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Abstract

Sufficient conditions are obtained for the oscillation of a general form of a linear second-order differential
equation with discontinuous solutions. The innovations are that the impulse effects are in mixed form and
the results obtained are applicable even if the impulses are small. The novelty of the results is demonstrated
by presenting an example of an oscillating equation to which previous oscillation theorems fail to apply.
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1. Introduction

We obtain sufficient conditions for the existence of oscillatory solutions of impulsive
linear differential equations of the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a(t)y′)′ + b(t)y = 0, t � τk,

Δy + aky = 0, t = τk,

Δa(t)y′ + bky + cky′ = 0, t = τk.

(1.1)

The functions a(t) > 0 and b(t) are assumed to be piecewise left continuous on
[t0,∞) for some t0 ≥ 0; {ak}, {bk} and {ck} are real sequences; τk+1 > τk for all k =
1, 2, . . .; limk→∞ τk = ∞ and Δϕ(τk) = ϕ(τ+k ) − ϕ(τ−k ) with ϕ(τ±k ) = limt→τ±k ϕ(t). As the
impulse effects contain both the solution and its derivative, they are said to be of mixed
type. By separated impulse effects, we mean that the impulse effects contain either
only the solution or only the derivative of the solution, for example, Δy + aky = 0 and
Δa(t)y′ + cky′ = 0, where t = τk.

For the sake of brevity, the notation n(t) := inf{k : τk ≥ t}, n(t) := sup{k : τk < t}
and ωk := (1 − ck/a(τk))/(1 − ak) is used. The following hypotheses are assumed
throughout the paper:
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(H1) 1 − ck/a(τk) > 0, 1 − ak > 0 and bk ≤ 0, k = 1, 2, . . .;
(H2) there exists a function f (t) : [t0,∞)→ (0,∞) such that f ′(t) exists on [t0,∞)

and

g(t) := b(t) + α(t) f ′(t) +
(α(t) f (t))2

a(t)
≥ 0,

where

α(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
n(t)∑

k=n(t0)

bk

f (τk)(1 − ck/a(τk))

n(t)∏
i=k

ωi if bk � 0,

n(t)∏
k=n(t0)

ωk if bk = 0.

Differential equations containing impulse effects are practical tools to represent
many evolutionary processes such as biological models, physical phenomena and
engineering problems, and the corresponding theory is quite rich. Their qualitative
theory has been investigated deeply by many researchers (see the famous books [4, 6]).
It is well known that impulse effects can cause radical changes in the structure of the
solution of a differential equation. For example, a nonoscillatory unforced differential
equation may turn out to be oscillatory under impulsive conditions [2, 7, 9–11]. Since
it is not easy to make a prediction, it is crucial to study the long-time behaviour of
impulsive differential equations, in particular, their oscillatory properties. We refer to
[1] for an excellent survey on the oscillation of differential equations under impulse
effects and the papers [3, 8, 9] regarding self-adjoint impulsive differential equations
with continuous solutions, namely, equations derived by setting ak = 0 = ck in (1.1).
There are only a few studies of their counterparts having discontinuous solutions (see
[5, 7], where differential equations with separated impulse effects were considered).
To the best of our knowledge, the only paper dealing with oscillation of equations with
mixed impulse effects of the form (1.1) is [2], in which a Leighton-type oscillation
theorem is produced.

2. Main results

We start with some auxiliary lemmas.

LEMMA 2.1. Let

x(t) := y(t) exp
{
−
∫ t

t0

α(s) f (s)
a(s)

ds
}
, (2.1)
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where y(t) is a solution of (1.1). Then, x(t) is a solution of the differential equation with
separated impulse effects:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a(t)x′)′ + 2α(t) f (t)x′ + g(t)x = 0, t � τk,

Δx + akx = 0, t = τk,

Δ(a(t)x′) + ckx′ = 0, t = τk.

