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Moduli of Space Sheaves with Hilbert
Polynomial 4m +1

Mario Maican

Abstract. We investigate the moduli space of sheaves supported on space curves of degree 4 and
having Euler characteristic 1. We give an elementary proof of the fact that this moduli space consists
of three irreducible components.

1 Introduction and Preliminaries

Let Mp»(rm + x) be the moduli space of Gieseker semi-stable sheaves on the com-
plex projective space P" having Hilbert polynomial P(m) = rm + y. Le Potier [11]
showed that Mp: (rm + x) is irreducible and, if r and y are coprime, smooth. For low
multiplicity, the homology of Mp:2(rm + x) has been studied in [3, 4] using the wall-
crossing method and in [6, 13, 14] using the Bialynicki-Birula method. When n > 2,
the moduli space is no longer irreducible. Thus, according to [8], Mps (3m+1) has two
irreducible components meeting transversally. The focus of this paper is the moduli
space M = Mps (4m +1) of stable sheaves on P* with Hilbert polynomial 4m + 1. This
was investigated in [5] using wall-crossing, by relating M to Hilbps (4 +1). The main
result of [5] states that M consists of three irreducible components, denoted R, E, P, of
dimensions 16, 17, and 20, respectively. The generic sheaves in R are structure sheaves
of rational quartic curves. The generic sheaves in E are of the form Og(P), where E
is an elliptic quartic curve and P is a point on E. The third irreducible component
parametrizes the planar sheaves.

The purpose of this paper is to reprove the decomposition of M into irreducible
components without using the wall-crossing method; see Theorem 4.3. We achieve
this as follows. Using the decomposition of Hilbps (4m + 1) into irreducible compo-
nents, found in [2], we show that the subset of M of sheaves generated by a global
section is irreducible; see Proposition 2.4. This provides our first irreducible com-
ponent. We then describe the sheaves whose support is an elliptic quartic curve; see
Section 3. To show that the set of such sheaves JF is irreducible we use results from
[17] regarding the geometry of Hilbps (4m). Given F, we construct at Proposition 4.2
a variety W together with a map o: W — T, the support map, where I' c Hilbps (4m)
is an irreducible quasi-projective curve, such that F € 07!(x) for a point x € I and
such that T’ \ {x} consists only of smooth curves. Moreover, the fibers of ¢ are irre-
ducible, hence W is irreducible, and hence J is contained in the closure of the set of
sheaves with support smooth elliptic curves. Thus, we obtain the second irreducible
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component. The set P of planar sheaves is irreducible because it is a bundle over the
Grassmannian of planes in P* with fiber M2 (4m + 1), which is, as mentioned above,
irreducible.

We also rely on the cohomological classification of sheaves in M found at [5, Theo-
rem 6.1], which does not use the wall-crossing method (it uses the Beilinson spectral
sequence). We fix a 4-dimensional vector space V over C and we identify P* with
P(V). We fixabasis {X,Y,Z, W} of V*.

Theorem 1.1 ([5, Theorem 6.1]) Let F give a point in Mps (4m +1). Then F satisfies
one of the following cohomological conditions:

() h(Fe02(2)=0hn"(FeoQ'(1)=00"(F) =1

(i) h’(Fe®02(2))=0,h"(Feo0l(1))=1,h"F) =1

(i) h®(F®02(2)) =1, h°(Fe Q'(1)) =3,h’(F) =2

Let My, M;, M, c M be the subsets of sheaves satisfying conditions (i), (ii), and
(iii), respectively. We will call them strata. Clearly, My is open, M; is locally closed,
and M, is closed. We also quote the classification of the sheaves in each stratum
in terms of locally free resolutions, which was carried out at [5, Theorem 6.1]. The
sheaves in M are precisely the sheaves having a resolution of the form

(L1) 0 —>30(-3) = 50(-2) 5 O(-1)® O — F — 0
[x v z w o
a9 92 493 44 945

or a resolution of the form

(1.2) 0 —>30(-3) = 50(-2) 5 O(-1) ® O —> F —> 0

211121300
¢ a9 93 q4 g5

where I}, I, I3 are linearly independent. Let R,E c M, be the subsets of sheaves
having resolution (1.1) (resp. (1.2)). Clearly, R is an open subset of M and consists of
structure sheaves of rational quartic curves. The set E contains all extensions of Cp
by Op, where E is an elliptic quartic curve and P is a point on E. The sheaves in M;
are precisely the sheaves having a resolution of the form

13)  0—30(-3) = 50(-2) ® O(-1) > 20(-1) ® O — F —> 0,

where ¢, = 0and ¢1;:50(-2) — 20(-1) is not equivalent to a morphism represented
by a matrix of the form

[* *x 0 0 0] [* *x  x % O:|
or .
*x  x  Kx Kk * * % x * 0

The sheaves in M, are precisely the sheaves of the form O¢(-P)(1), where Oc(-P)
in O¢ denotes the ideal sheaf of a closed point P in a planar quartic curve C.
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Assume now that F has resolution (1.1). Let S ¢ P* be the quadric surface given by
the equation g5 = 0. From the snake lemma we get the resolution

0 —> 30(-3) — Q'(-1) — 05 — F — 0.

