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Abstract
This article presents a domain-specific language for writing highly structured multilevel
system specifications. The language effectively bridges the gap between requirements
engineering and systems architecting by enabling the direct derivation of a dependency
graph from the system specifications. The dependency graph allows for the easy manipu-
lation, visualization and analysis of the system architecture, ensuring the consistency among
written system specifications and visual system architecture models. The system architec-
ture models provide direct feedback on the completeness of the system specifications. The
language and associated tooling has been made publicly available and has been applied in
several industrial case studies. In this article, the fundamental concepts and way of working
of the language are explained using an illustrative example.
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1. Introduction
Pahl & Beitz (2007) define engineering design as ‘the process of creating and
optimizing solutions in the form of technical systems for problems within the design
space spanned by needs, requirements and constraints that are set by material,
technological, economic, legal, environmental and human-related considerations’.
The needs, requirements and constraints are usually specified in text documents
written in natural language, and are often referred to as system specifications (Hull,
Jackson&Dick 2017). Design engineers have to interpret these system specifications
and convert them into technical designs. A recent development is the transition of
document-driven systems engineering toward model-based systems engineering
(Madni & Sievers 2018; De Saqui-Sannes et al. 2022; Campo et al. 2023; Wilking
et al. 2024).

An important step in the conversion of needs, requirements and constraints
into technical solutions is the design of the system’s architecture (Eggert 2005).

Received 20 July 2023
Revised 10 July 2024
Accepted 12 July 2024

Corresponding author
T. Wilschut
t.wilschut@ratio-case.nl

© The Author(s), 2024. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/
4.0), which permits unrestricted
re-use, distribution and
reproduction, provided the original
article is properly cited.

Des. Sci., vol. 10, e25
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2024.30

1/37

https://doi.org/10.1017/dsj.2024.30 Published online by Cambridge University Press

https://orcid.org/0000-0003-3042-4472
mailto:t.wilschut@ratio-case.nl
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2024.30
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dsj.2024.30&domain=pdf
https://doi.org/10.1017/dsj.2024.30


First of all, the system’s architecture has a significant impact on the system’s
performance, for example, reliability, availability, maintainability and cost of the
system (Jiao, Simpson & Siddique 2007; Lough, Stone & Tumer 2009). Second,
insight into the system’s architecture is required for effective change management
(Giffin et al. 2009). That is, requirements often change during the design process,
which may cause redesign of one or more components. Such design changes may
propagate through the system yielding redesign of other components (Jarratt et al.
2011). A model of the system architecture can be used to evaluate the impact of
design changes (Clarkson, Simons & Eckert 2004).

It is common practice to relate needs, requirements and constraints to technical
aspects of the system (Pahl & Beitz 2007; Hull et al. 2017). Therefore, engineers
need methods to structure, visualize and analyze the relations between system
architecture, needs, requirements and constraints. In many existing methods and
tools, systems engineers and systems architects have to manually ensure the
consistency among systems specifications and various system architecture models.
This results in a rather heavy coordination effort. Transitioning from document-
driven systems engineering toward model-based systems engineering methods
may provide opportunities to bridge the present gap between requirements engin-
eering and system architecting. Automated document derivation from a system
model is presented in the review by Wilking et al. (2024) as one of the use case
categories in MBSE.

Ulrich (1995) defines system architecture as themapping of a system’s functions
to the components within the system, and to the dependencies between those
components. In our previous work (Wilschut et al. 2018b), we have shown that
the intended system architecture can be derived from structured function specifi-
cations. In this article, a fixed grammar is used to describe goal and transformation
functions, referred to as exogenous and endogenous functions by Crilly (2013). We
showed that by specifying both types of functions using a structured textual format,
one can automatically derive dependencies between components, between func-
tions, between parameters, as well as derive the mapping of functions onto com-
ponents, parameters onto functions and parameters onto components, and
visualize those dependencies. The components used within the function specifica-
tions may represent functional components without a notion of solution principle
and physical components with a distinct embodiment.

This presents an effective method to generate a dependency structure matrix
(DSM) model (Steward 1981) of the system architecture. Eppinger & Browning
(2012) refer to the DSM as the ‘system architecture matrix’, defining system
architecture as the structure of a system embodied in its elements and their
relationships giving rise to its functions and behaviors.

In Wilschut et al. (2018b), however, we have limited ourselves to a single level
description of the system. The functions are specified at a single granularity level.
Design processes are usually hierarchical in nature (Estefan 2007). Different parts
of a system are usually described at different levels of granularity in system
specifications (Maier, Eckert & Clarkson 2017). As the design process progresses,
the level of granularity of system specifications may become finer. That is, as more
details of the system become apparent, the grain size at which a system is described
becomes smaller (Eppinger et al. 2014).

Furthermore, in Wilschut et al. (2018b), we only consider functions of the
components of the system. Nonfunctional aspects, for example, geometry of
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components, are not described. Therefore, only intended component dependen-
cies that result from intended functionality are derived. Unintended dependencies
between components, for example, a spatial dependency between two components
that have to fit in a predefined space, are not derived. Knowledge of intended aswell
as unintended dependencies between system components is essential in engineer-
ing design.

In this article, we develop a novel specification language that enables the
structured specification of a system’s functions, behavior and design in terms of
needs, requirements and constraints at various levels of granularity. The language
is named the Elephant Specification Language (ESL). A parser and compiler have
been developed that check the consistency of ESL specifications and derive
dependencies between components, variables, needs, goal specifications, trans-
formation specifications, design specifications, behavior specifications, relations
and combinations thereof across all decomposition levels of the specification,
following a predefined set of mathematical rules.

Contrary to the popular SysML notation, which extends UML with require-
ments diagrams (De Saqui-Sannes et al. 2022), ESL relies on a dedicated syntax to
specify the functional requirements and a mathematical network representation to
derive the dependencies between the elements in the requirement specifications.
This enables the automated generation of system architectingmodels from the ESL
requirements specifications. To achieve such functionality in SySMLwould require
the rigorous and strict use of specification conventions, which is very difficult to
achieve in practice.

This article presents the design of the domain specific language with the various
language elements, and the principle rules to derive the various dependencies. For
the design of the language, we draw upon the design science literature regarding
functional modeling and design structure modeling.

The outline of this article is as follows. Section 2 briefly describes the research
method that has been adopted for the research and development of the new
language. Section 3 elaborates on the typical elements of a system specification
and how these elements are modeled. Additionally, existing methods and tools for
the creation of system specifications are briefly discussed. In Section 4, the line of
reasoning underpinning the ESL structure, ESL language elements and automated
dependency derivations is presented. In Section 5, a small three-level ESL example
is presented to illustrate parts of the syntax of ESL and show the derived system
architecture models at various levels of granularity. Section 6 describes how ESL
can be used during the whole engineering design process. The article is concluded
with Section 7.

2. Research method
The presented method and language have been developed following the spiral of
applied research as presented by Eckert, Stacey & Clarkson (2003). Method and
language development started as part of a 4-year PhD project funded by Rijkswa-
terstaat (RWS), the executive branch of the DutchMinistry of Infrastructure. RWS
frequently conducts European public tenders procedures for the design and
realization of a variety of civil works such as bridges, navigation locks, tunnels
and roads.
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Systems specifications used within these tender procedures have been reviewed
to get an overview of the structure and content of these natural language systems
specifications used in real-life projects. Herein, we limited the scope of ‘system’ to
the object that had to be designed, realized and integrated in the environment.

Simultaneously, the literature has been consulted for methods on tools on
writing system specifications, modeling architectures and the relation between
them. The most import works from the literature are summarized in the following
section.

The system specification and literature review were the basis for defining the
language primitives and grammar, building upon the work presented in Wilschut
et al. (2018b).

The language syntax and semantics have been developed over the course of
2 years during which many variations to describe parts of real-life system speci-
fications and to automatically derive system architectures have been tested. This
converged into a stable set of language primitives, language syntax and semantics,
and architecture derivations rules.

In the following years, the language has been tested and improved in various
industry domains, such as infrastructure (Wilschut et al. 2018a), high-tech
(Meeusen et al. 2019; Kools 2022), maritime (Herremans et al. 2022) and fusion
engineering and related big-science projects (Beernaert et al. 2024a,b), as part of
various Master and PhD projects, and industry design projects.

