacier), and the glacier width ranges
from 2 km (Honnør Glacier) to 10 km (Shirase Glacier).

Shirase Glacier is the fastest flowing glacier in Lützow-Holm
Bay. The ice shelf of Shirase Glacier disintegrates into large ice-
berg pieces, which aggregate and form a continuous floating ice
tongue. The floating tongue significantly retreated six times in
the period 1956–2016, and four of the events were associated
with major breakups of land-fast sea ice in Lützow-Holm Bay
(Pattyn and Derauw, 2002; Ushio, 2006; Nakamura and others,
2010; Aoki, 2017), suggesting the influence of sea-ice conditions
on the glacier front position. Previous observations indicated
that the breakup of land-fast sea ice also affected the ice flow of
Shirase Glacier. Nakamura and others (2010) found a flow accel-
eration of the floating tongue in April–July 1998 that coincided
with a major retreat of the land-fast sea ice in April 1998. After
another sea-ice breakup in 2016, the glacier flow accelerated by
30% (Nakamura and others, 2022). The authors attributed the
speedup to the loss of buttressing force exerted by the sea ice.
These observations covered only the floating part of the glacier
over periods less than three consecutive years (1996–98 and

2016–18). Thus, a possible link between sea ice and the grounded
ice dynamics is not addressed. The glacier has shown a trend of
mass gain for the last two decades, which was attributed to the
reduction in the ice-shelf basal melting associated with a weaken-
ing of mCDW intrusion (Hirano and others, 2020; Kusahara and
others, 2021; Miles and others, 2023). The grounding line of the
glacier was reported to have advanced at a rate of 14.7 m a−1

between 2010 and 2016 (Konrad and others, 2018).
Airborne and in situ observations were conducted at Shirase

and Langhovde glaciers by the Japanese Antarctic Research
Expedition. The bedrock elevation of Shirase Glacier was mea-
sured by airborne radar-echo soundings in the 1980s (Wada
and Mae, 1981; Mae and Yoshida, 1987). The survey results
showed that the ice thickness was 880 m near the grounding
line, above which the bed elevation was below sea level for 30
km. At ∼200 km from the grounding line, rapid thinning (0.5–
1.0 m a−1) was observed by triangulation chain surveys conducted
in the period 1969–74 (Naruse, 1979). The thinning was attribu-
ted to stretching ice flow enhanced by acceleration due to
increased basal sliding (Mae and Naruse, 1978). This observation
demonstrated the importance of glacier dynamics on the mass
budget of the ice sheet, since ice-flow changes of the outlet gla-
ciers have a significant impact on the thickness of inland ice
(e.g. Nick and others, 2009).

Langhovde Glacier is located 20 km south of the Japanese
research base, Syowa Station (Fig. 1a). In situ ice speed measure-
ment on its several-kilometer-long ice shelf confirmed short-term
velocity variations due to ocean tides (Sugiyama and others, 2014;
Minowa and others, 2019). The glacier retreated by ∼200 m in the
summer of 2011 during a breakup event of land-fast sea ice in
Lützow-Holm Bay, while no significant change was observed in
the surface elevation from 2006 to 2012 (Fukuda and others,
2014).

Glaciological studies of Honnør, Skallen and Telen glaciers are
scarce. The ice flow speeds of Skallen and Telen glaciers were
measured during the period 2007–11 using satellite data
(Shiramizu, 2018). Interannual velocity variations were reported,
but the mechanisms of the changes remained unclear.

3. Data and methods

3.1. Terminus position

The frontal margins of the studied glaciers were mapped during
the period 1988–2020, using satellite images obtained by the
Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture
radar (SAR), Advanced Spaceborne Thermal Emission and
Reflection (ASTER) radiometer, Landsat 4 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and
Landsat 8 Operational Land Imager (OLI). Relatively large geolo-
cation errors due to inaccurate co-registration found in the JERS-1
SAR and Landsat 4 TM images were corrected against the Landsat
8 OLI image acquired on 11 March 2020, by adjusting the coor-
dinates of commonly observed bedrock features with the horizon-
tal shift of 0.3–0.7 km.

We utilized backscatter images from JERS-1 SAR, the visible
and near-infrared band 3N from ASTER, true-color composites
from Landsat 4 TM (bands 1–3), Landsat 7 ETM+ (bands 1–3)
and Landsat 8 OLI (bands 2–4). In each image, the glacier fronts
were manually delineated using geographic information software
QGIS or Google Earth Engine Digitization Tool (Lea, 2018).
The mapping was performed 40–65 times for each glacier, by ana-
lyzing 125 images in total. To obtain mean frontal displacement, a
change in the ice surface area near the front was divided by the
glacier width. To take into account the influence of curved flow-
line, we employed the curvilinear box method proposed by Lea
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and others (2014). Because it was difficult to distinguish the calv-
ing front of Shirase Glacier from the icebergs aggregated near the
front, we measured the length of the floating ice tongue following
Ushio and others (2006) and Aoki (2017). The distance from the
grounding line to the forefront of the iceberg aggregate was mea-
sured along a flowline as shown by the example in Figure 2a.