(2.2)

PROOF. Let y(t) be a solution of (1.1). For t � τk,

a(t)y′(t) = [a(t)x′(t) + α(t) f (t)x(t)] exp
{ ∫ t

t0

α(s) f (s)
a(s)

ds
}

and

(a(t)y′(t))′ + b(t)y(t) = [(a(t)x′(t))′ + 2α(t) f (t)x′(t) + g(t)x(t)] exp
{ ∫ t

t0

α(s) f (s)
a(s)

ds
}
,

which clearly implies that

(a(t)x′(t))′ + 2α(t) f (t)x′(t) + g(t)x(t) = 0, t � τk. (2.3)

For t = τk, k = 1, 2, . . ., it is easy to see that

Δx|t=τk + akx(τk) = [Δy|t=τk + aky(τk)] exp
{
−
∫ τk

t0

α(s) f (s)
a(s)

ds
}
= 0. (2.4)

Noting that

α(τ+k ) = ωkα(τk) − bk

f (τk)(1 − ak)
,

we see that

Δ(a(t)x′)|t=τk + ckx′(τk)

=

(
Δ(a(t)y′ − α(t) f (t)y)|t=τk + ck

[
y′(τk) − α(τk) f (τk)y(τk)

a(τk)

])
exp
{
−
∫ τk

t0

α(s) f (s)
a(s)

ds
}

= y(τk)
(
− bk − f (τk)

[
(1 − ak)α(τk+) − α(τk) +

ckα(τk)
a(τk)

])
exp
{
−
∫ τk

t0

α(s) f (s)
a(s)

ds
}

= 0. (2.5)

Thus, from (2.3)–(2.5), we conclude that x(t) is a solution of (2.2). �

LEMMA 2.2. Let x(t) be a nonoscillatory solution of (2.2). If

lim
n→∞

1
a(τn)

n−1∑
i=0

i∏
j=0

1
ωj

∫ τi+1

τi

g(t) dt = ∞, (2.6)

then x(t)x′(t) is ultimately negative.
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PROOF. Suppose that x(t) is ultimately positive. First, we will show that x′(t) is
nonoscillatory. We assume on the contrary that x′(t) is oscillatory. Then, there is some
k ∈ N and ta ∈ (τk, τk+1] such that x′(ta) = 0. Thus, in view of (2.2),

a(ta)x′′(ta) = −g(ta)x(ta) < 0, (2.7)

which implies that there is some interval (ta, ta + δ), δ > 0, in which x′(t) is decreasing.
Hence,

x′(t) < 0, t ∈ (ta, ta + δ). (2.8)

Now, assume that ta is the first root and x′ has another root in the same interval, that is,
there is some tb ∈ (ta, τk+1) such that x′(tb) = 0. From (2.8), this implies that x′′(tb) ≥ 0.
However, from (2.7), we see that a(tb)x′′(tb) < 0 which leads to a contradiction. Hence,
x′(t) cannot have a root in (ta, τk+1), that is, x′(t) < 0 there. This implies that

x′(τ+k+1) = (1 − ck+1/a(τk+1))x′(τk+1) < 0. (2.9)

If we again suppose that there is some tc such that x′(tc) = 0, from (2.7), we obtain
x′′(tc) < 0 which implies x′(t) < 0, t ∈ (tc − δ, tc + δ), contradicting x′(tc) = 0. Hence,
x′(t) < 0 on (τk+1, τk+2]. By similar arguments, it can be seen that

x′(t) < 0, t ∈ (τk+i, τk+i+1], i ∈ N.

Fix some T ≥ t0 and let τk ≥ T . If x′(t) < 0 on (τk, τk+1], from (2.9), x′(τ+k+1) < 0 and,
by the above discussion, x′(t) < 0 on (τk+i, τk+i+1], for all i ∈ N. Thus, x′(t) < 0 on
[T ,∞).

Conversely, if x′(t) > 0 on (τk, τk+1], then x′(τ+k+1)(1 − ck+1/a(τk+1))x′(τk+1) > 0.
However, we know that x′(t) has no root in (τk+i, τk+i+1], for all n ∈ N. Thus, x′(t) > 0
on [T ,∞). Hence, x′(t) is nonoscillatory.