3. Related work
Writing ‘high-quality’ system specifications is essential to the success of a design
project (Buede 2009). Inconsistencies and ambiguities in system specificationsmay
cause costly and lengthy design iterations. Much has been written on structuring
and managing system specifications by academia and industry alike (see, e.g.,
Hooks 1994; Grady 2014; Hull et al. 2017). In this section, we elaborate on what
elements are typically described in system specifications.

3.1. Writing system specifications

In the literature, one finds many design process models such as the waterfall model
(Royce 1987), the spiral-model (Boehm 1988), the V-model (Forsberg & Mooz
1991) and the onion model (Childers & Long 1994). All these models have in
common that one starts with a high-level description of a system, its functions and
variables. Subsequently, one decomposes the system, its functions and variables
until one obtains a specification (design) that is sufficiently detailed for manufac-
turing purposes.

Many scientists advocate the usage of separate decomposition trees for the
system’s components, functions and variables (see, e.g., Suh 1998; Dym & Brown
2012; Pahl & Beitz 2007) and the subsequent manual mapping of components to
functions and variables. Crilly (2013) shows, however, that obtaining such a
mapping is far from trivial. That is, components may have multiple functions
and functions may be fulfilled by multiple components and involve multiple
variables. For that reason, Crilly (2013) introduced new function terminology.
Crilly (2013) introduced the terms exogenous and endogenous functions. These
terms are similar in meaning to the terms goal function and transformation
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function of Eisenbart, Blessing & Gericke (2012), which are used byWilschut et al.
(2018b). Exogenous functions describe the purpose of a component with respect to
the components around it, while endogenous functions describe processes internal
to the component.

The article by Crilly (2013) shows that functionsmay propagate through nested
systems. That is, a functionmay state that a power source provides power to a lamp.
If one subsequently decomposes the power source into a battery and a holder, one
may find out that it is actually the battery that provides power to the lamp. This
means, the function ‘provide power to the lamp’ is not decomposed into subfunc-
tions but simply assigned to a subcomponent of the power source.

A design project starts with capturing the Voice-of-the-Customer in a series of
statements usually referred to as needs (Eppinger & Ulrich 2015). Needs describe
what is wanted by the customer. Needs are typically qualitative, imprecise and
ambiguous due to their linguistic origins (Jiao & Chen 2006).

In literature, the term ‘requirement’ is often used interchangeably with the term
‘need’, though several scholars define requirements to be structured and formalized
needs (Ericson et al. 2009; Cascini, Fantoni &Montagna 2013). This is in line with
the work of Jiao & Chen (2006) in which they describe an engineering design
process of gathering customer needs and subsequent elicitation, analysis and
specification of formalized requirements. What is more, the term ‘constraint’ is
often used interchangeably with the term ‘requirement’ (Glinz 2007). In theOxford
dictionary (Oxford 2009), a requirement is defined as a thing demanded, whereas a
constraint is defined as a limitation or restriction. These definitions are consistent
with definitions by Koelsch (2016). Constraints may, for instance, be imposed by
the laws of nature, material properties and the environment in which the system is
ought to function.

In this study, we consider needs to be informal (qualitative) statements on what
is desired; requirements to be formal (quantitative) statements on what is desired
and constraints to be formal statements that impose limits on what is desired.

Hull et al. (2017) point out the benefits of using consistent language in
specifying needs, requirements and constraints. These benefits have been recog-
nized by many authors. For example, Cohen (1990) defined linguistic equivalents
for mathematical inequality operators, Hooks (1994) debate the usage of the word
‘shall’ in requirements and van Vliet (2005) introduced the MoSCoW method
(Must-o-Should-Could-o-Won’t) to create subtle priority differences in require-
ments, for example, to distinguish between requirements and preferences. Fur-
thermore, several engineers advocate the usage of boilerplates, that is, a fixed layout
in which requirements must be written (see, e.g., Arora et al. 2014; Mahmud,
Seceleanu & Ljungkrantz 2017).

In the literature, one can find a wide variety of terminology stating different
types of needs, requirements and constraints, in the following referred to as
requirement and constraint specifications, or specifications for short, for example,
stakeholder, system, function, behavior, structure, performance, quality and safety
specifications (Koelsch 2016). This motivated the increasing popularity of
ontology-driven requirement engineering (Chen et al. 2013; Dermeval et al.
2015), in which prior to writing a specification, one defines the classes of require-
ments that may occur within a specification.

In general, specifications define the desired system functions, system design
(structure), system behavior and derivative properties thereof such as cost, weight
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and reliability (Fernandes &Machado 2016; Koelsch 2016). A similar classification
of requirements is made in the NASA Systems Engineering handbook (Hirshorn,
Voss & Bromley 2017): functional requirements are functions needed to accom-
plish the objectives, while performance requirements define how well the system
needs to perform the functions. The INCOSE systems engineering handbook
(INCOSE 2023) distinguishes functional/performance requirements, fitness for
use requirements (e.g., safety, security and -ilities), design requirements (that
constrain the solution) and environment requirements (e.g., operational, main-
tenance and transportation). As such, any specification method and tool should
support the specification of the aforementioned elements.

In the literature, a variety of definitions for function, design and behavior
specifications are found. Eisenbart et al. (2012), for example, reviewed 12 different
definitions of system functions and partitioned them into two groups. The first
group are functions that describe a goal of a system. The second group are
functions that describe a transformation of flow, such as electrical energy or
information. Following this rationale, in Wilschut et al. (2018b), we defined a
specific grammar for function specifications in both groups to reduce ambiguity,
that is, a specific sentence structure for writing goal functions to describe the goal of
components with respect to other components in the system and a specific
sentence structure for writing transformation functions to describe transform-
ations of flow within components. To reduce ambiguity even further, we made use
of the functional basis, developed by Stone &Wood (2000) andHirtz et al. (2002)),
to restrict the usage of verb synonyms.

System behavior is often modeled in conjunction with system functions and
system states. See, for example, the Function–Behavior–State model (Umeda et al.
1996), the Structure–Behavior–Function model (Goel, Rugaber & Vattam 2009;
Komoto & Tomiyama 2012) and the requirements engineering book of Hull (Hull
et al. 2017). These models all have their own definitions of behavior, function and
state. In general, however, behavior seems to be defined as everything what a ‘thing’
shall or can do in response to stimuli, that is, when which flows need to be
transferred and transformed in what quantity in response to stimuli. Stimuli are
changes in (un)controllable flows (state changes). In practice, behavior specifica-
tions are usually of the form: when a certain condition holds, then certain behavior
shall (not) be exhibited.

The literature has less consensus on design specifications which are referred to by
a variety of terms such as performance, quality and safety specifications (Koelsch
2016). We interpret design specifications as descriptions of the conceptual, embodi-
ment and detailed design of a system or derivative properties thereof such as capacity,
reliability, availability and cost of components. The conceptual, embodiment and
detailed design denote different stages of maturity of a design (Pahl & Beitz 2007).

Hull et al. (2017) note that function and design specifications are often
combined in single sentences. For example, the sentence ‘The power source must
provide power with a reliability of 98%’ contains the subclause ‘with a reliability of
98%’ that is subordinate to themain clause ‘The power sourcemust provide power’.
In this case, themain clause describes the function, whereas the subclause describes
a performance bound on the function.

In this study, we adopt the specification rationale of Crilly (2013) andWilschut
et al. (2018b). By doing so, we aim to avoid the difficulties of connecting separate
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component, function and variable decomposition trees and aim to enable functions
to propagate through the system decomposition tree.

3.2. Dependencies

In engineering design, systems are usually decomposed into more manageable
components (Pahl & Beitz (2007)). It is important to specify and actively manage
dependencies between components to ensure that the components eventually will
fit and function together (Eppinger et al. 2014). That is, it is important to keep track
of and obtain a complete overview of the system’s structure and architecture.

Component dependencies may relate to a wide variety of engineering discip-
lines such as mechanical, electrical, thermal and software engineering (Tilstra,
Seepersad & Wood 2012), making it impossible for a single person to oversee all
dependencies (Sosa, Eppinger & Rowles 2007). Therefore, dependencies between
components are often visualized and analyzed using graphical models. A major
challenge in this process is to ensure and maintain the consistency between the
written specifications and the graphical models as the design process progresses.
This motivated the development of graphical specificationmethods such as SysML
(Friedenthal, Moore & Steiner 2014).