Temporal resolution of the measurement was dependent on
data availability. After a 5-year gap from 1989 to 1994, the reso-
lution was ∼1 year from 1994 to 2003 and finer from 2003 to
2020. To precisely measure the timing and magnitude of glacier
retreat, all available images were used for mapping during the per-
iods of retreat. The uncertainty in the measurement was estimated
by mapping an ice-free coastline using 3–18 images for each sen-
sor. The standard deviations of the coordinates along the coastline
was 27 m for JERS-1, 21 m for ASTER, 21 m for Landsat 4, 24 m
for Landsat 7 and 7 m for Landsat 8.

3.2. Ice flow velocity

The annual flow velocity of Shirase, Skallen and Telen glaciers was
obtained for the period 2001–18 from the ITS_LIVE dataset
(Gardner and others, 2019). The dataset provides velocity fields
with a spatial resolution of 240 m, derived by applying a feature
tracking algorithm auto-RIFT (Gardner and others, 2018) to the
Landsat 4, 5, 7 and 8 imagery. Mean annual speeds near the
grounding lines were obtained as a mean over the boxes shown
in Figure 2. Speed profiles along the central flowlines shown in
Figures 2a and b were also analyzed.

To study the details of the variations in velocity, we applied a
feature tracking algorithm (Sakakibara and Sugiyama, 2014) to
125 image pairs of Landsat 7 ETM+ and Landsat 8 OLI imagery
acquired over the period 2006–20. The objective of this measure-
ment was (1) to obtain annual velocity fields of the smaller
Langhovde and Honnør glaciers, which could not be resolved
by the ITS_LIVE dataset and (2) to improve the spatial and

temporal resolutions of the velocity of Shirase, Skallen and
Telen glaciers. The temporal separations of the image pairs ranged
from 16 to 416 days. We used an automatic image matching
scheme known as the orientation correlation method in a fre-
quency domain (Heid and Kääb, 2012; Sakakibara and
Sugiyama, 2020). Horizontal biases on the image pairs were
removed by minimizing displacement vectors obtained in off-ice
areas. We excluded vectors obtained with a low signal-to-noise
ratio (<30) and those that deviated by more than 30° or 100 m
a−1 from a median vector within 3 × 3 neighboring pixels (Heid
and Kääb, 2012; Sakakibara and Sugiyama, 2014). Errors in vel-
ocity measurement are associated with (1) ambiguities in the
cross-correlation peak, (2) co-registration errors and (3) false cor-
relations (Howat and others, 2010). We evaluated (1) and (2)
from the root-mean-square errors of horizontal displacement in
off-ice areas where displacement was assumed to be zero.
During the calculation of the root-mean-square errors, displace-
ment greater than twice the pixel size was attributed to a false cor-
relation and therefore excluded. Errors caused by (3) were
minimized by applying a 3 × 3 median low-pass filter. Error esti-
mates ranged between ±1 and ±115 m a−1 with a mean value of
±31 m a−1. The error was dependent on the temporal separation
of the image pairs, i.e. uncertainty was greater for shorter tem-
poral separation. The magnitude of the velocity obtained near
the grounding line of Langhovde Glacier was consistent with
that of the ITS_LIVE dataset (within ±5%). Ice speed was aver-
aged in space and time within the boxes near the grounding
lines shown in Figure 2 to obtain mean annual speeds during
the periods 2014–20 for Langhovde Glacier and 2006–20 for
Honnør Glacier. We also utilized satellite-derived flow speeds
reported by Fukuda and others (2014) for the region near the
grounding line of Langhovde Glacier from 2003 to 2012.

Ice discharge from Shirase Glacier across a flux gate near the
grounding line (Fig. 2a) was calculated for the years 2013 and
2015. Ice speed from the ITS_LIVE dataset was used with the

a b

Figure 1. Landsat 8 OLI images of Lützow-Holm Bay acquired on (a) 7 March 2016 and (b) 8 April 2016, showing the studied area before and after the breakup of
land-fast sea ice. The inset in (a) shows the location of the study site in Antarctica. The boxes in (a) indicate the studied glaciers and areas shown in Figure 2. The
hatched polygons in (b) show the regions of interest (ROIs) in front of the glaciers, where sea-ice conditions were analyzed using satellite images. Sea-ice concen-
tration data from Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 (Meier and others, 2021) were analyzed in the region indicated by the
blue polygon in (b). The dashed line indicates the grounding line estimated by Fukuda (2014) for Langhovde Glacier and Bindschadler and others (2011) for the
other regions.
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assumption of a full slip condition. Ice thickness was computed
using surface elevation from digital elevation models (DEMs)
on 6 January 2013 and 15 March 2016 (see section 3.3 for details)
and bed elevation from BedMachine Antarctica, Version 3
(Morlighem and others, 2020; Morlighem, 2022). An ice density
of 910 kg m−3 was assumed to convert the volume to mass flux.
The uncertainty in the discharge was estimated at 10% according
to the errors expected in the ITS_LIVE (<1%) and BedMachine
datasets (10%).

Changes in flow regime affect vertical strain rate. To investigate
this effect, the logarithmic strain rate (Nye, 1959) was calculated
for Shirase, Skallen and Telen glaciers, using the annual glacier
velocity field from the ITS_LIVE dataset. The calculation was per-
formed at each velocity pixel, by employing the method and code
provided by Alley and others (2018).