Our next aim is to show that x′(t) is ultimately negative, that is, there is some T∗ ≥ t0
such that x′(t) < 0 for t ≥ T∗. Suppose on the contrary, there exists k ∈ N such that
x′(τk) > 0 for τk ≥ T∗. Then,

x′(τ+k ) = (1 − ck/a(τk))x′(τk) > 0,

and so x′(t) > 0 for t ≥ τk. From (H1), α(t) > 0 on [t0,∞). Thus, we can write

(a(t)x′(t))′ = −2α(t) f (t)x′(t) − g(t)x(t) < −g(t)x(t) ≤ 0, (2.10)

which shows that a(t)x′(t) is decreasing on each interval [τk+i−1, τk+i), i ∈ N. Now, we
need to prove that, for n ≥ 1,

x′(τk+n) ≤ 1
a(τk+n)

n−1∏
j=0

(
1 −

ck+j

a(τk+j)

){
a(τk)x′(τk) − x(τk)

n−1∑
i=0

i∏
j=0

ωk+j

∫ τk+i+1

τk+i

g(t) dt
}
.

(2.11)
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Integrating (2.10) on (τi, τi+1],

a(τk+1)x′(τk+1) ≤ a(τ+k )x′(τ+k ) −
∫ τk+1

τk

g(t)x(t) dt.

Since x′(t) > 0 for t ≥ τk, it follows that x is increasing on (τk, τk+1]. Hence,

a(τk+1)x′(τk+1) ≤ (a(τk) − ck)x′(τk) − x(τ+k )
∫ τk+1

τk

g(t) dt

=

(
1 − ck

a(τk)

){
a(τk)x′(τk) − 1

ωk
x(τk)

∫ τk+1

τk

g(t) dt
}
. (2.12)

Integrating (2.10) on (τk+1, τk+2] and using (2.12),

a(τk+2)x′(τk+2)

≤ (a(τk+1) − ck+1)x′(τk+1) − x(τ+k+1)
∫ τk+2

τk+1

g(t) dt

≤
(
1 − ck+1

a(τk+1)

){(
1 − ck

a(τk)

)[
a(τk)x′(τk) − 1

ωk
x(τk)

∫ τk+1

τk

g(t) dt
]

− 1
ωk+1

x(τ+k )
∫ τk+2

τk+1

g(t) dt
}

=

(
1 − ck+1

a(τk+1)

)(
1 − ck

a(τk)

){
a(τk)x′(τk) − x(τk)

[ 1
ωk

∫ τk+1

τk

g(t) dt

+
1

ωkωk+1

∫ τk+2

τk+1

g(t) dt
]}

.

Now, suppose that (2.11) holds for n = N. Then, for t ∈ (τk+N , τk+N+1],

a(τk+N+1)x′(τk+N+1)

≤ (a(τk+N) − ck+N)x′(τk+N) − x(τ+k+N)
∫ τk+N+1

τk+N

g(t) dt

≤
(
1 − ck+N

a(τk+N)

){ N−1∏
j=0

(
1 −

ck+j

a(τk+j)

)[
a(τk)x′(τk)

− x(τk)
N−1∑
i=0

i∏
j=0

1
ωk+j

∫ τk+i+1

τk+i

g(t) dt
]
− 1
ωk+N

x(τk+N)
∫ τk+N+1

τk+N

g(t) dt
}

≤
N∏

j=0

(
1 −

ck+j

a(τk+j)

){
a(τk)x′(τk) − x(τk)

N∑
i=0

i∏
j=0

1
ωk+j

∫ τk+i+1

τk+i

g(t) dt
}
,
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where, in the last line, the estimate x(τk+N) ≥ x(τ+k+N−1) = (1 − ak+N−1)x(τk+N−1) is used
N times. Thus, by induction on n, we see that (2.11) holds for any n ≥ 1.