We consider first the case when S is smooth. The semi-stable sheaves on a smooth
quadric surface with Hilbert polynomial 4m + 1 have been investigated in [1]. We cite
below the main result of [1]:

Proposition 1.2 Let J be a coherent sheaf on P! x P! that is semi-stable relative to the
polarization O(1,1) and such that Py(m) = 4m + 1. Then precisely one of the following
is true:

(i) T is the structure sheaf of a curve of type (1,3);

(i) T is the structure sheaf of a curve of type (3,1);

(iii) F is a non-split extension 0 - O - F — Cp — 0 for a curve E in P! x P! of
type (2,2) and a point P € E. Such an extension is unique up to isomorphism and
satisfies the condition H'(F) = 0.

Thus, Mp1,pi (4m + 1) has three connected components. Two of these, P(H®(0(1,3)))
and P(H°(O(3,1))), are isomorphic to P”. The third one is smooth, has dimension 9,
and is isomorphic to the universal elliptic curve in P(H°(0(2,2))) x (P! x P!). The
sheaves at (iii) are precisely the sheaves having a resolution of the form

00— 0(-2,-1)®O(-1,-2) ~» O(-L,-1) ® O — F —> 0
with P11 }é 0, P12 }é 0.
The following well-known lemma provides one of our main technical tools.

Lemma 1.3  Let X be a projective scheme and let Y be a subscheme. Let I be a coherent
Ox-module and let G be a coherent Oy-module. Then there is an exact sequence of vector
spaces
(14) 0 — Exty (Fjy,§) — Exty, (F,G) — Homo, (Tory*(F,0y), )

— Exty, (Fy,9) — Ext (5, 9).

In particular, if F is an Oy-module, then the above exact sequence takes the form

(15) 0— Exty, (F,5) — Exty, (F,5) — Homo, (F ®0, Iy, 9)
— Exty, (F,5) — Ext, (F,9).

2 Sheaves Supported on Rational Quartic Curves

Let Ry c R be the set of isomorphism classes of structure sheaves Og of curves R c §
of type (1, 3) or (3,1) on smooth quadrics S c P*. A curve of type (1,3) on S can be
deformed inside IP* to a curve of type (3,1), hence Ry is irreducible of dimension 16.
Let Eq c E be the set of isomorphism classes of non-split extensions of Cp by O for
E c S acurve of type (2,2) on a smooth quadric S ¢ P* and P a closed point on E.
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From (1.5) and Proposition 1.2(iii) we have the exact sequence
0— Eths ((Cp, OE) ~C— Ethlﬁ (CP, OE) —> Homos((Cp, OE) =0.

We denote by Og(P) the unique non-split extension of Cp by Of. Clearly, Eq is ir-
reducible of dimension 17. Let Eg.. c Eq denote the open subset of sheaves that are
locally free on their schematic support, which is equivalent to saying that P € reg(E).
Let P ¢ Mps(4m + 1) be the closed set of planar sheaves. It has dimension 20. Let
Ptree € P be the open subset of sheaves that are locally free on their support. Accord-
ing to [10], P \ Pge. has codimension 2 in P.

Proposition 2.1  The closed sets Ry, Eog, and P are irreducible components of
Mps (4m +1). Moreover, Ro, Egree and Pree are smooth open subsets of the moduli
space.

Proof LetJ = Op giveapointin Ry, where R c S is a curve of, say, type (1,3). From
Serre duality we have
Exty (F,F) = Homy (F, F(-2,-2))* = 0.
From the exact sequence (1.5) we get the relation
exty_, (F,5) = exty (F,F) + homy (F(-2),F) = 7 +h*(Or(2,2)) = 16.

This shows that Ry is an irreducible component of M and that Ry is smooth.

Next, consider F = O (P) giving a point in Eg. As above, we have the relation

exty , (F,F) = exty (F,F) + homy (F(-2),F) =9 +homy (F,F(2,2)).

Assume, in addition, that F is locally free on E. Its rank must be 1, because E is a curve
of multiplicity 4. Thus,

Homy (F,5(2,2)) = H°(0p(2,2)) ~ C8,

hence extbp3 (F,F) = 17. This shows that E, is an irreducible component of M and

that Eree is smooth.
Assume now that J is supported on a planar quartic curve C ¢ H. Using Serre
duality and (1.5) we get the relation

extbp3 (F.9) = extyy,, (F,F) + homg , (F(-1),F) =17+ hom  (F, F(1)).
Assume, in addition, that F is locally free on C, so a line bundle. Thus,
Homg, (F,9(1)) ~H’(0c(1)) = C?,
hence extbﬂ»3 (F,F) = 20. This shows that P is an irreducible component of M and
that Pgpee is smooth. [ |

Remark 2.2 Let F be a one-dimensional sheaf on P> without zero-dimensional
torsion. Let F' be a planar subsheaf such that F/F has dimension zero. Then F is
planar. Indeed, say that F’ is an Oy-module for a plane H c P°. From (1.4) we have
the exact sequence

0 — Extly, ((F/9)i,F") > Extly, (F/F,5") > Homo, (Tor, > (F/F,0n), F).
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The group on the right vanishes, because ‘J’orfJ P (F/F',Oy) is supported on finitely
many points, yet F has no zero-dimensional torsion. Thus, F € Extyy ((F/9") 1, F7),
so Fis an Ogz-module.

