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1. INTRODUCTION 

Microwave background astronomy has arrived. Largely because of 
improvements in receivers, the last three years have seen the 
emergence of agreement concerning important measurements of the 
microwave background radiation (MBR): 

- hard evidence that the MBR has a black-body spectrum (see Smoot in 
these proceedings); 

- the unambiguous detection of the Sunyaev-Zeldovich decrement in 
clusters of galaxies (Birkinshaw et al 1984), and indeed profiles of 
the decrement across clusters (Birkinshaw in these proceedings); 

- the lack of anisotropy in the MBR temperature T on scales of a few 
arcmin down to AT/T~5xlO~s (Uson & Wilkinson 1984; Readhead, private 
communication) and the consequent elimination of simple theories of 
adiabatic primordial fluctuations. 

We are now in a position to make MBR telescopes that we can use to 
tackle two fundamental programmes in astronomy: 

1. The mapping of the S-Z decrement in cluster gas over substantial 
ranges of cluster type and redshift. Such mapping leads directly to a 
map of cluster pressure; when combined with X-ray maps, one can 
produce maps of gas temperature and of gas density. We can expect to 
understand much more about the workings and evolution of clusters. 

2. The very sensitive search (AT/T of from 10_s to 10~6) for MBR 
anisotropies on scales of from a few arcmin to a degree. The Rosetta 
Stone here of course is the detection of primordial fluctuations 
associated with the formation of clusters at z~1000 and the 
constraining of particle physics at even earlier times; the fact that 
the horizon scale at z~1000 is ~1° makes such studies even more 
exciting. If it turns out that we can see back only as far as a z of 
100 or 10 because of reheating (though complete erasure of primordial 
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fluctuations is unlikely on energetic grounds) - well, that would be 
pretty exciting too. 

How can we make telescopes with the required performance? 
Telescopes used so far for MBR observations have mostly been 
single-dishes; I shall argue here that interferometers have major 
advantages for the observations we want. I'll then describe work at 
Cambridge on MBR-telescopes: the present major enhancing of the 5-km 
and plans for a new synthetic aperture telescope, the VSA. Finally 
I'd like to comment on ways of evaluating the results of MBR 
measurements. 

2. MBR MEASUREMENTS WITH SINGLE-DISHES 

Single-dishes have large collecting areas and the obvious advantage of 
high sensitivity - provided the measurements are 
receiver-noise-limited. (I will argue later that even high 
sensitivity is not all it seems - for we really want good temperature 
sensitivity but bad flux sensitivity.) Sensitivity aside, there are 
several problems with single-dishes, as follows. 

a. There are the well-known problems of ground spillover (i.e. the 
sidelobes pick up thermal radiation from the ground) and of 
interference from terrestrial sources. 

b. The systematic error from spillover is best reduced by making 
drift scans (with the dish in fixed orientation with respect to the 
Earth), and subtracting the ground and sky-background contributions by 
beam-switching, i.e. by subtracting the signals from a pair of 
feed-horns near the dish focus viewing slightly different parts of the 
sky. However, performance using this technique is ultimately limited 
by differential spillover due to differences in the standing wave 
patterns above the two feed-horns. And minimisation of these 
differences gets harder the broader the observing band. 

c. Single-dishes detect unwanted thermal emission from the 
troposphere. 

d. A single-dish, even without wagging, measures a fluctuation (an 
RMS temperature) which contains components summed in a complicated way 
over the beam-switching scale as well as over the scales (0 to ~ 180°) 
to which the dish itself is sensitive. Relating the RMS measurement 
to a limit on sky fluctuations as a function of scale is hardly 
trivial. 

e. There is confusion from radiosources in the wide single-dish 
beam. Of course one can reduce this problem by increasing observing 
frequency, but amplifiers get harder to make and the troposphere gets 
brighter. 
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3. MBR MEASUREMENTS WITH INTERFEROMETER ARRAYS 

The advantages of interferometers over single-dishes in this context 
seem to me to be the following. 

a. The effect of interferometer operation is to place on the sky a 
phase-rotator operating at the celestial fringe rate fc for the 
observing frequency, the baseline and the field position, and to 
provide phase-sensitive detection such that any output not varying at 
fc is filtered out. Thus terrestrial interference and ground 
spillover, which have a fringe rate different from fc, will be 
filtered. Now it is true that as the baseline is reduced to obtain 
sensitivity to larger-scale structure, fc falls and gets closer to 
e.g. the spillover fringe frequency and spillover filtering becomes 
less efficient. However, in the map-plane such systematics (which 
account for a substantial amount of "correlator offset") always have a 
shape centred on the map phase-centre - rather than the 
pointing-centre. The key to optimising their removal is to arrange 
that the phase-centre of the map is as far away as possible from the 
region of interest - the pointing-centre. 