Written documents, however, remain the primary means of documentation
and communication in engineering design (Tomiyama et al. 2013). This may be
due to the limited scalability of graphical specification methods (Tosserams et al.
2010). As a consequence, in practice, requirements engineering and system archi-
tecting are often performed as relatively independent tasks. However, they are
clearly highly interdependent as the specifications influence the architecture and
vice versa. Therefore, we consider a direct relation between the written specifica-
tion and the graphical models as a desirable feature in engineering design.

3.3. Methods and tools

As discussed in the beginning of this section, we argue that a system specification
method or tool should enable a user to specify function specifications, behavior
specifications, design specifications and combinations thereof in terms of needs,
requirements and constraints. Moreover, we consider it desirable to have a direct
relation between written specifications and graphical models to display depend-
encies between components, functions, variables and combinations thereof. In
other words, one should be able to directly derive the structure and architecture of a
system from the specifications. Finally, one should be able to easily detail the
granularity level of the specification as the design process progresses and enable
functions to propagate through the nested systems.

In the literature, a variety of requirement management tools are found (see De
Gea et al. 2012 for an extensive overview and classification). As the name suggests,
these tools mainly focus on themanagement of large volumes of requirements; they
do not consider the conciseness and preciseness of the written specifications
themselves. As a consequence, specifications may still be vague and ambiguous.
What is more, in most available tooling, users have to manually create the links
between components, functions and variables (and many other types of artifacts
that one can create within these tools). This results in a significant administrative
workload for system engineers and architects. Typically, no direct relation between
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the written specification and the dependency structure exists. Hence, the resulting
dependencies networks are error prone anddifficult to verify, validate andmaintain.

To improve the preciseness and conciseness of the written specifications,
several authors advocate the use of boilerplates (see, e.g., Arora et al. 2014; Hull
et al. 2017; Mahmud et al. 2017). Boilerplates predefine a fixed format in which the
specifications should be written; however, they do not constrain the actual content
of the specifications. Ghosh et al. (2016) and Mustafa, Kadir & Ibrahim (2017)
develop tooling to automatically convert natural language specifications such that
they are formatted following a set of predefined boilerplates. Manual checking is
needed to verify the correctness of these conversions.

Other researchers aim at improving the quality of manually written specifica-
tions using controlled natural languages. Kuhn (2014) provides an overview of
more than 100 controlled natural languages. Most controlled natural languages are
used to simplify and automate the translation of user and service manuals in a
variety of languages. Only a few focus on system specifications.

Clark et al. (2005), for example, developed a controlled natural language for
writing knowledge databases for artificial intelligence systems. They noticed that
many engineers have difficulties with writing the logical expressions in mathem-
atical form which are stored in such a database. They developed a language that
enables engineers to write natural language rules and automatically convert them
into logical expressions. Fuchs, Kaljurand & Kuhn (2008) developed Attempto
Constrained English (ACE) as a natural language specification tool. ACE supports
automatic conversion to first-order logic. To the best of our knowledge, ACE does
not support the structured multilevel description of systems. Mavin et al. (2009)
developed the Easy Approach to Requirements Syntax, which, as we understand
them, are automated boilerplates. That is, the tool identifies keywords such as
‘shall’, ‘if’, ‘where’ and ‘while’, but the text between those keywords is not con-
strained to a predefined format. Feiler, Delange & Wrage (2016) developed the
language ReqSpec, which resembles a programming language and is specifically
built for the construction industry to perform spatial analysis and design of
buildings. Therefore, ReqSpec does not support the concept of system functions.
Similar to ReqSpec, the Ψ-language (Tosserams et al. 2010) and the z-language
(Woodcock & Davies 1996) are domain-specific languages. The former is used for
specifying the structure of multidisciplinary optimization problems, and the latter
is used for formally describing computing systems.

De Saqui-Sannes et al. (2022) categorize languages, tools and methods for
MBSE and propose selection criteria in their recent review paper. They distinguish
three categories of languages: nonformal, semiformal (often diagrammatic) and
languages with a formal semantics enabling mathematical proofs. They list
examples of well-known generic semiformal languages such as Matlab Simulink,
Modelica and the Object-Proces-Methology (Dori, Reinhartz-Berger & Sturm
2003). Two informal MBSE domain-specific languages are outlined, being SysML
and Arcadia/Capella. Formal languages have a clearly defined syntax and a
formalized semantics. The semantics of a formal language builds upon a math-
ematical paradigm. De Saqui-Sannes et al. (2022) distinguish state-transition
models (such as timed automata and petri nets) and process algebra and logics.
Software tools accompanying such informal and formal languages offer model-
checking, simulation, verification, code-generation and test generation
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capabilities. Finally, De Saqui-Sannes et al. (2022) note that the languages and tools
should be accompanied with an associated method or standard of use.

4. The Elephant Specification Language
Given the state of the art in system specification methods and tools, we postulate
that systems engineers and architects would benefit from a domain-specific
language that supports the following features:

1. the specification of function specifications, design specifications, behavior
specifications and combinations thereof in terms of needs, requirements and
constraints of new and existing systems at multiple levels of granularity;

2. the automated derivation of dependencies between components, function
specifications, design specifications, behavior specifications and combinations
thereof from the specification themselves;

3. the automated propagation of functions through nested systems.

The ESL is specifically designed to support all three features.Moreover, ESL has
been designed from an engineering perspective rather than an information man-
agement perspective. It has been designed to blend requirements engineering and
system architecting by allowing one to automatically generate systems architecture
models from the requirement specifications. Perhaps counterintuitively, ESL
therefore deliberately deviates from a few classical systems engineering concepts,
such as the usage of separate product, function and requirement breakdown
structures and the separate modeling of system architectures at functional, con-
ceptual, technological and physical abstraction levels.

Instead, ESL is built upon a system-centered specification perspective. The
decomposition of the system into subsystems and components (product break-
down structure) is taken as the central decomposition tree. Components are viewed
as black boxes with inputs and outputs (Erden et al. 2008). This may seem to be in
contradiction to scholars who advocate ‘solution-free’ modeling, such as Pahl &
Beitz (2007) and Stone &Wood (2000), who often advocate a function- or process-
centered specification perspective. However, components in ESL may represent
conceptual ‘blobs’, functional units or physical components. A such, in ESL, a
component function specification can be solution-free or with a particular solution
in mind. As a result, the decomposition tree may contain a mix of these solution-
free and solution-specific (physical embodiment) descriptions of components. The
component specifications will change, and the decomposition tree will grow (more
decomposition levels) as the design process evolves over time.

Moreover, in practice, 100%-new-to-the-world design rarely happens. Engin-
eers typically try to leverage existing designs and solutions as much as possible to
reduce costs, lead times and development risks. As such, some parts of a system
might already be fully designed and tested in the field, while others are still in the
conceptual design phase. Moreover, Caldwell et al. (2012) showed that abstract
function models are often difficult to understand withouth the context of the
(physical) composition of the system at hand. Hence, we adopted a system-
centered specification perspective.

Finally, contrary to popular graphical modeling languages such as SySML, ESL
is fully text-based. We intentionally chose a text-based format to allow for easy
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version management using conventional version control methods and tools, such
as GIT and SVN, which have been used in software development for decades.

In the remainder of this section, we introduce in an informal way a selection of
key ESL elements. For a full overview of the language and the accompanying tools,
one is refered to the ESL user manual (Ratio Innovations B.V. 2020c), the ESL
reference manual (Ratio Innovations B.V. 2020b) and the ESL language enhance-
ment proposals (Ratio Innovations B.V. 2020a).

4.1. Components

Many engineers experience difficulties in defining and mapping system, function
and variable decompositions to each other (Crilly 2013). Therefore, ESL only
allows for the definition of a single decomposition: a system decomposition tree
(product breakdown structure) consisting of components. The components rep-
resent parts of the system. Such a part may represent a conceptual ‘blob’ (a part we
wish not to give a particular name yet) or an off-the-shelf component.

Each component must have a definition and must be instantiated as a sub-
component within a (higher-level) parent component. ESL has the built-in world
component, which is the root of the decomposition tree. The world is not part of
the system but represents the environment in which the system operates. The
component tree (system decomposition) forms the central structure of an ESL
specification. All ESL statements are placed within the component tree. For
example, Listing 1 shows a world containing a single component pump-
module-pm which is a PumpModule.