Proposition 2.3  The non-planar sheaves in Mps (4m + 1) having resolution (1.3) are
precisely the non-split extensions of the form

(2.1) 0—0O0c—F — 0 —0,

where C is a planar cubic curve and L is a line meeting C with multiplicity 1. For such
a sheaf, H* () generates Oc. The set R consists precisely of the sheaves generated by a
global section. The set E consists precisely of the sheaves F such that H° () generates a
subsheaf with Hilbert polynomial 4m.

Proof Let ¢ be a morphism as at (1.3). Denote G = Coker(¢y;) and let H c P? be
the plane given by the equation ¢,, = 0. From the snake lemma we have the exact
sequence

Oy —F —GG—0.

We examine first the case when
0 0 * *x x
$u *x ok ok x % |

[x v z w o
iTlo L oL
If I is a multiple of X, then Pg = 3 (see the proof of [5, Theorem 6.1(iii)]); hence, by
Remark 2.2, F is planar. Assume now that I, is not a multiple of X and let L c P3
be the line given by the equations X = 0, [y = 0. Then § is a proper quotient sheaf
of Op(-1), hence it has support of dimension zero, and hence, by Remark 2.2, ¥ is
planar. It remains to examine the case when

|1 Uz U3 0 0
$u = 0 V1 V2 V3 V4 )

Thus, we can write

Let P be the point given by the ideal (uy, 43, u3) and let L be the line given by the
equations v3 = 0, v4 = 0. We have an exact sequence

0r(-1) —G§— Cp — 0.

If the first morphism is not injective, then § has dimension zero, hence F is planar.
If G is an extension of Cp by O (-1), then this extension does not split; otherwise,
01 (-1) would be a destabilizing quotient sheaf of F. Thus, § ~ Oy, and we have an
exact sequence

0—E&—F— 0, —0,

where € gives a point in My (3m) and is generated by a global section. Thus, € is the
structure sheaf of a cubic curve C ¢ H. If L c H, then from (1.5) we would have the
exact sequence

0 — Exty, (01, 0¢) — Extgy, (01, 0¢) — Homo, (0r(-1),0c).
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The group on the right vanishes, because O¢ is stable. We deduce that F lies in
Ext, (01, O¢), hence F is planar.

Thus far we have shown that if F is non-planar and has resolution (1.3), then &
is an extension as in the proposition. Conversely, given a non-split extension (2.1),
T is semi-stable, because O¢ and O are stable. In view of Theorem 1.1, since F is
non-planar, we have h® () = 1. Thus, H°(F) generates Oc. It follows that F cannot
have resolutions (L.1) or (1.2); otherwise, H°(F) would generate F or would generate
a subsheaf with Hilbert polynomial 4m. We conclude that J has resolution (1.3).

The rest of the proposition follows from Theorem 1.1 and from the fact, proved
in [7], that for a planar sheaf J having resolution (1.3), the space of global sections
generates a subsheaf with Hilbert polynomial 4m — 2 or it generates the structure
sheaf of a cubic curve. ]

Proposition 2.4  The set R of sheaves in Mps (4m + 1) generated by a global section is
irreducible.

Proof Let Hilbps(4m +1)° c Hilbps (4m +1) be the open subset of semi-stable quo-
tients. The image of the canonical map Hilbps (4m +1)° — Mps (4m +1) is R. Accord-
ing to [2, Theorem 4.9], Hilbgs (4m + 1) has four irreducible components, denoted
H,, H;, H3, Hy. The generic point in H, is a rational quartic curve. The generic curve
in H, is the disjoint union of a planar cubic and a line. The generic member of H;
is the disjoint union of a point and an elliptic quartic curve. The generic member
of Hy is the disjoint union of a planar quartic curve and three distinct points. Thus,
H, U H3 U Hy lies in the closed subset

H={[0 8] |h%(8)>2} cHilb(4m +1).

According to Theorem 1.1, H®* = @. Indeed, any sheaf in M, cannot be generated by
a single global section. Thus, Hilbps (4m + 1)* is an open subset of Hj, hence it is
irreducible, and hence R is irreducible. ]

3 Sheaves Supported on Elliptic Quartic Curves

We will next examine the sheaves J having resolution (1.2). Let P be the point given
by the ideal (I;, I, I3). Notice that the subsheaf of F generated by H’ () is the kernel
of the canonical map J — Cp. This shows that J is non-planar, because, according
to [7], the global sections of a sheaf in Mgz (4m + 1) whose first cohomology vanishes
generate a subsheaf with Hilbert polynomial 4m — 2 or the structure sheaf of a planar
cubic curve, which is not the case here. We consider first the case when g4 and g5
have no common factor, so they define a curve E. Applying the snake lemma to the
diagram in Figure 1 we see that F is an extension of Cp by Og. From Serre duality, we
have

Eth][ﬁ ((Cp, OE) ~ EXtép3(oE,Cp)* ~ C.

The group in the middle can be determined by applying Hom( -, Cp) to the first row
of the diagram. We may write F = Og(P).
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[4:]

0 O(-4)

20(-2) 0 Og 0

0—=30(-3) —=59(-2) —=O(-1) @9 —=F —=0

byl
0 X 30(-2) SLLLIY O(-1) Cp 0
0 0
Figure 1

Proposition 3.1 The sheaf Og(P) is stable.