b. There is no beam-switching and so no differential spillover. 
There is the risk of the systematic of dish-dish crosstalk, but again 
such a correlated signal has the wrong fringe rate and appears on the 
map well away from the pointing-centre. 

c. An interferometer would appear to be less affected by tropospheric 
emission. A beam-switching single-dish subtracts out the effect of 
large-scale tropospheric emission but not the patches of emission that 
are smaller than the dish beam-size. An interferometer with the same 
field-of-view as the single-dish is instantaneously sensitive only to 
the effects of small patches that lie inside its instantaneous, 
fan-shaped, synthetic beam. Over the whole observation, the 
interferometer is thus sensitive to the effects of fewer small patches 
than the single-dish in the ratio synthetic beam area/field-of-view 
and so the signal from the tropospheric emission is smaller for the 
interferometer than the single-dish in the ratio (synthetic beam 
area/field-of-view)^ 

d. An interferometer array is instantaneously sensitive to a wide and 
tuneable range of angular scale, and a map results. Much of the 
uncertainty present in interpreting the single-dish results is removed. 

e. With an interferometer array containing some long baselines, we 
can of course subtract off confusing radiosources. And we can go 
further, designing arrays that couple well to temperature but less 
well to the flux of radiosources. It can be shown that, for a 
reasonably well sampled u,v-plane with Gaussian grading, the relation 
between temperature sensitivity AT and flux-density sensitivity AS of 
a telescope is 
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AT(nk) = 1500 L(m) x(m) AS(mJy) / o ( a r c m i n ) , 

where L is the longest telescope baseline, x the wavelength and * is 
any scale > 1.3X/L to which the telescope is instantaneously 
sensitive. Now we want AT/AS as small as possible: comparing a single 
dish of diameter L with an array having largest baseline L but 
inter-dish spacing d, it is apparent that the array has o larger by 
L/d and thus AT/AS smaller by d/L. 

f. We can extend this argument to compare the observing efficiencies 
of single-dishes and arrays. Using the above relation and the 
standard formula relating AS to TSyS^-em , aperture area, integration 
time t and bandwidth B, one finds the single dish has AT °= TSyS/(Bt)^ 
on the scale x/L. For the array (which we take as having N dishes and 
L * N^ d), AT = Tsys/(Bt)

K.(d/D)K m-1, on all scales mX/L with m 
running from 1 to L/d. Thus the array has AT worse by a factor (d/D)2 

because it is poorly filled compared with the single dish, but better 
by 1/m due to the range of scales simultaneously sampled. And there 
is an additional factor because the instantaneous field-of-view of the 
array is larger than that of the single-dish by (L/mD)2. Then the 
temperature sensitivity of the array thus conected for range of 
angular scales and for field-of-view is °= TSyS/(Bt)^.d

2m/L2. So the 
array is more efficient than the single-dish by L2/d2m. 

4. INTERFEROMETER ARRAYS FOR MBR OBSERVATIONS ON SCALES > 3 ARCMIN 

The key fact about existing arrays is that the VLA is the ideal 
instrument for MBR observations on scales < 1 arcmin (appropriate to 
galaxy-sized masses at z • 1000) but it is of no use on larger scales: 
its minimum baseline of 45 m corresponds to a maximum scale of 2 
arcmin even at 5 GHz - and for many MBR observations a higher 
frequency is required. 

Here the Cambridge 5-km telescope has a tremendous advantage -
small dishes. The minimum baseline is 18 m and angular scales of 
several arcmin are not resolved out. At present the 5-km has wholly 
inadequate sensitivity but we are engaged on a major programme of 
enhancement consisting of 

- fitting cooled FET amplifiers for 5 and 15 GHz 
- correlating all baselines 
- increasing observing bandwidth from 10 to 350 MHz. 

The large bandwidth produces problems of chromatic aberration and 
potential problems of terrestrial interference, so we are dividing the 
350 MHz into channels 10 MHz wide, partly with filter-mixers and 
partly by cross-correlating with multiple delays and 
Fourier-transforming these products to synthesise the 10-MHz-wide 
channels. The graph (Fig. 1) shows the sensitivities of the VLA and 
the enhanced 5-km in a month; both reach AT/'T of about 2 x 10~s but 
the 5-km most importantly extends this sensitivity to larger scales. 
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Fig. 1. Comparison of the sensitivities of the VLA and enhanced 5-km 
as a function of angular scale. (Observing time = 1 month.) 
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Fig. 2. Projected sensitivity of the VSA (1 month observing time) as a 
function of angular scale for the array configuration shown on the 
right, (d = twice horn diameter = 1.4m) 
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The proposed VSA (Very Small Array) extends the angular scale further 
- up to - 1'. We plan a hexagonal array of some 20 feed-horns each 
with a collecting area of 0.5 m2 , with largest baseline ~ 10 m. Of 
course the horns will be moveable into A, B, C and D arrays. 
Operation at 15 GHz, bandwidth 500 MHz (capitalising an experience 
with the enhanced 5-km corelator), 1989 start, cost £1.5 M. 
Sensitivity - tremendous: AT/T of 10"6 in a month. (See Fig.2.) 