Listing 1: Decomposing a component

1 world
2 component
3 pump-module-pm is a PumpModule
4
5 define component PumpModule
6 components
7 motor-mt is an ElectricMotor
8 pump-pm is a Pump
9
10 define component ElectricMotor
11 empty
12
13 define component Pump
14 empty

Component pump-module-pm has two subcomponents, being motor-mt
and pump-pm, which are instantiated within the definition of PumpModule.
Component motor-mt is an ElectricMotor and pump-pm is a Pump, both
of which are empty. That is, they have no subcomponents (yet). One could,
however, define and instantiate subcomponents within the definitions Elec-
tricMotor and the Pump to add additional layers to the system decomposition.
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The definition and instantiation mechanism allows one to create a system decom-
position with an arbitrary number of branches each of which has an arbitrary
number of levels. Moreover, it allows for the easy reuse of component definitions.

4.2. Variables and types

In engineering design, it is common practice to describe a design in terms of
variables. ESL enables the user to declare variables within components. The
variables may represent flows from the interaction basis (Tilstra et al. 2012), such
as electrical energy and information, or properties (attributes) of components, such
as length, weight, cost and reliability.

Each variable must have a type, which needs to be defined by the user. The type
of a variable provides additional information about the nature of that variable. For
example, whether the variable represents a solid or a liquid material flow and what
unit it has. The variable types enable consistency checks as variables are passed
along multiple levels of the system decomposition tree. ESL supports the mech-
anism of actual and formal parameters to pass variables across levels of the
decomposition tree, which is common in programming languages.

4.3. Verbs and prepositions

The many synonyms of verbs in natural language may cause ambiguity in system
specifications (Deng 2002). Therefore, ESL enforces users to define all verb–
preposition combinations that are allowed in ESL function specifications. It is
advised to use verbs from the functional basis of Hirtz et al. (2002), which all have a
distinct definition.

4.4. Needs

Needs are informal statements on what is desired (Jiao & Chen 2006). A need
specification within ESL has to start with a reference to an instantiated component
or a reference to a declared variable. The component or the variable is the subject of
the need. All words that follow the subject are unconstrained, that is, a user may
write pure natural language. A need may, for instance, describe desired function-
ality or that a component shall be compliant with a certain standard or norm, as
shown in Listing 2. A need can also be used to express political, social and economic
factors that are hard to quantify but need to be considered during design of the
system.

Listing 2: Example need specification

1 need
2 n-cm-01: control-module-cm shall be IP68 compliant

4.5. Function specifications

The goal- and transformation-function sentence structures by Wilschut et al.
(2018b) fit well within the system-centered modeling perspective of ESL as goal
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and transformation functions are formulated in terms of components and vari-
ables. The concepts of goal and transformation functions, as presented byWilschut
et al. (2018b), are therefore woven into ESL.

Goal-function specifications denote the purpose of components with respect to
other components within the system. Goal-function specifications can be extended
with one or more subclauses that state additional design specifications that are
subordinate to the main clause.

Listing 3 shows, for example, goal requirement g-mt-01 that states that com-
ponent motor-mt shall provide torque-kp to component pump-pm, such
that nominal-torque-kn is equal to 100 [N/m].

Listing 3: Example goal-requirement specification

1 goal-requirement
2 g-mt-01: motor-mt shall provide torque-kp to pump-pm

with subclause
3 * s1: nominal-torque-kn shall be equal to 100 [N/m]

Transformation specifications describe the internal conversion processes
within a component. Listing 4 shows example transformation requirement
t-pm-01 that states that an instantiation of definition Pump internally shall
convert torque-kp into water-flow-qs.

Listing 4: Example transformation requirement

1 define component Pump
2 parameters
3 torque-kp is a MechanicalEnergyFlow
4 water-flow-qs is a LiquidMaterialFlow
5
6 transformation-requirement
7 t-pm-01: shall convert torque-kp into water-flow-qs

4.6. Design specifications

Design specifications denote bounds on the values of variables. These variables
might represent flows that are used within goal and transformation specifications
or properties of components.

Listing 5 shows example design specification dr-st-01 that states that
storage-capacity-v shall be at least 0:5m3. The variable storage-
capacity-st is a property of component storage-tank-st, which implies
that storage-capacity-v directly relates to the design of component
storage-tank-st. Note that one couldmakemultiple instances of component
definition StorageTank. Therefore, design specification dr-st-01 is not
written within component definition StorageTank. Otherwise, all instances
of StorageTank shall have a storage capacity of at least at least 0:5m3.
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Listing 5: Example design-requirement specification

1 world
2 variable
3 storage-capacity-v is a Volume
4
5 component
6 storage-tank-st is a StorageThank with arguments
7 * storage-capacity-v
8
9 design-requirement
10 dr-st-01:storage-capacity-vshallbeatleast0.5[m^3]
11
12
13 define component StorageTank
14 parameter
15 storage-capacity-v is a Volume property

4.7. Behavior specifications

Static functionality can be described using goal and transformation specifications.
Behavior specifications can be used to describe requirements regarding dynamic
behavior. That is, behavior specifications can be used to describe when a system
should do what. These statements are static. ESL does not simulate these state-
ments.

Listing 6 shows example behavior requirement b-motor-torque that
defines three cases. Case motor-on defines that torque-kp shall be at least
100 Nmwhen control-signal-ce is equal to True, that is, the motor shall be
on. Case motor-on defines that torque-kp shall be equal 0 Nm when
control-signal-ce is equal to False, that is, the motor shall be off. Case
fallback defines that when no other case applies, that is, for none of the cases the
when clauses evaluate to true, then torque-kp shall be equal 0 Nm, that is, the
motor shall be off.

Listing 6: Example behavior-requirement specification

1 behavior-requirement
2 b-motor-torque:
3 case motor-on:
4 when
5 * c1: control-signal-ce is equal to True [-]
6 then
7 * r1: torque-kp shall be at least 100 [Nm]
8 case motor-off:
9 when
10 * c1: control-signal-ce is equal to False [�]
11 then
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12 * r1: torque-kp shall be equal to 0 [Nm]
13 case fallback:
14 when no other case applies
15 then
16 * r1: torque-kp shall be equal to 0 [Nm]

4.8. Relations

The variables in the design of a system may depend on each other in a variety of
ways. For example, the second law of Newton dictates a dependency between force,
mass and acceleration; and the weight of a component equals to sum of the weight
of its subcomponents. Similarly, the reliability of a component depends on the
reliability of its subcomponents.

ESL, therefore, supports the specification of the existence of dependencies
between variables by means of relations. The specification of the actual equations
that mathematically describe those dependencies is beyond the scope of ESL as
there exist many (domain-specific) programming and modeling languages for this
purpose. The network of dependencies, however, can be used to automatically
construct a multidisciplinary design optimization problem (Beernaert & Etman
2019).

4.9. Comments and tags

System specifications are often annotated with comments. ESL has two kinds of
comments: code comments and annotation comments. Code comments are not
part of the specification but are used to write down information that is relevant to
the engineers who are creating and reading the specification. Annotation com-
ments are part of the system specification and are attached as documentation to
components, variables, needs, goal specifications, transformation specifications,
design specifications and relations. That is, annotation comments can be used to
specify additional arbitrary textual information that is not captured by the ESL
elements themselves.

In addition, one can attach special tags to components, variables, needs, goal
specifications, transformation specifications, design specifications and relatios
using annotations comments. Tagging allows one to categorize annotations com-
ments, for example, to tag a component or specification with the responsible
stakeholder(s) or to indicate that status of a specification (e.g., draft or final). As
such, comments and tags can be used to enrich ESL specifications.

Listing 7 shows the various forms of comments. Code comments are indicated
using #, while annotation comments are indicated using # < . By using @ within an
annotation comment, one can attach tags to ESL elements.

Listing 7: ESL code and annotations comments

1 world
2 # Code comment.
3 variable
4 x is a real #< In line annotation comment.
5
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6 comment
7 x #< Annotation comment block for longer text.
8 #< @TagName Tagged annotation comment.

5. Illustrative example
Since the appearance of the first version of ESL in 2018, it has been applied to create
system specifications in a variety of industries such as infrastructure (Wilschut
et al. 2018a), fusion engineering and big science (Beernaert et al. 2022, 2024a,b), the
maritime industry (Herremans et al. 2022) and high tech (Meeusen et al. 2019;
Kools 2022).

This article focusses on the concepts andway-of-working of ESL, rather than on
the application of ESL in an industrial setting. Hence, the usage of ESL is illustrated
using an extended three-level version of the water storage system example used in
our preceding paper (Wilschut et al. (2018b)) to explain the concepts of goal and
transformation functions.