Proof We will show that O is stable, forcing O (P) to be stable. To prove that O
is stable, we must show that it does not contain a stable subsheaf £ having one of
the following Hilbert polynomials: m, m + 1 (i.e., the structure sheaf of a line), 2m,
2m +1 (i.e., the structure sheaf of a conic curve), 3m, 3m + 1. The structure sheaf of
a line contains subsheaves having Hilbert polynomial  and the structure sheaf of a
conic curve contains subsheaves having Hilbert polynomial 2m. Thus, it is enough to
consider only the Hilbert polynomials m, 2m, 3m + 1, 3m. In the first case, we have a
commutative diagram

0 —— 0(-3) ——=20(-2) 0(-1) I 0
N
0——=0(-4) ——=20(-2) V) Of 0

in which a # 0. It follows that O(-3) ~ Ker(y) ~ Ker(f3), which is absurd. In the
second case, we get a commutative diagram

0 ——20(-3) —=40(-2) —=20(-1) ——= & ——0

A

0 —— 0(—4) ——=20(-2) 0 Og 0

in which « # 0, hence Ker(a) ~ O(-1) or O(-2). From the exact sequence
0 — 20(-3) ~ Ker(y) — Ker(B) — Ker(a) — Coker(y) ~ O(-4),
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we see that Ker(f) ~30(-2), and we get the exact sequence
0 — 20(-3) — 30(-2) — Ker(a) — 0.

Such an exact sequence cannot exist. In the third case, we use the resolution of € given
at [8, Theorem 1.1]. We obtain a commutative diagram

0 —>20(-3) —=30(-2) 8 O(-1) — > O(-1) 8O — =& —>0

| lﬁ ia

0> O(-4) — > 20(-2) 0 Op 0

in which « is non-zero on global sections, hence Ker(a) ~ O(-1). We obtain a
contradiction from the exact sequence

0 — 20(-3) ~ Ker(y) — Ker(fn) ® O(-1) — Ker(a) — 0.

Assume, finally, that & gives a stable point in Mps (3m). IfH° (&) # 0, then it is easy to
see that € is the structure sheaf of a planar cubic curve, hence we get a commutative

diagram
0 O(-4) 0(-3) ® O(-1) 0 € 0

N R
0 O(-4) 20(-2) 0 O 0

in which « is injective. We get a contradiction from the fact that O(-1) is a subsheaf
of Ker(B) =~ Ker(y). If H°(€) = 0, then we get a commutative diagram of the form

0 ——30(-3) —=60(-2) —=30(-1) ——= & ——0

A

0 O(-4) 20(-2) O Og 0.

It is easy to see that «t(1) is injective on global sections, hence Coker(a) is isomorphic
to the structure sheaf of a point and Coker(f3) ~ O(-2). We get a contradiction from
the exact sequence

O(-4) ~ Coker(y) —> Coker(Bf) — Coker(a). [ |

To finish the discussion about sheaves at Theorem 1.1(i), we need to examine the
case when q4 = uv; and ¢gs = uv, with linearly independent v;, v, € V*. Let H be the
plane given by the equation u = 0 and let L be the line given by the equations v; = 0,
v2 = 0. We apply the snake lemma to the diagram in Figure 2. The kernel of the
canonical map § - Cp is an Oy-module. This shows that F is not isomorphic to G;
otherwise, in view of Remark 2.2, F would be planar. Thus, Oy (-1) - F is non-zero,
hence it is injective. We get a non-split extension

(3.1) 0— O(-1) — F — G —0,

and it becomes clear that P € H and that G gives a point in Mps (3m + 1). From
Remark 2.2 we see that § gives a point in My (3m +1). Thus, § is the unique non-split

https://doi.org/10.4153/CMB-2017-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-030-4

336 M. Maican

0 0
0 O(-3) 20(=2) — L ooy Or(-1) 0
(2]
0—=30(-3) —=50(-2) ——~ 0(-1) 80 F 0
[11 I, 13]
0 X 30(-2) ——= 09(-1) ® Oy S 0
0 0
Figure 2

extension of Cp by O¢ for a cubic curve C ¢ H containing P. We write G = O¢(P).
Let D ¢ Mps(4m + 1) be the set of non-split extension sheaves as in (3.1) that are
non-planar (we allow the possibility that L ¢ H, in which case the support of F is
contained in the double plane 2H).

We examine first the case when L ¢ H; that is, L meets C with multiplicity 1, at a
point P’. According to [8, Theorem 1.1] there is a resolution

0 —>20(=3) > 30(-2) ® O(-1) —> O(-1) O — G — 0

u 0

S = 0 u y:[ul U, u 0]
-u; —uy |’ g £ 0 ul’
&1 —&

where span{u;, uy,u} = span{ly, l, 13} and C has equation u;g, — u>g; = 0 in H.
Note that G|, ~ Cp unless y(P’) = 0, in which case G, = Cps ® Cps. But y(P’) = 0 if
and only if P’ = P € sing(C). From (1.4) we have the exact sequence

00— EthL(9|L, OL(—I)) — EXtIOH,,s (9, OL(—I)) - HOl’l’loL (TOF?PS (9, OL), OL(—l)).

The group on the right vanishes, because O (—1) has no zero-dimensional torsion. It
follows that
C ifP#Porif P=P ereg(C),
Extyy  (G,0.(-1)) =
Xo,, (5 00(=1)) {(C2 if P = P’ € sing(C).
Let Dy c D be the open subset given by the conditions that L ¢ H and either P # P’
or P = P’ e reg(C). The map

Do —> Hilbes (m +1) x Mg (3m +1),  [F]— (L,[S])

https://doi.org/10.4153/CMB-2017-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-030-4

Moduli of Space Sheaves with Hilbert Polynomial 4m + 1 337

is injective and has irreducible image. We deduce that Dy is irreducible and has di-
mension 16.