If we take the limit of both sides of (2.11) as n→ ∞, from (2.6), we see that
x′(τk+n) < 0 for sufficiently large values of n. However, this contradicts the assumption
that x′(t) > 0 for t ≥ τk. Hence, x′(τk) < 0 for τk ≥ T∗. Since x′(t) has a constant sign
for t ≥ τk, it follows that x′(t) < 0 for all t � τk+n, t ≥ T∗.

If x(t) is ultimately negative, by repeating all the steps of the proof, it can be
shown that there is some T∗ ≥ t0 such that x′(t) > 0 for t ≥ T∗. Thus, the proof is
complete. �

THEOREM 2.3. Suppose that (2.6) holds, and

lim sup
n→∞

n−1∑
i=0

i∏
j=0

ωj

∫ τi+1

τi

μ(s, t0) ds = ∞, (2.13)

where

μ(t, s) := exp
{
−2
∫ t

s

f (r)α(r)
a(r)

dr
}
.

Then, (2.2) is oscillatory.

PROOF. Suppose on the contrary that x(t) is a nonoscillatory solution of (2.2). If we
assume x(t) is ultimately positive, namely, there exists some T ≥ t0 such that x(t) > 0
for t ≥ T , in view of Lemma 2.2, x′(t) < 0 for t ≥ T and t � τk. Since g(t) > 0, from
(2.2),

(a(t)x′(t))′ + 2α(t) f (t)x′(t) < 0, t ≥ T , t � τk,

that is,

(a(t)x′(t))′

a(t)x′(t)
+

2α(t) f (t)
a(t)

> 0. (2.14)

Define τk := min{τj : τj ≥ T}. For t ∈ (τk, τk+1], integration of (2.14) yields

ln
( a(t)x′(t)
a(τ+k )x′(τ+k )

)
+ 2
∫ t

τk

α(r) f (r)
a(r)

dr > 0.

Since x′(t) < 0 for t ≥ T , this implies that

x′(t) < x′(τ+k )μ(τk, t) =
(
1 − ck

a(τk)

)
x′(τk)μ(τk, t), t ∈ (τk, τk+1]. (2.15)

Setting t = τk+1,

x′(τk+1) <
(
1 − ck

a(τk)

)
x′(τk)μ(τk, τk+1). (2.16)
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Integrating (2.15) on (τk, τk+1],

x(τk+1) < (1 − ak)x(τk) +
(
1 − ck

a(τk)

)
x′(τk)

∫ τk+1

τk

μ(τk, s) ds. (2.17)

Now, we apply the same procedure on (τk+1, τk+2] and similarly obtain

x(τk+2) < (1 − ak+1)x(τk+1) +
(
1 − ck+1

a(τk+1)

)
x′(τk+1)

∫ τk+2

τk+1

μ(τk+1, s) ds. (2.18)

Observe that μ(τk, τk+1)μ(τk+1, s) = μ(τk, s). Thus, using (2.16) and (2.17) in (2.18),

x(τk+2)

< (1 − ak)(1 − ak+1)
{
x(τk) + x′(τk)

[
ωk

∫ τk+1

τk

μ(τk, s) ds + ωkωk+1

∫ τk+2

τk+1

μ(τk, s) ds
]}

.

Suppose that

x(τk+n) <
n−1∏
j=0

(1 − ak+j)
{
x(τk) + x′(τk)

n−1∑
i=0

i∏
j=0

ωk+j

∫ τk+i+1

τk+i

μ(τk, s) ds
}

(2.19)

for n = N. Then, in a similar way to the proof of (2.18), it can be shown that (2.19)
holds for n = N + 1. Thus, by induction, the inequality (2.19) is true for any n ≥ 1.