Figure 1 shows the four-level hierarchy of the water storage system specifica-
tion. The world is the root of the specifications and contains two components:
water-storage-system-sts and water-source-ws. Component
water-storage-system-sts is the system of interest and is composed of
power-supply-ps, pump-module-pm, control-module-cm and
storage-tank-st. In turn, pump-module-pm is composed of motor-
mt and pump-pm. Component control-module-cm is composed of
controller-ct and sensor-sp.

5.1. System specification

The ESL specification of the water storage system is shown in Listing 8 through
Listing 12. An ESL specification may be written in a single file or distributed over
multiple files.

Typically, a preamble.esl file is created that contains all type, verb and relation
definitions. Listing 8 shows the preamble.esl file of the water storage system
example in which nine variable types and eight verb–preposition combinations
are defined. Note that in the combination accumulate yielding, the word
yielding is not a preposition but a second finite verb.

Next, a world.esl file is created that contains the world definition of the ESL
specification. Listing 9 shows the world definition of the water storage example
specification.

Listing 8: Type and verb definitions

1 define type
2 MechanicalEnergyFlow is a real with unit Nm
3 LiquidMaterialFlow is a real with unit l/s
4 ElectricalEnergyFlow is a real with unit W
5 ElectricalPotential is a real with unit Wh
6 Volume is a real with unit m^3
7 ControlSignal is a boolean
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8 StatusSignal is a boolean
9 DataSignal is a real
10 Pressure is a real with unit Bar
11
12 define verb
13 provide to
14 provide for
15 measure within
16 send to
17 convert into
18 pump from
19 accumulate yielding
20 distribute over

Listing 9: World definition

1 world
2 variables
3 water-source-flow-qs is a LiquidMaterialFlow
4
5 components
6 water-source-ws is a WaterSource with arguments
7 * water-source-flow-qs
8
9 water-storage-system-sts is a WaterStorageSystem

with arguments
10 * water-source-flow-qs
11
12 goal-requirement

world

water-source-ws water-storage-system-sts

power-supply-ps pump-module-pm control-module-cm storage-tank-st

motor-mt pump-pm controller-ct sensor-sp

Figure 1. The four-level hierarchy defined within the water storage system specifi-
cation. The world is the root of the specification, and the water-strorage-
system-sts is the system of interest.
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13 g-sts-01: water-storage-system-sts shall pump
water-source-flow-qs from water-source-ws

Within the world definition, the components water-source-ws and
water-storage-system are instantiated. Goal requirement g-sts-01
states that the purpose of water-storage-system-sts is to pump water-
source-flow-qs from water-source-ws. In general, the interactions of
the system-of-interest with other systems (components) that exist within its
environment are defined within the world. In this case, that interaction is quan-
tified by variable water-source-flow-qs, which is defined to be aLiquid-
MaterialFlow with unit l/s and is passed along as an argument to both
components.

In practice, it is often convenient to create separate files for each component
definition to allow for easy reuse. Here, the definitions of WaterSource and
WaterStorageSystem are listed in Listing 10. An instance of WaterSource
shall internally provide water-source-volume-vs as a source for water-
source-flow-qs.

Listing 10: Water storage system level-1 component definitions

1 define component WaterSource
2 parameter
3 water-source-flow-qs is a LiquidMaterialFlow
4
5 variable
6 water-source-volume-vs is a Volume
7
8 transformation-requirement
9 t-ws-01: shall provide water-source-volume-vs for

water-source-flow-qs
10
11
12 define component WaterStorageSystem
13 parameter
14 water-source-flow-qs is a LiquidMaterialFlow
15
16 variables
17 pressure-wp is a Pressure
18 control-signal-ce is a ControlSignal
19 power-pe, power-pc is an ElectricalEnergyFlow
20 water-volume-vs, storage-capacity-v is a Volume
21 internal-water-flow-qi is a LiquidMaterialFlow
22
23 transformation-requirement
24 t-sts-01: shall accumulate water-source-flow-qs

yielding water-volume-vs
25
26 components
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27 power-supply-ps is a Battery with arguments
28 * power-pe
29 * power-pc
30
31 pump-module-pm is a PumpModule with arguments
32 * water-source-flow-qs
33 * internal-water-flow-qi
34 * control-signal-ce
35 * power-pe
36
37 control-module-cm is a ControlModule with arguments
38 * power-pc
39 * control-signal-ce
40 * pressure-wp
41
42 storage-tank-st is a StorageTank with arguments
43 * internal-water-flow-qi
44 * storage-capacity-v
45 * pressure-wp
46 * water-volume-vs
47
48 need
49 n-cm-01: control-module-cm shall be IP68 compliant
50
51 goal-requirement
52 g-ps-01: power-supply-ps shall provide power-pe to

pump-module-pm
53 g-ps-02: power-supply-ps shall provide power-pc to

control-module-cm
54 g-pm-01: pump-module-pm shall provide internal-

water-flow-qi to…
55 storage-tank-st
56 g-cm-01: control-module-cm shall measure pressure-

wp within storage-tank-st
57 g-cm-02: control-module-cm shall send control-

signal-ce to pump-module-pm
58
59 design-requirement
60 dr-st-01: storage-capacity-v shall be at

least 0.5 [m^3]

An instance of WaterStorageSystem shall accumulate water-
source-flow-qs to yield stored water-volume-vs. To fulfill this func-
tion, WaterStorageSystem is composed of subcomponents power-
supply-ps, pump-module-pm, control-module-cm and storage-
tank-st. These components shall fulfill goal requirements g-ps-01 through
g-cm-01, which define the purpose of these components with respect to each
other. For example, the purpose of power-suppy-ps is to provide power-pe
to pump-module-pm.
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Additionally, control-module-cm shall be IP68 compliant as stated by
need n-cm-01 and storage-capacity-v shall be at least 0:5m3. The
variable storage-capacity-v is a property of storage-tank-st as
can be seen in the definition of StorageTank in Listing 11 (line 70).

Listing 11 contains the definitions of Battery, ControlModule, Pump-
Module and StorageTank, which are the definitions of the subcomponents of
water-strorage-system-sts. In each definition, one can find one ormore
transformation requirements that define the required internal flow conversions.
These transformation requirements denote the desired and thus functional
dependencies between the input, output and internal variables of a component.

Transformation-requirements t-bt-01 (line 10) and t-bt-02 (line 11)
define, for example, thatpower-supply-ps, which is an instance ofBattery,
shall convert internal variable power-potential-pb into the internal flow
power-pi and subsequently distribute power-pi over power-pe and
power-pc, which are to be provided to pump-module-pm and control-
module-cm, respectively, as stated by goal requirements g-ps-01 and g-ps-
02 in Listing 10 (lines 52 and 53).

In general, inputs and outputs of a component are always represented by
different variables. Note, for example, water-source-flow-qs and
internal-water-flow-qi, where the first variable represents the water flow
flowing from the water source to the pump module, while the latter represents the
internal water flow flowing from the pump module to the storage tank. Hence,
when identifying and specifying the goal requirements of a component, it is often
helpful to (mentally) create a free-body diagram of the respective component in
which all flows crossing the boundary of the component are indicated.

ControlModule contains the subcomponents controller-ct and
sensor-st. PumpModule contains the subcomponents motor-mt and
pump-pm. The definitions of these components are listed in Listing 12.

Again, each of the definitions in Listing 12 contains a transformation require-
ment that denotes the desired input–output relations. In addition, one can find
behavior requirement b-motor-torque within the definition of Electric-
Motor, which defines the behavior dependencies between control-signal-
ce and torque-kp.

None of these definitions have subcomponents as we have reached the leafs of
the decomposition tree shown in Figure 1. However, if desired, one could easily
instantiate additional subcomponents within these definitions to add an additional
decomposition layer to the specification.