5. ESTIMATION OF UPPER LIMITS GIVEN NON-DETECTIONS 

We are searching for primordial fluctuations. We have made our 
observations on a particular angular scale in a particular direction 
on the sky and found a mean brightness temperature n with measurement 
uncertainty o. We find ti«o - we haven't found sky fluctuations. But 
we're concerned with evaluating the importance of our observations and 
setting a limit on the level A of true sky fluctuations on that scale 
in that direction. How should we do it? The case where there is only 
one such n available raises some interesting questions of principle 
and corresponds to the situation actually faced in measurements such 
as those currently being undertaken by Readhead et al. at Owen's 
Valley (p.c). The extension to several n (the more common situation) 
is straightforward once the principles in the single w case have been 
agreed upon. 

We know the data we have is a sample from a normal distribution 
with mean zero and variance A2+o2. Working in M 2 and A2 to avoid 
problems of sign of sky fluctuation, we can write the likelihood 
function for A2 as 

L(A2) = P(y2|A2) = - 1 u e x p f - ^ r-1 
1 w [2#(o2+A2)]^ l2(o2+A2)J 

where the notation P(ju2|A2) means the probability of u2 given A2. 
This likelihood function is the result of the experiment (it employs 
only experimental data and the assumption of Gaussian statistics). 
L(A2) is constant, independent of A2 while A 2 « o 2 , and begins to fall 
as A2 approaches o2. We should be able to agree on a couple of 
numbers to encapsulate the result of the observations, ie to 
parameterize the likelihood function. We could choose the values of 
A2 for which L(A2) has fallen to 0.5 and to 0.05 of its low A2 value. 
These are good measures of the efficacy of the experiment and their 
use is a good way of comparing different attempts at setting limits on 
fluctuations on a given scale. 

Measurement of efficacy aside, however, what we really want to 
know is P(A2|iu2), the probability of A2 given the data. We can get 
this directly from Bayes' Theorem 

p { ^ | ^ ) = K"'|A') P<*'> 
X P(fi2|A2) P(A2) dA* 
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in which (a) we must provide the prior P(A2) and (b) we may, depending 
on P(A2), have to provide limits on A2 in order that the integral in 
the denominator be convergent. I emphasize that Bayes' theorem is no 
less and no more secure than Pythagoras'; it is disputes over the 
choice of P(A2) and the limits that increase the risk of heart disease. 

The form of P(A2) that represents complete uncertainty is P(A2) « 
1/A2, ie P is uniform in log A2 and we impose no scale on A2. If we 
use this form in Bayes' theorem we'll need limits on A2 - we might put 
Amax = IK and Am^n = 0.1 nk (since we have strong theoretical grounds 
for expecting some real sky fluctuation, not necessarily primordial, 
with a value above this). If we compute P(A2|m2) we can determine, 
e.g. the confidence upper limit for A2. That limit is a very weak 
function of Am^n, though it is true that the lower we set Amfn, the 
lower is the upper limit for A2- Yet this merely reflects present 
reality: what we expect A2 to be is constrained much more by our 
theoretical ideas (expressed as prior knowledge) than current direct 
observations which, after all, don't see anything. This line of 
reasoning suggests a more appropriate form for P(A2) might be a 
function cutting off at more gently at smaller A2 than a step function 
at A m j n , in agreement with the 'fuzzy' nature of our ideas about how 
small A2 might really be. The problem, though in essence trivial, is 
in fact at the boundaries of our understanding of statistical method 
and provides a fertile area for exposing differences and problems 
within the alternative approaches to statistics, (Bayesian, 
frequentist and fiducial). Work in progress at Cambridge by Gull, 
Kaiser and Lasenby, on which the above discussion is based, promises 
to throw interesting light on this. 

6. GETTING TO GRIPS WITH DETECTIONS 

As systematic errors are overcome and sensitivities improve, the 
chances of detecting fluctuations at least from z > 10 will increase. 
Say we get an apparently significant detection - what are we to do? 
On the one hand we must certainly not just assume we're still playing 
the game of upper limits, subtract it (unless we have very good 
morphological or spectral information that it is a radiosource) and 
re-evaluate nz and o2 . On the other, we must check rigorously for 
systematics by mapping outside the primary beam, by observing at 
different frequencies and with different feeds. 

I suspect that when it comes to detecting primordial fluctuations, the 
real challenge will be to know when we have arrived. 
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