Applying (2.13) in (2.19) leads to the contradiction that x(τn) < 0 for sufficiently
large values of n. Hence, x(t) is oscillatory. �

THEOREM 2.4. Suppose that (2.6) holds and that there exists a continuous function
h(t) : [t0,∞)→ (0,∞) such that h′(t) exists on [t0,∞) and a(t)h′(t) ≥ 2α(t) f (t)h(t). If

lim sup
n→∞

n∑
i=1

i−1∏
j=1

ωj

∫ τi

τi−1

h(s)g(s) ds = ∞ (2.20)

and

lim sup
n→∞

∫ τi+1

τi

dt
a(t)h(t)

≥ 1, (2.21)

then (2.2) is oscillatory.

PROOF. Suppose on the contrary that x(t) is a nonoscillatory solution of (2.2). We may
assume x(t) > 0 for t ≥ T for some T ≥ t0. Then, by Lemma 2.2, x′(t) < 0 for t ≥ T .
Define τk := min{τj : τj ≥ T}. Multiplying the first line of (2.2) by h(t)/x(t), and then
integrating it on (τk, t], for t ∈ (τk, τk+1],

h(t)a(t)x′(t)
x(t)

−
h(τk)a(τk)x′(τ+k )

x(τ+k )
+

∫ t

τk

a(s)h(s)
(x′(s)

x(s)

)2
ds

−
∫ t

τk

[a(s)h′(s) − 2α(s) f (s)h(s)]
x′(s)
x(s)

ds +
∫ t

τk

h(s)g(s) ds = 0, (2.22)
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which implies that

h(t)a(t)x′(t)
x(t)

<
h(τk)a(τk)x′(τ+k )

x(τ+k )
−
∫ t

τk

h(s)g(s) ds,

and so

h(τk+1)a(τk+1)x′(τk+1)
x(τk+1)

< ωk
h(τk)a(τk)x′(τk)

x(τk)
−
∫ τk+1

τk

h(s)g(s) ds.

For t ∈ (τk+1, τk+2], similarly, we can show

h(t)a(t)x′(t)
x(t)

<
h(τk+1)a(τk+1)x′(τ+k+1)

x(τ+k+1)
−
∫ t

τk+1

h(s)g(s) ds

< ωk+1

{
ωk

h(τk)a(τk)x′(τk)
x(τk)

−
∫ τk+1

τk

h(s)g(s) ds
}
−
∫ t

τk+1

h(s)g(s) ds.

The last inequality holds for t = τk+2. Using similar arguments and applying induction
on n, it is not hard to prove that for n ≥ 1,

h(τk+n)a(τk+n)x′(τk+n)
x(τk+n)

<
h(τk)a(τk)x′(τk)

x(τk)

n−1∏
j=0

ωk+j −
n−1∑
i=1

n−1∏
j=i

ωk+j

∫ τk+i

τk+i−1

h(s)g(s) ds.

However, from Lemma 2.2, x(t)x′(t) < 0. So, using (2.20),

h(τn)a(τn)x′(τn)
x(τn)

< −
n−1∑
i=1

n−1∏
j=i

ωj

∫ τi

τi−1

h(s)g(s) ds→ −∞, as n→ ∞. (2.23)

Now, from (2.22),

h(t)a(t)x′(t)
x(t)

+

∫ t

τk

a(s)h(s)
(x′(s)

x(s)

)2
ds <

h(τk)a(τk)x′(τ+k )
x(τ+k )

−
∫ t

τk

h(s)g(s) ds

and from (2.23), this implies that there is a sufficiently large τ� so that

h(t)a(t)x′(t)
x(t)

+

∫ t

τ�

a(s)h(s)
(x′(s)

x(s)

)2
ds ≤ −1,

for t ≥ τ�. Hence,

h(t)a(t)x′(t)
x(t)

≤ −1 −
∫ t

τ�

a(s)h(s)
(x′(s)

x(s)

)2
ds. (2.24)

Since x′(t) < 0,

x′(t)
x(t)
≤ a(t)h(t)

(x′(t)
x(t)

)2(
1 +
∫ t

τ�

(x′(s)
x(s)

)2
ds
)−1

.
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Integrating the last inequality on (τ�, t] yields

ln
(x′(τ+� )

x(t)

)
≤ ln
(
1 +
∫ t

τ�

(x′(s)
x(s)

)2
ds
)
.