3.3 Glacier surface elevation

Changes in the surface elevation on Shirase, Skallen and Telen
glaciers were measured with DEMs from the Reference
Elevation Model of Antarctica (REMA) (Howat and others,
2019) using all available DEMs during 2012–16. We compared
DEMs representing the austral summers 2012/13 and 2015/16,
which were generated by averaging DEMs available from
October 2012 to March 2013 and October 2015 to March 2016,
respectively (Table 1).

To homogenize the REMA Strips distributed with a grid spa-
cing of 2 or 8 m, those with a 2 m grid were resampled to 8 m by
taking the average of the neighboring pixels. Horizontal and ver-
tical shift, and elevation dependent biases were minimized

by the co-registration and bias correction procedures introduced
by Nuth and Kääb (2011) and Levinsen and others (2013). For
this procedure, we used the REMA Mosaic DEM in off-ice
areas and CryoSat-2 altimetry data over the ice sheet. The
REMA Mosaic DEM was used as the elevation reference after
excluding pixels from steep terrain (>30°). The CryoSat-2 altim-
etry data obtained at the point of closest approach are distributed
by the European Space Agency CryoTEMPO project (Gourmelen
and others, 2018). We utilized the altimetry data obtained within
±100 days from the DEM acquisition dates. All the elevation data
were referenced to WGS-84 ellipsoid. The co-registration was per-
formed in the region below 800 m. The standard deviations of the
elevation of the REMA Strip DEMs against the REMA Mosaic
DEM and CryoSat-2 altimetry data was between 0.3 and 2.4 m
(Table 1).

We also utilized the GLAS/ICESat-1 and ICESat-2 data to
measure the glacier surface elevation in 2003/04 and 2019/20,
respectively. The GLA06 version 34 product of ICESat-1

Figure 2. Landsat 8 OLI images acquired on 3 January 2016 showing the five studied glaciers flowing into Lützow-Holm Bay. The color scale shows the mean ice
speed from 2001 to 2020. The solid black lines indicate the grounding line estimated by (a–c) Bindschadler and others (2011) and (d) Fukuda (2014). The blue lines
in (a) and (b) indicate the grounding line estimated in this study, based on the change in surface slope observed with the Reference Elevation Model of Antarctica
Strip digital elevation models acquired in 2013 and 2012, respectively. The boxes near the grounding line indicate areas used for the calculation of the ice speed
shown in Figure 4. The dotted black line in (a) shows an example of a flowline used for the length measurement of Shirase Glacier. The solid white lines in (a) and
(b) indicate the central flowlines used to plot the ice speeds shown in Figure 11. The dotted white line in (a) shows the flux gate used for the calculation of ice mass
discharge from Shirase Glacier.

Table 1. The REMA Strip DEMs used in this study

Region Period Acquisition date σe (m)

Shirase 2012/13 25 December 2012 0.9
6 January 2013 2.4

2015/16 15 March 2016 1.4
Skallen/Telen 2012/13 7 December 2012 0.3

2015/16 12 October 2015 0.9
16 October 2015 0.8

The standard deviations of the DEMs from the reference (the REMA Mosaic DEM and
CryoSat-2) are shown (σe)
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(Zwally and others, 2014) obtained between October 2003 and
October 2004 and the ATL06 Land Ice Height version 3 product
of ICESat-2 (Smith and others, 2020b) obtained between May
2019 and June 2020 were downloaded from OpenAltimetry
(Khalsa and others, 2020). The accuracy of the altimetry was
0.15 m for ICESat-1 (Shuman and others, 2006) and 0.03 m for
ICESat-2 (Brunt and others, 2019).

The DEMs were analyzed with QGIS to estimate the ground-
ing line positions from the inflection points of the surface slope
(Fricker and Padman, 2006). The mean displacement of the
grounding line between 2012/13 and 2015/16 was calculated by
the box method as described in section 3.1.

3.4. Sea ice

Open water and ice-covered ocean areas were measured from
2000 to 2020 in the regions of interest (ROIs) defined near the
glacier fronts as shown in Fig. 1b. The same ROI was given to
Skallen and Telen glaciers, due to their proximity. The ASTER
L1T Radiance and Landsat 7/8 Collection 1 top of atmosphere
(TOA) reflectance products with a spatial resolution of 30 m
were analyzed in Google Earth Engine for this purpose. The
ASTER L1T Radiance was converted to TOA reflectance using
coefficients provided by the distributers. We analyzed between
538 and 778 images for each glacier to classify pixels within the
ROIs as being open water, ice or cloud. Thresholds for the classifi-
cation were determined for each satellite, based on a manually clas-
sified dataset. The manual classification was performed for 27
images for ASTER (10.0 × 106 pixels), 17 for Landsat 7 (19.7 ×
106 pixels) and 17 for Landsat 8 (20.5 × 106 pixels), which covered
a wide range of illumination conditions and seasons.

Before the ocean surface classification took place, cloud pixels
were eliminated based on the TOA reflectance at the shortwave
infrared (SWIR) band and the normalized difference snow
index (NDSI). Cloud pixels were selected for their high reflectance
in the SWIR band (Moussavi and others, 2020), whereas NDSI
was able to distinguish clouds from snow surface (Hall and others,
1995; Moussavi and others, 2020). Pixels were regarded as cloud
when the TOA SWIR reflectance and NDSI were >0.1 and <0.65
for ASTER and >0.06 and <0.8 for Landsat 7/8, respectively. This
procedure eliminated 98% of the pixels manually classified as
cloud. After removing scenes with >20% cloud cover over the
ROIs, the remaining pixels were classified either as open water or
as ice, based on TOA reflectance at the green band for ASTER
and the panchromatic band for Landsat 7/8. For all the sensors,
pixels with a reflectance ≥0.25 were classified as ice (sea ice, iceberg
or ice mélange), whereas those with <0.25 were classified as open
water. The results obtained by this procedure concurred with man-
ual classification in the case of 99% of the pixels.