Let D’ ¢ Mps (4m +1) be the subset of non-split extensions (2.1). Denote P = LNC.
From (1.4) we have the exact sequence

0 C = Exty, (Cp, Oc) > Extly , (91,0c) » Homo, (Tor,® (01, 0p), O¢) = 0.

We deduce that, given L and C, there is a unique non-split extension of Oy by Oc¢.
The map
D’ — Hilbps (m + 1) x Hilbps (3m)

sending J to (L, C) is injective and has irreducible image. We deduce that D’ is irre-
ducible and has dimension 15. Tensoring (2.1) with Og, we get the exact sequence

0 = Tor, ™ (01, 0) — O¢c — Fjyy — Cp — 0
from which we see that F; ~ O¢(P). We obtain the extension
0— OL(—I) — F — Oc(P) — 0.

We deduce that [F] € D. Thus, D’ ¢ D. Moreover, D’ n Dy is open and non-empty
in D', because it consists precisely of extensions as above for which P € reg(C). Thus,
DI c ﬁo.

Remark 3.2 Note that Do \ D’ is the open subset of D given by the conditions
L ¢ Hand P # P'. We claim that Dy \ D’ is the set of sheaves of the form Op(P),
where D = Lu C is the union of a line and a planar cubic curve having intersection of
multiplicity 1and P € C \ L. First we show that the notation Op (P) is justified. From
(1.4) we have the exact sequence

0 — C = Exty, (Cpr, 01(-1)) — Exty, (0c, 01(-1))
— Hom( TOV?WS (O¢,01), OL(—I)) =0,

which shows that Op is the unique non-split extension of O¢ by O (-1). The long
exact sequence of groups

0= EXt}g]})3 ( Cp, OL(—I)) — EthP3 (CP, OD) — Ethﬂ)3 ((Cp, Oc) ~C

— Extg, (Cp, 01(-1)) =0
shows that there is a unique non-split extension of Cp by Op, which we denote by
Op(P). Given F € Dy \ D/, the pull-back of O¢ in F, denoted F, is a non-split
extension of O¢ by Op(-1). Indeed, if F" were a split extension, then O¢ ¢ F and
F/Oc ~ Or(-1) & Cp, so Or(-1) would be a destabilising quotient sheaf of F. Thus,
F' ~ Op and F ~ Op(P). Conversely, Op(P)/Or(-1) is an extension of Cp by Oc,
hence Op(P)/Or(-1) ~ Oc(P).

Remark 3.3 If Ln C = {P} is aregular point of C, and D = L U C, then there are
no semi-stable extensions of the form

0—>OD—>§—>CP—>O
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Indeed, if F were such a semi-stable extension, then we would also have an extension
0—0,(-1) - F—G—0,

where § is an extension of Cp by O¢. Note that G is a non-split extension; otherwise,
O¢ would be a destabilizing quotient sheaf of F. Thus, JF is the unique non-split ex-
tension of O¢(P) by O (-1), so it is also the unique non-split extension of Oy, by Oc.
Thus, H(F) generates O, hence Op is a subsheaf of O¢, which is absurd.

Remark 3.4 'The set S ¢ Mp2(3m) x Mp2(3m + 1) of pairs ([E€],[S]) such that
H(€) = 0and € isa subsheaf of G is irreducible. By duality, this is equivalent to saying
that the set S° ¢ Mp2 (3m —1) x Mp2 (3m) of pairs ([G], [€]) such that H*(€) = 0 and
G is a subsheaf of € is irreducible. Given an exact sequence

O—>9—>8—>(CP/—>O,

we can combine the resolutions of sheaves on P?

0— 0(-3)®0(-2) % 20(-1) —§—0

and
0 —> 0(=3) — 20(~2) 2L 9(21) — Cp — 0
to form the resolution

0—> 0(-3) 5 0(=3) ®30(-2) -2 30(-1) — &€ — 0,

g w In
p=[q2 w2 Iln Inf.

0O 0 v v
We indicate by the index i the maximal minor of a matrix obtained by deleting column
i. The condition H°(&) = 0 is equivalent to the condition y,; # 0, which is equivalent
to the following conditions: ¢; # 0 and ¢; divides @2, @3, @4. As ¢; divides both
(quz — u1g2)v1 and (quua — u1g2)v2, we see that @, is a multiple of qiuy — u1qz. It
follows that ¢ is equivalent to the matrix

hiva=lovi wi In Ip
v=|lava—lovi uy la lnf.
0 0 V1 Vo

Let U ¢ Hom(O(-3) ® 30(-2),30(-1)) be the set of morphisms represented by
matrices v as above satisfying the following conditions: v; # 0, u; and u, are linearly
independent, v; and v, are linearly independent. Clearly, U is irreducible. Let v’ €
Hom(O(-3) @ O(-2),20(-1)) be the morphism represented by the matrix

|:111V2 - lon M1]

Liva —lpovi s

The above discussion shows that the map 7: U — S°, v — ([Coker(v')], [Coker(v)])
is surjective. Thus, S is irreducible. The open subset Si,, C S, given by the condition
that the schematic support of G be irreducible, is irreducible.
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Let D; c D be the locally closed subset given by the conditions L ¢ H and P =
P’ € sing(C). Since dim Extbp3 (9,0L(-1)) = 2, we see that dimD; = 14. The set of

cubic curves in P? that are singular at a fixed point is irreducible. It follows that D is
irreducible as well.