Listing 11: Water storage system level-2 component definitions

1 define component Battery
2 parameters
3 power-pe, power-pc is an ElectricalEnergyFlow
4
5 variables
6 power-potential-pb is an ElectricalPotential
7 power-pi is an ElectricalEnergyFlow
8
9 transformation-requirement
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10 t-bt-01: shall convert power-potential-pb into
power-pi

11 t-bt-02: shall distribute power-pi over power-pe
and power-pc

12
13
14 define component ControlModule
15 parameter
16 power-pc is an ElectricalEnergyFlow
17 control-signal-ce is a ControlSignal
18 pressure-wp is a Pressure
19
20 variable
21 status-signal-wl is a StatusSignal
22
23 transformation-requirement
24 t-cm-01: shall convert power-pc and pressure-wp

into control-signal-ce
25
26 components
27 controller-ct is a Controller with arguments
28 * power-pc
29 * control-signal-ce
30 * status-signal-wl
31 sensor-sp is a PressureSensor with arguments
32 * status-signal-wl
33 * pressure-wp
34
35 goal-requirement
36 g-ps-01: sensor-sp shall send status-signal-wl

to controller-ct
37
38
39 define component PumpModule
40 parameters
41 water-source-flow-qs, internal-water-flow-qi is a

LiquidMaterialFlow
42 control-signal-ce is a ControlSignal
43 power-pe is a ElectricalEnergyFlow
44
45 transformation-requirement
46 t-pm-01: shall convert control-signal-ce,

water-source-flow-qs, and power-pe into
internal-water-flow-qi

47
48 variables
49 torque-kp, nominal-torque-kn is a Mechanical

EnergyFlow
50
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51 components
52 motor-mt is an ElectricMotor with arguments
53 * control-signal-ce
54 * power-pe
55 * torque-kp
56
57 pump-pm is a Pump with arguments
58 * torque-kp
59 * water-source-flow-qs
60 * internal-water-flow-qi
61
62 goal-requirements
63 g-mt-01: motor-mt shall provide torque-kp to

pump-pm with subclause
64 * s1: nominal-torque-kn shall be at least 100 [Nm]
65
66
67 define component StorageTank
68 parameter
69 water-flow-qi is a LiquidMaterialFlow
70 storage-capacity-sc is a Volume property
71 pressure-wp is a Pressure
72 water-volume-vs is a Volume
73
74 transformation-requirement
75 t-st-01: shall accumulate water-flow-qi yielding

water-volume-vs and pressure-wp

Listing 12: Water storage system level-3 component definitions

1 define component Controller
2 parameters
3 power-pc is an ElectricalEnergyFlow
4 control-signal-ce is a ControlSignal
5 status-signal-wl is a StatusSignal
6
7 transformation-requirement
8 t-cl-01: shall convert status-signal-wl and

power-pc into control-signal-ce
9
10
11 define component PressureSensor
12 parameters
13 status-signal-wl is a StatusSignal
14 pressure-wp is a Pressure
15
16 transformation-requirement
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17 t-ps-01: shall convert pressure-wp into
status-signal-wl

18
19
20 define component ElectricMotor
21 parameters
22 control-signal-ce is a ControlSignal
23 power-pe is an ElectricalEnergyFlow
24 torque-kp is a MechanicalEnergyFlow
25
26 transformation-requirement
27 t-em-01: shall convert control-signal-ce, power-pe

into torque-kp
28
29 behavior-requirement
30 b-motor-torque:
31 case motor-on:
32 when
33 * c1: control-signal-ce is equal to True [�]
34 then
35 * r1: torque-kp shall be at least 100 [Nm]
36 case motor-off:
37 when
38 * c1: control-signal-ce is equal to False [�]
39 then
40 * r1: torque-kp shall be equal to 0 [Nm]
41 case fallback:
42 when no other case applies
43 then
44 * r1: torque-kp shall be equal to 0 [Nm]
45
46
47 define component Pump
48 parameters
49 torque-kp is a MechanicalEnergyFlow
50 water-source-flow-qs, internal-water-flow-qi

is a LiquidMaterialFlow
51
52 transformation-requirement
53 t-pm-01: shall convert torque-kp and water-source-

flow-qs into internal-water-flow-qi

5.2. Architecture derivation and visualization

A key feature of ESL is the automated derivation of a dependency graph that
represents the system architecture. In this section, the working principle of the
dependency graph derivation mechanism is informally explained using
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architecture visualizations of the water storage system example. The system
architecture is visualized in graph and matrix form at all three decomposition
levels. The interested reader is referend to the reference manual (Ratio Innovations
B.V. 2020b) for the in-depth explanation of mathematical derivation rules. Goal,
transformation, behavior and design specifications are all used to derive depend-
encies. This section, however, focusses on explaining how functional dependencies
are derived from goal and transformation specifications.

Figure 2 shows the generated functional dependency diagram of the water
storage system at decomposition level 1. This diagram shows world that contains
component water-source-ws, which contains transformation requirement
t-ws-01 and component water-storage-system-sts which contains
transformation requirements t-sts-01. Goal requirement g-sts-01 con-
nects transformation requirements t-ws-01 and t-sts-01.

These dependencies are derived by ‘following’ water-source-flow-qs
through the system. That is, water-source-flow-qs is the output of trans-
formation requirement t-ws-01, is transferred from water-source-ws to
water-storage-system-sts as stated by goal-requirement g-sts-01
and is the input to transformationrequirement t-sts-01.

Figure 3 shows a component-function-variable multidomain-matrix (CFV-
MDM) of the water storage system at the first decomposition level. The CFV-
MDM is composed of three DSMs and three domain mapping matrices (DMMs).
The colors of the wedges within the matrix indicate the various labels that have
been assigned to a dependency based on the specification.

The component DSM (rows, columns 1 and 2) shows the dependencies, often
referred to as interfaces when the dependencies are functionally intended and
designed for, between the components of the first decomposition level. A dot at
position i, j indicates that component ci has an interface with component cj. This
matrix is symmetric since if ci has an interface with component cj, then by
definition cj has an interface with component ci. For example, Figure 3 shows that
water-storage-system-st has a LiquidMaterialFlow interface with
water-source-ws. This interface has been derived from goal requirement g-

world

world.water-storage-system-sts

world.water-source-ws

world.water-source-ws.t-ws-01

world.g-sts-01

world.water-storage-system-sts.t-sts-01

Figure 2. Functional dependency diagram of the water storage system at decompos-
ition level 1 (rectangle: component; hexagon: goal specification; ellipse: transform-
ation specification).
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sts-01 that states that water-storage-system-st shall pump water-
source-flow-qs, which is a LiquidMaterialFlow, from water-
source-ws.

In practice, one should check the first DSM for missing or unexpected inter-
faces. A missing interface indicates an incomplete specification. An unexpected
interface might indicate a specification error, such as a reference to an incorrect
component.

The function DSM (rows, columns 3–5) shows the dependencies between the
goal and transformation requirements. A mark at position i, j indicates that goal or
transformation requirement ri requires an input from goal or transformation
requirement vj. Figure 3 shows, for example, that transformation requirement
t-sts-01 requires an input from goal-requirement g-sts-01, which in turn
requires an input from transformation requirement t-ws-01. This path is the
same transformation-goal-transformation path as shown in Figure 2. When cre-
ating a specification, one should check the completeness of these functional paths.
An incomplete path indicates that one or more goal and transformation require-
ments are missing.

The variableDSM (rows, columns 6–8) shows the dependencies between the set
of variables that related to the components and requirements stated within the first
decomposition level of the specification. A mark at position i, j indicates that
variable vi depends on variable vj. In the detailed design phase, one could formulate
amathematical equation or create amodel for each dependency within the variable
DSM to obtain an optimization model.

The component-functionDMM(rows 3–5, columns 1 and 2) shows themapping
from components to goal and transformation requirements. A mark at position i, j
indicates that goal or transformation requirement f i is being fulfilled by component cj.
A transformation requirement always maps to a single component, while a goal
requirement always maps to two components. This DMM can, for example, be used
during change management to get an indication of which set of goal and transform-
ation requirements might be affect when changing the design of a component.

The component variable DMM (rows 6–8, columns 1 and 2) shows the
mapping of components to variables. A mark at position i, j indicates that variable
vi is an input, output or property of component cj. This matrix provides for each
component an overview of all variables that are subjects to requirements.

The function variable DMM (rows 6–8, columns 3–5) shows the mapping of
goal and transformation requirements to variables. Amark at position i, j indicates

ControlSignal
ElectricalEnergyFlow
ElectricalPotential
LiquidMaterialFlow
MechanicalEnergyFlow
Pressure
StatusSignal
Volume

1 2 3 4 5 6 7 8

water-storage-system-sts
water-source-ws

t-ws-01
g-sts-01
t-sts-01

water-volume-vs
water-source-volume-vs
water-source-flow-qs

1
2
3
4
5
6
7
8

Figure 3. Component-function-variable multidomain-matrix of the water storage
system at decomposition level 1.
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that variable vi is part of goal or transformation requirement rj. This matrix
provides an overview of which goal and transformation requirements are affected
when changing the value of a variable and vice versa.