Sea-ice conditions in Lützow-Holm Bay were analyzed by the
Climate Data Record of Passive Microwave Sea Ice Concentration,
Version 4 (Meier and others, 2021) provided by the National
Oceanic and Atmospheric Administration’s (NOAA) National
Snow and Ice Data Center (NSIDC). We averaged monthly SIC
data obtained at seven data cells, which covered the area indicated
by the blue line in Figure 1b. Monthly anomalies were calculated
using the mean from 1988 to 2020 as a reference.

3.5. Meteorological data

The mean summer air temperature (for December, January and
February) was calculated for the period 1988–2020, using hourly
data measured at Syowa Station (69.00°S, 39.58°E, 29 m a.s.l.) and
distributed by the Japan Meteorological Agency. The station is
located on the coast of Lützow-Holm Bay, 20–110 km north of
the studied glaciers (Fig. 1a).

4. Results

4.1. Terminus position and sea-ice conditions

The studied glaciers showed similar frontal variations, character-
ized by a steady advance and interrupted by at least three retreat
events (Figs 3a–e). From 1994 to 1997, the studied glaciers
advanced steadily without noticeable retreat, with the exception
of Honnør Glacier, which retreated by 0.9 km in 1995–96.
During 1997–98, Langhovde Glacier retreated by 0.5 km, and
the other glaciers retreated in the period 1998–2000, resulting
in the removal of 130 km2 of glacier ice in total. After the retreat
between 1997 and 2000, all the glaciers advanced from 2000 to
2016. Shirase Glacier advanced until 2012, at which time it was
interrupted by the disintegration of a 1.5 km-long floating tongue
in the period December 2012–November 2013 (Fig. 3a). Skallen
Glacier steadily advanced until 2016, except for a retreat of 2.1
km in the period February 2003–March 2006 (Fig. 3b). The
other three glaciers were relatively stable between 2000 and
2008, followed by an advance from 2008 to 2016 without signifi-
cant loss of ice due to calving (Figs 3c–e). In 2016–18, all the stud-
ied glaciers retreated simultaneously at the greatest rate recorded
during the observation period. Between March and October
2016, Shirase and Langhovde glaciers retreated by 6.0 and 0.4
km, respectively (Figs 3a, e). Skallen and Honnør glaciers
retreated between October and December 2016 by 1.8 and 0.8
km, respectively (Figs 3b, d). These four glaciers continued to
retreat until the summer of 2018. Telen Glacier retreated by 2.2
km slightly later – between February and September 2018
(Fig. 3c). In total, 200 km2 of ice was lost in the studied glaciers
over the period 2016–18. In 2019–20, Skallen and Langhovde gla-
ciers further retreated by 0.9 and 0.3 km, respectively (Figs 3b, e).

The observed glacier front variations were associated with var-
iations in SIC (Figs 3a–e). In general, the open water area dropped

a

b

c

d

e

f

Figure 3. Terminus position relative to 1988 (crosses) and fraction of open water area
within the ROIs shown in Figure 1b (circles) for (a) Shirase, (b) Skallen, (c) Telen, (d)
Honnør and (e) Langhovde glaciers. (f) Monthly sea-ice concentration anomaly in
Lützow-Holm Bay (blue), mean summer (December, January and February) air tem-
perature at Syowa Station (orange).
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below 10% between September and November and peaked
between January and March. During the summer months of
2000–08, when the glacier front positions were relatively stable,
the fraction of the open water area increased to >20% near the
front of Honnør and Langhovde glaciers (Figs 3d, e). From
January to February 2005, open water in front of Shirase,
Skallen/Telen, Honnør and Langhovde glaciers increased to 8,
36, 99 and 99%, respectively. Sea ice in Lützow-Holm Bay recov-
ered after 2008. From 2009 to 2015, the observation of open water
areas was consistently lower than 5%, except for an increase at
Honnør Glacier in the summer 2010 (21%) and 2013 (40%).
The period of stable sea ice corresponded with a simultaneous
advance of the glacier fronts (Figs 3a–e). The most significant
sea-ice loss during the period of this analysis was the breakup
of land-fast ice in April 2016 (Fig. 3f). The greatest extent of
open water over the studied period was recorded in March 2016
at Shirase Glacier (10%) and February 2017 at the other glaciers
(91% at Skallen/Telen, 100% at Honnør and Langhovde). The
period of sea-ice loss coincided with the onset of rapid glacier
retreat since 2016. Near Shirase Glacier, the open water area
increased to 6% the following summer (2016/17), followed by
more stable sea-ice conditions (<2% open water) from 2018 to
2020 (Fig. 3a). Near the ice front of Honnør and Langhovde
glaciers, open water expanded to >85% in the summer of 2017,
2018 and 2020, indicating that the impact of the breakup of
land-fast sea ice in 2016 has persisted over the following 4 years
(Figs 3d, e).