From (2.24), it follows that

x′(τ+� )
x(t)

≤ −a(t)h(t)
x′(t)
x(t)

, that is, x′(t) ≤ −
x′(τ+� )

a(t)h(t)
.

Now, we integrate the last expression on (τ�, τ�+1] to obtain

x(τ�+1) ≤ x(τ+� )
(
1 −
∫ τ�+1

τ�

dt
a(t)h(t)

)
.

Thus, using the hypothesis (2.21), it is easy to see

lim sup
�→∞

x(τ�+1) ≤ 0,

which leads to a contradiction because of the assumption that x(t) is ultimately positive.
Hence, x(t) is oscillatory. �

Now, we can easily establish the following oscillation criteria for (1.1).

THEOREM 2.5. If all hypotheses of Theorem 2.3 hold, (1.1) is oscillatory.

THEOREM 2.6. If all hypotheses of Theorem 2.4 hold, (1.1) is oscillatory.

In view of (2.1) and Lemma 2.1, it can be seen that Theorems 2.5 and 2.6 follow
directly from Theorems 2.3 and 2.4, respectively.

3. Examples

In this section, we describe some examples to illustrate our results. For each
example, the graphs show the discontinuities in a small interval and the oscillating
behaviour on a larger interval.

EXAMPLE 3.1. Consider the impulsive differential equation
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( 1
t2 y′
)′
+

t + 2
(t + 1)2 y = 0, t � k, t ≥ 2,

Δy +
k + 3

2(k + 2)
y = 0, Δ

( 1
t2 y′
)
− 3

4k3(k + 1)(k + 2)
y +

1
2k2 y′ = 0, t = k, k > 2.

(3.1)

Let t0 = 2. Clearly,

τk = k, a(t) =
1
t2 , b(t) =

t + 2
(t + 1)2 , ak =

k + 3
2(k + 2)

, bk = −
3

4k3(k + 1)(k + 2)
, ck =

1
2k2 ,
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and so, 1 − ak = (k + 1)/(2(k + 2)) > 0 and 1 − ck/a(τk) = 1/2. Thus, (H1) holds. If
we choose f (t) = 3/(2t3(t + 1)), from ωk = (k + 2)/(k + 1),

α(t) =
n(t)∑
k=2

1
k + 2

n(t)∏
i=k

i + 2
i + 1

= (n(t) + 2)
n(t)∑
k=2

1
(k + 2)(k + 1)

=
n(t) − 1

3
.

For t ∈ (i, i + 1], t ≥ 2, we have n(t) = i + 1 and α(t) = i/3, which implies that

g(t) = b(t) + α(t) f ′(t) +
(α(t) f (t))2

a(t)

>
t + 2

(t + 1)2 −
4t + 3

2t3(t + 1)2 +
(t − 1)2

4t4(t + 1)2 >
1

t + 1
> 0.

Thus, (H2) also holds and

1
a(τn)

n−1∑
i=0

i∏
j=0

1
ωj

∫ τi+1

τi

g(t) dt > n2
n−1∑
i=0

1
i + 2

ln
( i + 2
i + 1

)
.

If we take the limit of both sides, we see that (2.6) is satisfied. However, since α(t) <
t/3 for t ≥ 2, we have the estimate

μ(s, t0) = exp
{
−2
∫ s

2

f (r)α(r)
a(r)

dr
}
> exp

{
−
∫ s

2

1
r + 1

dr
}
=

3
s + 1

.

Hence, from
n−1∑
i=0

i∏
j=0

ωj

∫ τi+1

τi

μ(s, t0) ds > 3
n−1∑
i=0

(i + 2)
∫ i+1

i

1
s + 1

ds = 3
n−1∑
i=0

(i + 2) ln
( i + 2
i + 1

)
,

we see that (2.13) also holds. Thus, by Theorem 2.5, (3.1) is oscillatory. This
conclusion is illustrated in Figure 1.