In Figure 4, the functional dependency diagram of the water storage system is
shown at the second decomposition level. In this diagram, water-storage-
system-sts is expanded to reveal subcomponents power-supply-ps,
control-module-cm, pump-module-pm, storage-tank-st and the
associated goal and transformation requirements.

Note that transformation requirementt-sts-01 is not part of Figure 4. It has
been substituted by the goal and transformation requirement to be fulfilled by the
subcomponents of water-storage-system-sts. Goal-requirement g-
sts-01 now provides the input to transformation-requirement t-pm-01. The
reason for this is that it is pump-module-pm that actually pumps water-
flow-qs from water-source-ws.

Figure 5 shows the CFV-MDMat decomposition level 2. The component DSM,
goal and transformation requirement DSM and variable DSM have all increased in
size due to the expansions of water-storage-system-sts.

With rows 1–4 and columns 1–4, one can see all internal interfaces between the
subcomponents of water-storage-system-sts. These interfaces are dir-
ectly derived from goal requirements g-ps-01 through g-cm-02 listed within
Listing 10 (rows 52–57).

Note that pump-module-pm has an external interface with water-
source-ws (row 5, column 1). The reason for this can be seen at position
(11, 1) of the MDM, where one can see that goal requirement g-sts-01 has
been assigned to pump-module-pm. That is, goal requirement g-sts-01 has
automatically migrated one level down as it is pump-module-pm that actually
converts water-source-flow-qs into internal-water-flow-qi. In
other words, it is pump-module-pm that pumps water. Hence, pump-
module-pm has to have an interface with water-source-ws.

Within the function DSM, one can observe that the goal and transformation
chains have significantly increased in length. One can even identify the loop g-
cm-02! t-pm-01! g-pm-01! t-st-01! g-cm-01! t-cm-01!
g-cm-02. This loop represents the pressure control feedback loop. That is, based
on themeasured pressure withinstorage-tank-st,control-module-cm

world

world.water-storage-system-sts

world.water-storage-system-sts.power-supply-ps

world.water-storage-system-sts.pump-module-pm

world.water-storage-system-sts.storage-tank-st
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world.water-source-ws
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world.g-sts-01

world.water-storage-system-sts.power-supply-ps.t-bt-01

world.water-storage-system-sts.power-supply-ps.t-bt-02
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world.water-storage-system-sts.pump-module-pm.t-pm-01 world.water-storage-system-sts.control-module-cm.t-cm-01

world.water-storage-system-sts.g-pm-01

world.water-storage-system-sts.storage-tank-st.t-st-01

world.water-storage-system-sts.g-cm-02

world.water-storage-system-sts.g-cm-01

Figure 4. Functional dependency diagram of the water storage system at decomposition level 2 (rectangle:
component; hexagon: goal specification; ellipse: transformation specification).
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shall determine an appropriate value for control-signal-ce. The behavior
requirements that state the logic for determining this value have not been added to
this example.

The control feedback loop is also visible in Figure 4, albeit a bit more difficult to
identify. Hence, for real-life systems, it is often more convenient to use the matrix
visualizations as they provide better scalability.

The variable DSM (rows, columns 18–28) is extended with all variables that are
used within goal and transformation requirements at the second decomposition
level.

In Figure 6, the functional dependency diagram of the water storage system is
shown at the third decomposition level. In this diagram, the components pump-
module-pm and control-module-pm are decomposed one level further the
reveal their subcomponents and associated goal- and transformation-
requirements.

Goal-requirement g-sts-01 now provides input water-source-flow-
qs to transformation requirement t-pm-01 which is to be fulfilled by third-level
component pump-pm.

Note that Figure 6 is already becoming relatively crowded, while the decom-
position tree of this small example contains only seven leaf components. This is a
frequently encountered problem when using graphical modeling languages.
Hence, the choice for a textual format of ESL with component by component
definition of the elements in the tree.

Figure 7 shows CFV-MDM at decomposition level 3, which provides a more
detailed overview of the system architecture. The component DSM (rows, columns
1–7) that water-source-ws has an interface with pump-pm, that power-
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Figure 5. Component-function-variable multidomain-matrix of the water storage system at decomposition
level 2.
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supply-ps has interfaces with motor-mt and controller-ct, and that
storage-tank-st has interfaces with component pump-pm and sensor-
sp. Hence, the component DSM contains components that are defined at three
different levels in different branches of the decomposition tree, yet provides a
complete and consistent overview of all interfaces between these components.
These interfaces correspond directly to the stated goal and transformation require-
ments.
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Figure 6. Functional dependency diagram of the water storage system at decomposition level 3 (rectangle:
component; hexagon: goal specification; ellipse: transformation specification).

ControlSignal
ElectricalEnergyFlow
ElectricalPotential
LiquidMaterialFlow
MechanicalEnergyFlow
Pressure
StatusSignal
Volume

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

motor-mt
pump-pm

controller-ct
sensor-sp

power-supply-ps
storage-tank-st
water-source-ws

t-bt-01
t-bt-02
g-ps-02
g-ps-01
t-ws-01

g-sts-01
g-cm-02
t-em-01
t-cl-01
g-mt-01
t-pm-01
g-pm-01
t-st-01
g-cm-01
t-ps-01
g-ps-01

power-potential-pb
power-pi

storage-capacity-v
power-pc
power-pe

water-source-volume-vs
water-source-flow-qs

control-signal-ce
torque-kp

internal-water-flow-qi
pressure-wp

status-signal-wl
water-volume-vs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Figure 7. Component-function-variable multi-domain-matrix of the water storage system at decomposition
level 3.
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Similarly, within the function DSM (rows, columns 8–23) and variable DSM
(rows, columns 24–36), one can still find a complete and consistent network of
dependencies, while the respective goal requirements, transformation require-
ments and variables are specified throughout the decomposition tree. Each
dependency is directly and automatically derived based on mathematical rules.

In fact, the structured syntax and semantics allows for the automated derivation
of traceability dependencies between transformation and goal requirements as
well, which is often the primary motivation for creating a separate function
decomposition. Figure 8 shows, for example, the traceability diagram for trans-
formation requirementt-sts-01which is to be fulfilled bywater-storage-
sts. One decomposition level down, the requirement is actually being fulfilled by
the sequence of transformation and goal requirements t-pm-01, g-pm-01, and
t-st-01. In turn, transformation requirement t-pm-01 is one-level down
fulfilled by the sequence of goal and transformation requirements t-em-01,
g-mt-01 and t-pm-01.

6. Usage of the Elephant Specification Language
The earlier mentioned waterfall model (Royce 1987), spiral model (Boehm 1988),
systems engineering V-model (Forsberg & Mooz 1991), onion model (Childers &
Long 1994) and NASA’s systems engineering engine (Hirshorn et al. 2017) all have
in common that they describe the engineering design and realization process as an
iterative process in which engineers model the system at various hierarchical levels
during different design phases. However, the terminology in which the process,
activities and associated system models are described often differs (Maier et al.
2017).

Figure 9 merges the onion model and the NASA SE model into a variant of the
V-model. We take the design process as displayed in the left-hand side of Figure 9
as our reference for writing ESL specifications.

One starts at the top left at decomposition level 0 with requirements engineer-
ing (R) and system architecting (A) by specifying needs in the form of ‘the system
shall…’, by specifying interactions with other components that exist within the
environment the system shall operate in the form of goal requirements and by
specifying internal transformations that the system will need to perform in the
form of transformation requirements. Desired or required quantitative bounds on
properties of the system can be added in the form of subclauses to goal and
transformation requirements and design-requirements.

The interactions of the to-be-designed system with its environment, the
required internal transformations and design-requirements are likely to depend
on its working principle and embodiment. For example, a petrol car has a different
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Figure 8. Traceability diagram for transformation requirement t-mp-01 of the water storage system.
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internal working principle than an electric car, and a gasoline car may be subject to
different legislation than a diesel car. Hence, the conceptual design (C) determines
what working-principles are best suited for the system. Subsequently, the embodi-
ment design (E) determines how that working-principle could be realized. The
detailed design (D) is needed to verify, or at least get an indication off whether the
needs and requirements can be met with the selected working principle and
embodiment.