4.2. Glacier speed

The annual ice speed of each glacier varied within 7–18% of its
mean over the period of the study. Shirase, Skallen and Telen
glaciers showed similar flow variations in terms of timing and
magnitude, with a slowdown from 2011 to 2015 and a speedup
after 2016 (Figs 4a–c), whereas smaller, more frequent variations
were observed at Honnør and Langhovde glaciers (Figs 4d, e).

The ice speed at Shirase Glacier decreased from 2002 to 2015
by 180 m a−1 (Fig. 4a), with the most substantial slowdown of
80 m a−1 from 2013 to 2015. Skallen and Telen glaciers decelerated
in 2011–15 (−90 and −80m a−1) after a short period of acceler-
ation in 2009–10. At Shirase, Skallen and Telen glaciers, the slowest
speeds over the study period were observed in 2015 (2180, 620 and
520m a−1, respectively). By 2018, the flow of these three glaciers
had accelerated to 2250, 670 and 560m a−1, respectively.

Honnør Glacier decelerated from 2009 to 2010, after a rela-
tively stable speed during 2007–09 (Fig. 4d). The speed increased
from 420 to 470 m a−1 from 2012 to 2014. Thereafter, the glacier
speed was stable within 450–480 m a−1 until 2020. The speed of
Langhovde Glacier showed fluctuations with relatively fast flow
(>100 m a−1) in the years 2003–04, 2009–10, 2014–15 and
2018–19 (Fig. 4e).

Spatial patterns of flow acceleration on Shirase, Skallen and
Telen glaciers show further details of the synchronous ice
speed changes observed at these three glaciers (Fig. 5). From
2007 to 2011, only small changes were observed in limited
areas near the glacier fronts (Figs 5a, d). During this period,
the rates of mean speed changes along the central flowline of
each glacier (white lines in Figs 5a, d) were within ±5 m a−2.
Substantial changes were observed in 2011–15 and 2015–18 in
the areas downstream of the grounding lines. Shirase Glacier
decelerated in 2011–15, with the most pronounced changes
(−60 m a−2) observed near the glacier front (Fig. 5b).
Thereafter, the terminus area accelerated in the period 2015–
18 at a rate of 80 m a−2 (Fig. 5c). These speed changes extended
upstream of the grounding lines. For example, the speed 10 km
upstream of the grounding line decreased by 28 m a−2 in 2011–
15 and increased by 23 m a−2 in the period 2015–18. Similarly,
Skallen and Telen glaciers showed the greatest speed changes
downstream of the grounding lines, and large variations were
also observed upstream of the grounding line (Figs 5e, f ).
Along the central flowlines, a deceleration in the years
2011–15 (−17 and −15 m a−2 for Skallen and Telen,

Figure 4. Mean annual glacier speeds (open circles) at
the grounding line (averaged in the polygons in
Fig. 2), terminus positions relative to 1988 (crosses)
and the fraction of open water areas within the
ROIs shown in Figure 1b (closed circles) at (a)
Shirase, (b) Skallen, (c) Telen, (d) Honnør and (e)
Langhovde glaciers. The length of the horizontal
and vertical lines associated with the markers show
the mean time separation of image pairs used for vel-
ocity calculations and uncertainty in glacier speed,
respectively. The vertical dotted line indicates the
timing of the land-fast sea-ice breakup in April 2016.
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respectively) was followed by an acceleration in the period
2015–18 (11 m a−2 for both glaciers).

To better understand glacier acceleration observed after 2015,
we analyzed the displacement of sea ice near the fronts of
Shirase, Skallen and Telen glaciers, by applying the feature track-
ing algorithm to the Landsat 8 OLI images acquired from October
2014 to February 2016 (Fig. 6). Sea-ice displacement prior to the
breakup in 2016 was substantially less than the forward motion of
the glacier terminus. For example, the displacement of the sea ice
10 km off Shirase Glacier was 50% of the glacier front motion
(Fig. 6b). From January to February 2016, the displacement rate
of the sea ice increased by 1000 m a−1, reaching ∼90% of the gla-
cier speed (Fig. 6c). A similar speedup was observed on the sea ice
near the front of Skallen Glacier, showing a twofold increase from
the summer 2014/15 to 2015/16 (Figs 6e, f).

4.3. Glacier surface elevation

Near the grounding line of Shirase Glacier, surface elevation
increased from 2003 to 2012/13 (Figs 7a, 8a). The mean elevation
change along a track of ICESat-1 located 0–5 km downstream of
the grounding line (AA’ in Fig. 7b) was 5.9 ± 0.3 m. The elevation
increase was more rapid in the following period (2012/13–16).
The magnitude of the mean changes was 3.1 ± 0.3 m along AA’
and 5.5 ± 0.1 m along the ICESat-2 track BB’ located 0–6.5 km
downstream of the grounding line (Figs 7b, 8). An even greater
increase of 6.5 ± 0.2 m was observed as a mean along the
ICESat-2 track CC’ crossing the grounding line. The greatest

elevation change along the track AA’ from 2003 to 2016 was
27 ± 1 m (2.2 ± 0.1 m a−1) at 3.5 km from the western margin
(Fig. 8a). In the following period (2016–20), the elevation increase
continued at a reduced rate along BB’ (mean of 1.60 ± 0.06 m)
(Figs 7c, 8b), whereas the surface dropped along CC’ (mean of
−0.8 ± 0.1 m) (Fig. 7c). A large amount of positive and negative
elevation changes were observed 15 km downstream of the
grounding line. These changes were attributed to the advection
of surface topographic features (e.g. bumps and depressions).