Proposition 3.5 The set D is contained in the closure of Dy.
Proof Consider [F] € Dy U Dy. Consider extension (3.1) in which § = O¢(P) and
Ln H = {P'}. Dualizing, we get the extension
0— O¢(-P) — F* — 0r(-1) — 0.
Tensoring with O, we get the exact sequence
0 =Tor, ™ (0 (-1), 0r) — Oc(~P) — (F°) g — Cpr —> 0.

This short exact sequence does not split. Indeed, by [12], J™ is stable and has slope
-1/4, hence O¢(—P), which has slope —1/3, cannot be a quotient sheaf of F°. Since
Oc(-P) isstable, it is easy to see that (I, gives a sheafin My (3m) supported on C.
The kernel of the map J” — (J7),y is supported on L and has no zero-dimensional
torsion, hence it is isomorphic to O;(-2). Denote & = ((J”)y)”. Dualizing the
exact sequence

0— 0r(-2) — F° — (F”)jg — 0,

we obtain the extension

0—&—F—0O —0.
Tensoring with Oy, and taking into account the fact that ‘.Tor;9 (01, 0x) =0, we get
the exact sequence
0—>8—>Oc(P)—>(CP'—>0.
From (1.4) we have the exact sequence
0 —> Extly, (Cpr, &) — Extly (01, €) — Hom(Tor, * (01, 0), €) = 0.

It is clear now that the isomorphism class of F corresponds to the isomorphism class
of O¢(P) under the bijective map e. Let D" ¢ (DouD; )\ D’ be the subset given by the
condition that C be irreducible. Note that D" is an open subset of D and contains an
open subset of D;. We will prove below that D is irreducible. Since Dj is irreducible,
we arrive at the conclusion of the proposition

Dl CD"nDl CB" :D"ﬁDO Cﬁo.
Consider the subset
S” c Hilbps (m + 1) x Mps (3m) x Mps (3m +1)

of triples (L, [€],[§]) satisfying the following conditions: £ and § are supported on
a planar irreducible cubic curve C, H’(€) = 0, € is a subsheaf of ,and LN C = {P'},
where Cps ~ G/E. Note that the projection S — Mps (3m) x Mps (3m + 1) has fibers
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affine planes and has image the irreducible variety Si,, from Remark 3.4. It follows that
§” is irreducible. To prove that D" is irreducible, we will show that the morphism

D" — 8", q([F]) = (L [((F")m)"]. [Fiu])
is bijective. We first verify surjectivity. Given an extension
00— & — 9 — (CP’ — 0

welet F ¢ Extbp3 (01, &) be the image of G under €. Since G does not split, neither
does J. By hypothesis € has irreducible support, hence € is stable, and, a fortiori, F
is stable. Applying the snake lemma to the diagram

0 & F Or 0
0 & g Cp 0,

we get the extension
0—0r(-1) - F—G—0.

Thus, [F] € Dy U D; and fﬂ g ~ G, where H is the plane containing C. Dualizing
the first row of the above diagram we see that (37)y ~ £”. By hypothesis € is not
isomorphic to Oc, hence [F] ¢ D'. Thus, [F] € D" and n([F]) = (L,[€],[SG]). This
proves that 7 is surjective. Since [F] = €([G]), we see that 7 is also injective. [ |

We will next examine the sheaves in D for which L ¢ H. From (1.5) we have the exact
sequence

0 — Extyy, (0c(P), 01(-1)) — Extpy_ (Oc(P), OL(-1))
— Hom(Oc¢(P)(-1), OL(-1))
— Extg,, (0c(P), 01(-1)) = Homg,, (01 (-1), 0c(P)(-3))" = 0.

Thus, we have non-planar sheaves precisely if Hom(O¢(P), 1) # 0. Any non-zero
morphism a: O¢c(P) - O fits into a commutative diagram

0 HZOH(—Z) s OH(—I) &0y —— Oc(P) —0

i bk

)

OHOH(—I) OH OL 0
U R VAR R

with 8 # 0. Note that ¢ # 0; otherwise, Coker(f3) would be the structure sheaf of aline,
and we would have the relation (vu, vu,) = (Ivy, Iv;). Thus, v; and v, would be lin-
early independent, hence Coker(y) would be zero-dimensional, and hence Coker()
would be zero-dimensional, which is absurd. Replacing, possibly, v with an equiva-
lent matrix, we can assume that g; and g, are divisible by I. Conversely, if Oc(P) is
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the cokernel of the morphism

u u . u u
Tl I then, denoting o' =|["" “?[,
lVl lV2

we can apply the snake lemma to the commutative diagram

20mu(-2) 20mu(-2)
| §
0—=205(-1) —2 94(-1) @ Oy —= O —=0

to get a surjective map O¢(P) — Op. This discussion shows that Hom(O¢(P),0r)
does not vanish precisely if C = L u C’ for a conic curve C’ ¢ H and for P € C'. In
this case we have a commutative diagram

Hom(Oc, OL(—I)) =0

EthH((Cp,OL(—l)) HOIII((CP,OL) =0

|

Exty, (0c(P), 01(-1))— Exty , (Oc(P), O (-1)) —= Hom(Oc(P), Or)

] Lz

EthH(Oc, OL(—I))(—> EthOD,,z, (Oc, OL(—l)) — HOH’I(OC, OL) ~C

EXtéH(CP, OL(—l)) - 5 HomOH(OL, (Cp)*

Exty (Oc(P),0r(-1)) =0

Here §(F) is the pull-back of O¢ in F. If P ¢ L, then § is an isomorphism. If P € L,
then we have an exact sequence

0— C —> Exth_ (0c(P),01(-1)) —> Exth,_ (0¢,01(-1)) — C —> 0.