Once a working principle and embodiment at level 0 have passed the verifica-
tion stage, one can move to the first validation point on the left in Figure 9. If the
validation is not successful, the stated requirements and chosen working principles
and embodiments are likely to be incorrect or incomplete and one has to go
through the R, A, C, E, D (RACED) cycle again until the validation is successful.
This is visualized by the vertical arrows in Figure 9.

Once the validation is passed, one canmove on to decomposition level 1, where
one can start to specify the subcomponents of the system following the chosen
working principle and embodiment. This neatly aligns with the component
centered perspective of ESL, which takes the system decomposition as the central
structure of the specification. The system decomposition at level i follows from the
design decisions made at level i�1. For each of these subcomponents, one again
follows the RACED cycle until one reaches the second validation point and one can
progress to the third level, further decomposing the system.

This process continues until one reaches a sufficiently detailed specification
and design to move on to the right side of the V-model. At each level and during
each RACED activity, ESL and the generated dependency graph and visualization
can be used for efficient requirements management and interface management.
Additionally, one can generate PDF and Excel documents for different stake-
holders from the same source using the document generation functionality inte-
grated within the ESL tooling (Ratio Innovations B.V. 2022). This ensures the
consistency among these documents. Of course, one will need to use other
engineering software as well to do detailed simulations and create geometric

R 
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Specification

Verification

...

E

Specification and design Realization 

D

Fabrication

Testing

Start

Level
n

End R:
A:
C: 
E:
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Requirement eng.
System architecting
Conceptual design
Embodiment design
Detailed design
Validation point

A C

Figure 9. Adapted version of the V-model (due to Forsberg & Mooz 1991), indicating the iterative design
processes at the various decomposition levels. Design decisions at decomposition level i are input to the design
process of the subcomponents at decomposition level iþ1. The developed ESL language neatly supports the
specification and design process in the left-hand side of the V.
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models. At each level of the decomposition and throughout the development cycle,
one can generate the architecture model and analyze it with architecture analysis
tools such as those of Paparistodimou et al. (2020) to improve the architecture.
Albers et al. (2019) demonstrated how MBSE can support modular design and
evaluated their framework for five case studies, one of which about requirements
engineering. The ESL tooling comes with integrated DSM analysis and clustering
tools to support the multilevel architecture analysis.

In particular application cases, we experienced that it may also be effective to
start lower in the decomposition tree. When applying ESL during the design of
several advanced research setups for the Dutch Institute of Fundamental Energy
Research (DIFFER; http://www.differ.nl/), we experienced that the early design
process happened to be rather organic and that the system decomposition tree
frequently changed as new (better) ideas came up, requirements changed, or
concepts turned out not to be feasible. The research setups required the integration
of very specific sets of off-the-shelf diagnostic tools to study highly specific physical
phenomena. For these diagnostic tools, there exist only a few suppliers in the world.
Furthermore, another requirement was to leverage experience obtained with
previous setups as much as possible. Consequently, the desired systems are unique
and new-to-the-world. Yet many of the components of these systems are off-the-
shelf. This resulted in a rather bottom-up design process inwhich the challenge was
to realize a system in which the physical phenomena could be realized, controlled
and studied with the required diagnostic tools.

ESL can support both a top-down, bottom-up or mixed engineering design
process. ESL components can represent off-the-shelf components, conceptual
‘blobs’ which are in the very early design phase, or anything in between. All can
exist within the same specification allowing the specification to evolve over time as
more information about the system becomes available. Through the use of a single
decomposition tree and by employing the goal and transformation statements in a
hierarchical tree, ESL can automatically generate and maintain the mappings
within and between all levels and branches of the decomposition tree as explained
in Section 5.2.

Hence, ESL can be used during the design of bothmature and new-to-the world
systems. Beernaert et al. (2024b), for example, have used ESL throughout the
design process of an optical plasma diagnostic system for nuclear fusion power
plant ITER, which is currently being constructed in France.

Additionally, different branches of the decomposition tree may have different
numbers of levels. This provides flexibility in modeling the various parts of the
system at different levels of granularity. In general, we advise to stop decomposing
a system once one reaches off-the-shelf components or components that can be
designed and realized by a relatively small design team. The granularity of leaf-
components in the decomposition tree depends therefore on the particular design
challenge. In the specification of a pulsed-laser deposition research cluster
designed for DIFFER, for example, the leaf components ranged from individual
pressure sensors at decomposition level 3 to a full X-ray photoelectron spectros-
copy system at decomposition level 1, both being off-the-shelf components. Albeit
that the latter is a hundred-thousand times more expensive than the prior. For
more guidelines on how to use ESL in practice, the reader is referred to the ESL
specification 101 pages (Ratio Innovations B.V. 2023).
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ESL has shown to be a flexible language allowing one to create specifications
and derive architecture models for both new and (partially) existing systems
following a top-down, bottom-up or rather organic process that can evolve over
time. This evolution of ESL specifications can be easily managed using conven-
tional version control software such asGIT and SVNdue to the text based nature of
ESL. That is, one can create different branches to explore different concepts,
generate different architectures and compare discuss them, and merge them if
desired.

The semantics and use of ESL has commonalities with IDEF0, a long existing
standard for functional modeling (see, e.g., the book by Buede 2009). Both build
upon functions, flows and decomposition. The fundamental difference is that
IDEF0 takes a (transformation) function centric approach, while ESL is
component-centric. ESL associates the transformation functions to the compo-
nents and uses goal functions to specify the flows between components.

In ESL, decomposition of a component implies that the transformation func-
tions embodied by the component are represented in greater detail by subcompo-
nents and their transformation and goal functions. So, in ESL, function
decomposition takes place through the transformation functions, similar to IDEF0.

ESL may look at first glance oriented on modeling physical architectures.
However, by adopting the method of use of ESL, as explained in this section,
and by taking care that the choice of nouns for the components is sufficiently
solution free, ESL actually enables a combined approach to functional and physical
architecture modeling. The allocation of goal and transformation functions nat-
urally follows design decisions onworking principles and embodiments through all
levels of the system decomposition and may be revised and detailed as the system
architecting progresses.

What is more, other types of requirements, such as performance and design
requirements, can be intuitively associated with the various functions, flows,
variables and components, providing for the desired bridge between requirements
engineering and systems architecting.

7. Concluding remarks
Writing ‘high-quality’ system specifications is essential to the success of a design
project (Buede (2009)). In this article, we present a novel textual specification
language, named ESL, which enables the structured specification of a system’s
functions, behavior and design in terms of needs, requirements and constraints at
various levels of granularity following the systems engineering V-model.

Components are the basic building blocks of an ESL specification. Needs,
(function/behavior/design) requirements and (function/behavior/design) con-
straints are specified within component definitions. ESL distinguishes between
goal-function and transformation-function requirements and constraints. Goal
functions denote the purpose of components with respect to other components
within the system. Transformation functions describe the internal flow conversion
processes in a component. Design specifications denote bounds on variables that
describe the design of a system.

A compiler has been developed that checks the consistency of ESL specifica-
tions and derives dependencies between components, variables, needs, goal speci-
fications, transformation specifications, design specifications, relations and
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combinations thereof across all decomposition levels of the specification, following
a predefined set of mathematical rules. This provides a major added value com-
pared to existing architecturemodeling tools where the assignment or derivation of
such dependencies typically has to be ad hoc implemented and checked for
correctness and consistency, which is labor intensive and error prone.

Dependencies between specification elements can be visualized at each decom-
position level in graph or multidomain-matrix (MDM) form. This is illustrated for
a small example problem. The general method of use of ESL closely aligns with the
commonly used SE V-model. This has been exemplified by presenting a variant of
the V-model that stresses the iterative decomposition-based design and develop-
ment process. The system decomposition is the central tree in writing the ESL
specifications, which follows the design concept and embodiment decisions. The
graphs and MDMs clearly show the dependencies between components, goal
functions, variables and combinations thereof. By analyzing the network of
dependencies, one can gain insight into the (functional) system architecture.

A specification language such as ESL has the potential to reduce ambiguity and
inconsistencies in system specifications. Moreover, by automatically deriving all
dependencies between a system’s components, functions and variables, engineers
can quickly increase their understanding of the specified system and optimize the
system architecture, effectively blending requirements engineering with systems
architecting. This is the main added value of the proposed language.

The ESL compiler and all associated visualization and analysis tooling has been
made open-source and freely available within an online repository (https://pypi.
org/project/raesl/) to allow for easy and wide spread adoptation and further
development among systems engineers and architects.
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