A substantial change in surface elevation was also observed on
Skallen Glacier. Along the ICESat-1 track crossing the grounding
line (DD’ in Fig. 7e), the mean surface elevation change from
2004 to 2012 was 0.87 ± 0.06 m (Fig. 7d). Greater changes were
observed in the period 2012–15, reaching 2.4 ± 0.2 m as a mean
along DD’ (Fig. 7e). In the following period (2015–19), mean ele-
vation decreased by 3.03 ± 0.07 m along EE’ (Fig. 7f). Telen
Glacier showed a similar trend to Skallen Glacier. Along the
ICESat-2 track FF’ located 0–1 km downglacier from the ground-
ing line, the surface elevation increased in the period 2012–15 and
decreased in the period 2015–19 (Figs 7e, f). The changes
observed on Telen Glacier were smaller in magnitude than
those observed on Shirase and Skallen glaciers.

5. Discussion

5.1. Drivers of the terminus position changes

Our data revealed synchronous frontal variations of the glaciers
flowing into Lützow-Holm Bay. In general, the glaciers advanced

a b c

d e f

Figure 5. Ice speed acceleration from the ITS_LIVE dataset at (a–c) Shirase and (d–f) Skallen/Telen glaciers during the periods (a and d) 2007–11, (b and e) 2011–15
and (c and f) 2015–18. The background is a Landsat 8 OLI image acquired on 3 January 2016. White lines (a and d) show central flowlines used to measure the ice
speed changes described in the text.
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from 1989 to 1997, followed by a period of retreat observed from
1997 to 2000 (Fig. 3). After a period of relatively stable terminus
position from 2000 to 2008, the glaciers progressively advanced
until a large retreat was initiated in the summers of 2015/16
(Shirase and Langhovde), 2016/17 (Skallen and Honnør) and
2017/18 (Telen) (Fig. 3). The trend observed in this study concurs
with previously reported decadal glacier variability in the studied

region, i.e. a retreating trend during the period 1974–90 followed
by an advance from 1990 to 2012 (Miles and others, 2016).

The data suggest that the glacier front variations were influ-
enced by sea-ice conditions in Lützow-Holm Bay (Fig. 3). To
investigate a possible link between sea ice and the stability of
the glacier front, the frontal displacement rate was compared
with the SIC anomaly near each glacier front, by taking the

a b c

d e f

Figure 6. Landsat 8 OLI images showing sea ice and glacier fronts of (a–c) Shirase and (d–f ) Skallen/Telen glaciers. The images were acquired on (a and b) 16
November 2015, (c) 3 January 2016, (d and e) 3 October 2014 and (f) 8 October 2015. The color-coded vectors (b, c, e and f) are glacier velocity fields from
the indicated periods. The flow vectors are twice as large as the actual distance. The white lines show the glacier margins.
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Figure 7. Surface elevation change rates at (a–c) Shirase, (d–f) Skallen/Telen glaciers during the periods (a and d) 2003/04–12/13, (b and e) 2012/13–15/16 and (c and f)
2015/16–19/20. The rates were obtained using elevation data acquired from (a and d) ICESat-1 and REMA, (b and e) REMA and (c and f) REMA and ICESat-2. Elevation
changes along the ICESat-1 (AA’ and DD’) and ICESat-2 tracks (BB’, CC’, EE’, FF’) are described in the text and shown in Figure 8. The background is a Landsat 8 OLI
image acquired on 3 January 2016.
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average over every 4-year period from 1992 to 2020. Taking the
variability in the flow rates among the glaciers into account, the
frontal displacement rates were normalized by the mean ice
speed near each glacier terminus. The results illustrate that the
glaciers synchronously retreated when the SIC anomaly was sub-
stantially negative, whereas they generally advanced during the
positive phase (Fig. 9). The displacement rates were dependent
on the SIC anomaly with substantially different sensitivities in
the positive and negative SIC anomaly ranges (0.30%−1 for nega-
tive and 0.01%−1 for positive). Excluding the advancing period of
2012–16, there was a significant correlation (r = 0.77, p < 10−4)
between the SIC anomaly and the normalized frontal displace-
ment rate. During the period 2012–16 (SIC anomaly > 3.5%), all
the glaciers advanced without significant ice loss by calving
(Fig. 3). The normalized displacement rates during this period
were within the range of 0.49–1.00 (Fig. 9), meaning that the gla-
ciers advanced at a rate equal to, or half of, the glacier speed. The

most rapid glacier retreat was observed in the period 2016–20,
when the SIC anomalies were below −2% after the breakup of
land-fast sea ice in 2016 (Fig. 9). Open water was consistently
observed near the glacier fronts during the summer months of
this period (Figs 3a–e). These observations suggest that stable
land-fast sea ice suppressed glacier calving and facilitated the ter-
minus advance in 2008–16. The breakup in 2016 destabilized the
glacier termini, resulting in loss of frontal ice. Based on the sim-
ultaneous retreat of the glaciers coincident with the sea-ice loss in
1998, 2004 and 2016, we assume that multidecadal glacier front
variations on Lützow-Holm Bay are governed by the previously
reported periodic breakup of land-fast sea ice occurring at inter-
vals of 10–20 years (Ushio, 2006; Aoki, 2017).