EXAMPLE 3.2. Consider the impulsive differential equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(e−ty′)′ + (1 + e−t)y = 0, t � k, t ≥ 2,

Δy − eky = 0, Δ(e−ty′) − 1
4(k2 − k)

y − y′ = 0, t = k, k > 2.
(3.2)

Let t0 = 2. Clearly,

τk = k, a(t) = e−t, b(t) = 1 + e−t, ak = −ek, bk = −
1

4(k2 − k)
, ck = −1.

Thus, (H1) holds. Since ωk = 1, by choosing f (t) = e−t, we get

α(t) =
1
4

n(t)∑
k=2

ek

(1 + ek)(k2 − k)
. (3.3)
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(a) Graph of y(t), t ∈ [2, 10]. (b) Graph of y(t), t ∈ [90, 100].

FIGURE 1. Illustrations for Example 3.1.

From 2/5 < ek/(1 + ek) < 1, we may write 1/10t < α(t) < 1/2. Then

g(t) > 1 + e−t − 1
2et +

1
100t2et > 1,

so that

1
a(τn)

n−1∑
i=0

i∏
j=0

1
ωj

∫ τi+1

τi

g(t) dt > en (n − 1)n
2

.

Taking the limit of both sides, it is easily seen that (2.6) holds.
Now, if we take h(t) = et, we can write 2α(t) f (t)h(t) < 1 = a(t)h′(t), and

∫ i+1

i

dt
a(t)h(t)

= 1,

which shows that (2.21) holds. Finally, to check the hypothesis (2.20), we write

n∑
i=1

i−1∏
j=1

ωj

∫ τi

τi−1

h(s)g(s) ds >
n∑

i=1

∫ i

i−1
es ds = en − 1.

Clearly, the last expression tends to infinity as n→ ∞. Hence, by means of
Theorem 2.6, (3.2) is oscillatory. The oscillation behaviour can also be seen in
Figure 2.

https://doi.org/10.1017/S0004972722000429 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000429


[12] Oscillation of impulsive linear differential equations 123

2 3 4 5 6 7 8
t

-8

-6

-4

-2

0

2

4

6

8

y

1010

2 2.5 3 3.5 4 4.5 5
t

-2000

-1500

-1000

-500

0

500

1000

1500

2000
y

(a) Graph of y(t), t ∈ [2, 5]. (b) Graph of y(t), t ∈ [2, 8].

FIGURE 2. Illustrations for Example 3.2.

4. Concluding remarks

The following remark demonstrates the novelty of Theorem 2.5 and hence also
Theorem 2.3.

REMARK 4.1. As far as we know, the only paper that deals with the oscillation of (1.1)
is [2]. If we attempt to apply the Leighton-type theorem [2, Theorem 2.1] to (3.1), we
compute

∫ t

2
b(s)

n(s)∏
k=2

1
ωk

ds +
n(t)∑
k=2

bk

1 − ck/a(τk)

k∏
j=2

1
ωj

= 3
∫ t

2

(s + 2)
(s + 1)2(n(s) + 2)

− 9
2

n(t)∑
k=2

1
k3(k + 1)(k + 2)2 ,

which is finite. Hence, the hypothesis of Theorem 2.1 in [2] is not satisfied. As we have
shown in Example 3.1, our result shows that this system oscillates.

Finally, the next remark shows the usefulness of Theorem 2.6 as an alternative to
Theorem 2.5.

REMARK 4.2. In Example 3.2, from (3.3), we have α(t) = c, where 1/5 < c < 1/2.
Thus,

μ(s, t0) = exp
{
−c
∫ s

2

(
1 − 1

s

)
ds
}
= sce−cs,
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where c is a suitable positive constant. This implies that
n−1∑
i=0

i∏
j=0

ωj

∫ τi+1

τi

μ(s, t0) ds =
n−1∑
i=0

sce−cs < ∞.

Thus, the hypothesis (2.13) does not hold, and so Theorem 2.5 cannot be applied to the
system (3.2).
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