If F is non-planar, then §(JF) is generated by a global section. Indeed, in view of
Proposition 2.3, F cannot have resolution (1.3), so it has resolution (1.1) or (1.2). Also,
J is not generated by a global section, because O¢(P) is not generated by a global
section. It follows that Py/(m) = 4m, where 3’ c T is the subsheaf generated by
H°(F). But F’ maps to O¢, hence §(F) c F’. These two sheaves have the same
Hilbert polynomial, so they coincide. We conclude that §(F) is the structure sheaf
Op of a quartic curve D. If P ¢ L, then F ~ Op(P).
Assume now that P € L. The preimage of [Op | under the induced map

P( Extp , (0c(P),0.(-1))) N PP(C) — P( Exty , (O¢, 01(-1)))
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is an affine line that maps to a curve in Mps (4m + 1). The exact sequence

0= Hom(Cp, Oc) — Ethnﬁ ((Cp, OL(—I)) ~C — Ethﬂ)3 ((Cp, OD)
— Eth]P3 ((Cp, Oc) ~C

shows that Extbw3 (Cp,Op) has dimension 2. Indeed, if this vector space had dimen-
sion 1, then its image in Mps (4m + 1) would be a point. This, as we saw above, is not
the case.

Let D, c D be the closed subset given by the condition L ¢ H. Equivalently, D,
is given by the condition C = Lu C’" and P € C' for a conic curve C'. According to
[5, Proposition 4.10], the set D, is irreducible of dimension 14. Indeed, let

Sc Hllb]pz(m + 1) x Mp2 (3m + 1)

be the locally closed subset of pairs (L, [O¢(P)]) for which C = LuC"and P € C, for
a conic curve C" ¢ P2, According to [5, Lemma 4.9], § is irreducible. The canonical
map D, — S is surjective and its fibers are irreducible of dimension 3.

4 The Irreducible Components

Let
W, c Hom(30(-3),50(-2)) x Hom(50(-2),0(-1) & O)

be the subset of pairs of morphisms equivalent to pairs (y, ¢) occurring in resolutions
(1.1) and (1.2). We claim that Wy, is locally closed. To see this, consider first the locally
closed subset W given by the following conditions: y is injective, ¢ is generically
surjective, ¢ o ¥ = 0. We have the universal sequence

30w (=3) —> 504 (—2) —> Oycps (~1) ® Oryeps.

Denote F = Coker(®). Corresponding to the polynomial P(m) = 4m + 1 we have
the locally closed subset

Wp={xeW, Pz =P} cW

constructed when we flatten 7, see [9, Theorem 2.1.5]. Now W, ¢ W is the subset
given by the condition that JF, be semi-stable, which is an open condition, because
Fwpxps is flat over Wp. We endow W with the induced reduced structure. Consider
the map

po:Wo — Mo, (y,9) —> [Coker(9)].
On W, we have the canonical action of the linear algebraic group
Go = ( Aut(30(-3)) x Aut(50(-2)) x Aut(O(-1) ® 0)) /C*

where C* is identified with the subgroup {(¢-id, ¢-id,¢-id), t € C*}. It is easy to
check that the fibers of p, are precisely the Go-orbits. Let

W, € Hom(30(=3),50(~2) ® O(~1)) x Hom(50(-2) ® O(-1),20(-1) & O)
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be the locally closed subset of pairs of morphisms equivalent to pairs (v, ¢) occurring
in resolution (1.3) and let

W, ¢ Hom(O(-4) ® 0(~2), 0(=3) ® 30(~1)) x Hom(O(-3) & 30(-1),20)

be the set of pairs given at [5, Theorem 6.1(iii)]. The groups G;, G, are defined by
analogy with the definition of Go. As before, for i = 1,2, the fibers of the canonical
quotient map p;: W; — M; are precisely the G;-orbits.

Proposition 4.1 For i = 0,1, M; is the categorical quotient of W; modulo G;. The
subvariety M, is the geometric quotient of W, modulo G,.

Proof The argument at [7, Theorem 3.1.6] shows that py, p1, p» are categorical quo-
tient maps. Since M, is normal (being smooth), we can apply [15, Theorem 4.2] to
conclude that p, is a geometric quotient map. ]

Consider the closed subset Wy = po'(E) ¢ Wy. Consider the restriction to the
second direct summand of the map

OWeuXE”(_l) @ Owyxps — ?|We11><P3
and denote its image by F'. The quotient [Oy_,p> - F'] induces a morphism
O'Iweu — Hilb]pa(4m).

According to [2, Examples 2.8 and 4.8], Hilbps (4m) has two irreducible components,
denoted H;, H,. The generic member of H; is a smooth elliptic quartic curve. The
generic member of H, is the disjoint union of a planar quartic curve and two isolated
points. Note that H; lies in the closed subset

H={[0 > 8]| h’(8) >3} c Hilbps (4m).