The association of glacier front position with sea-ice condition
is in line with previous studies in East Antarctica. Data suggest
that tabular iceberg calving is suppressed by the formation of
multi-year land-fast sea ice and the development of dense ice
mélange in front of the glacier (Massom and others, 2010; Miles
and others, 2017; Arthur and others, 2021). A correlation between
sea-ice conditions and decadal glacier front variations has been also
reported in East Antarctica (Miles and others, 2013, 2016), on the
Antarctic Peninsula (Christie and others, 2022) and in the whole of
Antarctica (Baumhoer and others, 2021). Our data add to this set
of observations that highlight the influence of sea ice on ice-shelf
extent with a finer temporal resolution.

5.2. Mechanisms of glacier flow changes

Similar changes in ice speeds were observed at Shirase, Skallen
and Telen glaciers, i.e. generally decelerating trends from 2011
to 2015, which were followed by acceleration (Figs 4a−c, 5).
Because the onset of the speedup in 2015–16 began slightly before
the significant glacier retreat occurred during 2016–20 (Fig. 4),
the speedup was unlikely to have been caused by the retreat.
For example, Telen Glacier retreated by 2.2 km over the period
February–September 2018, lagging 2 years behind the onset of
the speedup.

Since the glacier speed changes were greater on the ice shelves
than on the grounded ice (Fig. 5), we assume that a change near
the front affected the force balance of the glacier. Given that the
onset of the flow acceleration coincided with the breakup of land-
fast sea ice in 2016, a potential driver of the glacier speedup could
be a loss of back-stress exerted by sea ice. As shown in Figures 6b
and e, sea-ice displacement prior to the breakup in 2016 was sub-
stantially smaller than the forward motion of the glacier terminus.
During this period, cracks and fractures were observed on the
land-fast sea ice in front of Shirase Glacier (satellite image on
16 November 2015, Fig. 6a). These observations imply that a sig-
nificantly large stress was exerted on the sea ice by the advancing
glacier and that this stress impeded the forward glacier motion.
The following summer (2016), sea ice sped up to ∼90% of the gla-
cier speed (Fig. 6c), implying that the sea ice lost support from the
land and began to move with the glacier front. After the summer
of 2015/16, an acceleration of the grounded ice and an even
greater speedup of the ice shelves was observed at Shirase,
Skallen and Telen glaciers. These observations suggest that the
multi-year land-fast sea ice was firmly anchored to the coast
and resisted the glacier flow before 2016, whereas the increased
mobility of the sea ice resulted in a reduction in resistive stress
and subsequent glacier acceleration. Thus, we assume that the
land-fast sea ice near the glacier front affected the glacier
dynamics.

It is likely that multi-year land-fast sea ice and ice mélange in
Lützow-Holm Bay had thickened since 2008 and had become
rigid enough to generate stress which added resistance to the gla-
cier flow. During the period of deceleration from 2010 to 2015,

a

b

Figure 8. Surface elevation measured near the grounding line of Shirase Glacier
along (a) AA’ and (b) BB’ shown in Figure 7b.

Figure 9. Scatter plot of glacier front displacement rates vs the SIC anomaly near
each glacier front. The values for each glacier (symbols) are averaged over every
4-year period (colors). The solid lines show the linear regression of the data in posi-
tive and negative SIC anomaly ranges. The displacement rates are normalized by ice
speed near the terminus.
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the condition of the sea ice in front of the studied glaciers was
probably similar to those reported at Brunt/Stancomb-Wills Ice
Shelf and the Larsen B embayment (Khazendar and others,
2009; Rott and others, 2018), where the flow speeds were thought
to have been reduced by sea ice/ice mélange accumulated near the
glacier fronts.

Ice discharge from Shirase Glacier decreased from 12.7 to 12.5
Gt a−1 during the period of deceleration from 2013 to 2015. The
change expected from the deceleration was −0.4 Gt a−1, but 33%
of the discharge was cancelled by a thickening of the grounded
ice during the same period. Our analysis highlights the significant
influence of both ice speed and ice thickness on glacier discharge,
as well as the impact of sea-ice variations on ice-sheet mass
balance.

5.3. Elevation change of the ice sheet

Surface elevation change indicated thickening of Shirase, Skallen and
Telen glaciers in 2003/04–15/16 (Figs 7, 8) during the period of gla-
cier deceleration (Fig. 4). The greatest elevation change occurred
near the grounding line of Shirase Glacier (2.2 ± 0.1m a−1)
(Figs 7, 8) and was far greater than the surface mass balance
reported along the Soya Coast (<0.4 m w.e. a−1) (Motoyama and
others, 2008, 2015; Wang and others, 2015). Shirase, Skallen
and Telen glaciers began thinning in 2016, in response to the
acceleration of the glaciers, suggesting a link between flow regime
and ice thickness (e.g. Pritchard and others, 2009). Since the
observed ice speed changes were greater on the ice shelves as com-
pared to the grounded ice (Fig. 5), the stretching ice flow along
the glacier should have been reduced/enhanced by deceleration/
acceleration. According to the strain rate analysis, the longitudinal
(parallel to the flow direction) component of the strain rate tensor
from the velocity fields in 2018 shows stretching flow regimes
near the grounding line of Shirase, Skallen and Telen glaciers
(Fig. 10). A positive (stretching) strain rate exceeding 0.1 a−1

was observed near the grounding line of the three glaciers. At
Shirase Glacier, the greatest strain rate of 0.14 a−1 occurred near
the western margin (Fig. 10a, near A and B), where the largest
surface elevation change was observed in the period 2003–16
(Figs 7, 8).

Further analysis demonstrated the impact of the ice speed
change on the strain rate regime. The magnitude of the deceler-
ation from 2007 to 2015 was greater on the ice shelf than on
the grounded area (Figs 11a–c), which resulted in a reduction
in the stretching flow and an increase in the vertical strain rate
near the grounding line and the upper reaches (Figs 11d–f).
The increase in the vertical strain rate implies a thickening, con-
sistent with the surface uplift observed near the grounding line at
Shirase, Skallen and Telen glaciers (Figs 11g–i). In the following
period (2015–18), the vertical strain rate decreased as a result of
the speedup, which was more pronounced over the ice shelf
(Figs 11a–f). The enhanced stretching flow regime is consistent
with the decrease in surface elevation at Shirase, Skallen and
Telen glaciers (Figs 11g–i). These results strongly suggest that
the increase and decrease in elevation during the periods of decel-
eration and acceleration was driven by the changes in the vertical
strain rate.

Our data also indicated that the observed change in ice thick-
ness affected the grounding line positions. From 2012/13 to 2016,
during the period of deceleration and thickening, the grounding
line of Shirase Glacier estimated from surface slope showed sea-
ward advance by 65 m (20 m a−1). This observation is consistent
with a previous measurement with CryoSat-2 altimetry data, i.e.
an advance at a rate of 14.7 m a−1 between 2010 and 2016
(Konrad and others, 2018). Skallen and Telen glaciers also showed
seaward grounding line migration of 7 and 18 m between 2012

and 2015. The changes in grounding line position affect the ice
motion near the grounding line because of changes in basal stress
(e.g. Payne and others, 2004), thus a complex feedback mechan-
ism is expected between the changes in ice speed and ice thickness
triggered by variations in land-fast sea ice.

6. Conclusions

To investigate recent glacier variations in Lützow-Holm Bay, East
Antarctica, we measured the front position, flow velocity and sur-
face elevation of five outlet glaciers from 1988 to 2020. The glacier
variations observed were compared with sea-ice conditions near
the glacier fronts to elucidate a possible link with variations in
sea ice.

The glacier fronts simultaneously advanced from 2008 to 2015,
at which time the ocean immediately adjacent to the ice fronts was
largely covered with sea ice. All the glaciers rapidly retreated in

a

b

Figure 10. Longitudinal strain rate distributions calculated from the glacier flow vel-
ocity in 2018 from the ITS_LIVE dataset at (a) Shirase and (b) Skallen/Telen glaciers.
The white lines show the central flowlines used for Figure 11. The background is a
Landsat 8 OLI image acquired on 8 January 2018.
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the period 2016–18, which coincided with a major breakup of
land-fast sea ice in Lützow-Holm Bay in 2016. The breakup was
the most significant sea-ice loss since 1998. The retreat rate of
the glaciers correlated with the SIC anomaly near the glacier
fronts, suggesting that sea ice is a factor which controls terminus
variations. Shriase, Skallen and Telen glaciers decelerated in the
period 2011–15 and accelerated in 2016–18. These flow speed
changes were most pronounced on the ice shelves but were also
observed upstream of the grounding line. Sea-ice motion and frac-
tures near the glacier fronts suggested a large stress acting at the
interface of the glacier and sea ice during the deceleration period.
The glacier flow accelerated when the sea ice became mobile, and
its buttressing stress reduced after the breakup in 2016. Glacier
thickness was also affected by the sea-ice breakup and the asso-
ciated ice speed change. Near the grounding lines of Shirase,
Skallen and Tellen glaciers, the thickness increased/decreased dur-
ing the deceleration/acceleration periods, respectively. An analysis
of the strain rate suggested that the changes in the glacier flow
regime affected the thickness by changing the vertical strain rate.

Our data demonstrate that the presence of land-fast sea ice
affects glacier speed and ice thickness, as well as glacier front var-
iations. Therefore, sea-ice variations in front of glaciers may trig-
ger a complex feedback mechanism between glacier flow and ice
thickness. Given that sea ice is highly sensitive to climate (Heil,
2006; Fraser and others, 2012; Aoki, 2017), an accurate under-
standing of land-fast sea ice is crucial for the projection of glacier
changes in Antarctica in a changing climate.

Data. Landsat images were downloaded from the US Geological Survey Earth
Explorer (http://earthexplorer.usgs.gov/). JERS-1 SAR images were available
from JAXA G-Portal (https://gportal.jaxa.jp/gpr/). The REMA DEMs were
downloaded via https://www.pgc.umn.edu/data/rema/. The ITS_LIVE,
Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4
and BedMachine Antarctica, Version 3 were downloaded from NOAA

NSIDC (https://nsidc.org/). The CryoSat-2 data are available from European
Space Agency CryoTEMPO project (https://cryotempo-eolis.org/). The
ICESat-1/2 data were downloaded via OpenAltimetry (https://openaltimetry.
org/). The dataset of air temperature at Syowa Station is available from the
Japanese Meteorological Agency (https://www.jma.go.jp/).
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