Since o factors through the complement of H, we deduce that ¢ factors through H;.
By an abuse of notation, we denote the corestriction by 0: Wy — H;.

Proposition 4.2 The sets Dy, Dy, Dy, D, and E are contained in the closure of Eg. The
set D is irreducible and Dy is dense in D. Moreover,

E\P=EuD=EuD/, RN (EUP)=R.

Proof Let E;; c Eo be the open subset of sheaves with smooth support. Let
Hyo ¢ H; be the open subset consisting of smooth elliptic quartic curves. For any
x € Hy \ Hyg there is an irreducible quasi-projective curve I' c Hj such that x € T
and T' \ {x} c Hyy. To produce I proceed as follows. Embed H; into a projective
space. Intersect with a suitable linear subspace passing through x to obtain a sub-
scheme of dimension 1 all of whose irreducible components meet Hj,. Retain one of
these irreducible components and remove the points, other than x, that lie outside
H]().

Notice that if y = [0 - O] is a point in Hyo, then o~ !{y} is irreducible of di-
mension 1 + dim Gy. Indeed,

oy} = po'{ [0k(P)], P E}.
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Assume now that x = [O - O] where E is the schematic support of a sheaf in EX D.
We denote its irreducible components by Zj, ..., Z,. Denote by (E \ D) the open
subset of sheaves of the form Og:(P’) with P’ lying outside Z, U ... U Z,, and let W°
be its preimage under py. Denote by 0y the restriction of o to W°. Clearly, o,'{y} is
irreducible of dimension 1+ dim G, and the same is true for o, {x}. Thus, the fibers
of the map g, '(T') — T are all irreducible of the same dimension. By [16, Theorem 8,
p.77] we deduce that o, (T') is irreducible. Thus, po (o~ (T')) is irreducible, hence any
sheaf of the form Og(P), P € Zg \ (Z,U---U Z,,), is the limit of sheaves in E,. The
same argument applies to O (P) for P belonging to exactly one of the components of
E. A fortiori, O (P) lies in the Zariski closure of Eg for all P € E. We conclude that
ExDc Eo.

Let D be the union of a line L and a planar irreducible cubic curve C, where L and
C meet precisely at a regular point of C. Take x = [0 - Op]. Then

o Hx} =p;,{[Op(P)], PeC~ L}

is irreducible of dimension 1+ dim Gy. We deduce as above that any sheaf of the form
Op(P), P € C~ L, is the limit of sheaves in Eeq. The set of sheaves of the form Op (P)
is dense in Dgy. We conclude that D, c E,.

Let D° ¢ DN E = D \ D’ be the open subset given by the condition that P ¢ L.
Let 0°:D° — H,; denote the restriction of ¢. According to [17, Theorem 5.2 (4)],
there is an irreducible closed subset B ¢ H; whose generic member is the union of
a planar cubic curve and an incident line. Let D be the schematic support of a sheaf
in D,. According to [17, Theorem 5.2 (5)], the point x = [O - Op] belongs to B.
By the same argument as above, there is an irreducible quasi-projective curve I' ¢ B
containing x such that the points y € I' \ {x} are of the form [O - Op¢], where C
is a planar irreducible cubic curve and L is an incident line. Notice that

(0°)™{y} = pa'{ [O1uc(P)]. PeC~ L}

is irreducible of dimension 1+ dim Gy. Assume, in addition, that D is the union of an
irreducible plane conic curve C’ and a double line supported on L. Then

(6°){x} = po' {[0p(P)], PeC'~ L'}

is irreducible of dimension 1 + dim Gy. We deduce, as above, that (¢°)'(T) is irre-
ducible, hence po((c°)™'(T)) is irreducible, and hence any sheaf of the form Op (P),
P e C'\ L', is the limit of sheaves in Dy. But D, is irreducible, hence the set of sheaves
Op(P) as above is dense in D,. We deduce that D, c Dy. Thus, D, c E,.

Recall from Proposition 3.5 that D; ¢ Dy. Since D = Dy U D; U D,, we see that
D c D, c E,.

The inclusion EX P ¢ EuD’ follows from Theorem 1.1 and Proposition 2.3. Indeed,
E is closed in My. The reverse inclusion was proved above. Finally,

R~ (EuP)=R~ (EUD'UP)c M~ (EuD'UP)=My~E=R.
The reverse inclusion is obvious because by definition R is disjoint from E, D', P. W

From Proposition 4.2 we obtain the decomposition of Mps (4m+1) into irreducible
components.

https://doi.org/10.4153/CMB-2017-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-030-4

Moduli of Space Sheaves with Hilbert Polynomial 4m + 1 345

Theorem 4.3  The moduli space Mps (4m +1) consists of three irreducible components
R E andP.

The intersections R n P, E N P, R n E were described generically in [5]. They are
irreducible and have dimension 14, 16, and 15, respectively. The generic member of
RN P has the form [O¢ (P, + P, + P3)], where C is a planar quartic curve and P, P,,
P; are three distinct nodes. The generic point in ENP has the form [O¢(P; + P, +P)],
where C is a planar quartic curve, P; and P, are distinct nodes, and P is a third point
on C. The generic sheaves in RN E have the form Og (P), where E is a singular (2,2)-
curve on a smooth quadric surface and P € sing(E).
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