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Turbulent flow induced by elastorotational instability in viscoelastic Taylor–Couette flow
(TCF) with Keplerian rotation is analogous to a turbulent accretion disk destabilized by
magnetorotational instability. We examine this novel viscoelastic Keplerian turbulence via
direct numerical simulations (DNS) for the shear Reynolds number (Re) ranging from
102 to 104. The observed characteristic flow structure consists of penetrating streamwise
vortices with axial length scales much smaller than the gap width, distinct from the classic
centrifugally induced Taylor vortices, which have axial lengths of the gap width. These
intriguing vortices persist for the wide Re range considered and give rise to intriguing
scaling behaviour in key flow quantities. Specifically, the characteristic axial length of the
penetrating vortices is shown to scale as Re−0.22; the angular momentum transport scales
as Re0.42; the kinetic and elastic boundary-layer thicknesses based on angular velocity
and hoop stress near the inner cylinder wall scale as Re−0.48 and Re−0.49, respectively.
This implies that the viscoelastic Keplerian turbulence belongs to the classical turbulent
regime of TCF with the Prandtl–Blasius-type boundary layer. Furthermore, we present an
analytical relation between the viscous and elastic dissipation rates of kinetic energy and
the angular momentum transport and in turn demonstrate its validity using our DNS data.
This study has paved the way for future research to explore astrophysics-related Keplerian
turbulence and angular momentum transport via the scaling relations of the analogous
TCF of dilute polymeric solutions.
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1. Introduction

Taylor–Couette flow (TCF), i.e. fluid flow enclosed by two coaxial and independently
rotating cylinders, is a paradigm for studies of flow instability and turbulence dynamics,
owing to its geometric simplicity and versatility in generating diverse flow regimes
(Grossmann, Lohse & Sun 2016). Specifically, TCF exhibits a rich phase diagram.
For example, inner-cylinder-rotating-only (ICRO) TCF exhibits supercritical centrifugal
instability, while turbulence arises in strong counter-rotating TCF via a subcritical shear
instability. Recently, in co-rotating TCF a subtle regime known as Keplerian flow has
gained increasing attention, due to its fundamental importance to relevant astrophysics
(Ji & Goodman 2023). This flow regime is centrifugally stable and is characterized by
the angular velocity ratio ωo/ωi = (ro/ri)

p with p = −3/2, where ri,o are the radii of
the inner and outer cylinders and ωi,o their angular velocities, respectively. Thus, the
existence of turbulence in Keplerian flows and the corresponding mechanism of angular
momentum transport is of great interest. Although subcritically unstable shear flows
become turbulent when the shear Reynolds number (Re) is sufficiently large, there is
no concrete evidence that hydrodynamic instability alone can sustain turbulence in the
Keplerian regime. Unfortunately, experiments in TCF are difficult to conduct and interpret
in this regime due to major axial end cap effects that could cause secondary flows and
influence the global stability of the flow (Avila 2012; Lopez & Avila 2017). In fact,
when one minimizes the end effect to the extent possible, turbulence does not arise in
TCF experiments up to Re = 2 × 106 (Ji et al. 2006; Schartman et al. 2012). Moreover,
direct numerical simulations (DNS) with axial periodicity either with centrifugally driven
turbulence as an initial condition (Ostilla-Mónico et al. 2014) or after the introduction of
an optimal perturbation for transient growth (Shi et al. 2017) exhibit turbulence decay in
the Keplerian regime.

In contrast to the increased interest in the Keplerian regime of Newtonian TCF, its
non-Newtonian counterpart continues to not attract much attention, despite the fact that
the so-called elastorotational instability (ERI) in the Keplerian regime is regarded as
a close analogue of turbulence in astrophysical accretion disks that arises due to a
magnetorotational instability (MRI) (Ogilvie & Proctor 2003; Ogilvie & Potter 2008). This
analogy relies on a rigorous theoretical foundation that the viscoelastic stresses in dilute
polymeric fluids, which follow a dumbbell model, and the Maxwell stresses in electric
conducting fluids, which follow the magnetohydrodynamics (MHD) equation, have
mathematically similar terms (Vieu & Mutabazi 2019). Hence, the physical mechanisms
that destabilize a viscoelastic flow are remarkably similar to the MRI (Boldyrev, Huynh
& Pariev 2009; Dey et al. 2022). Therefore, experimental studies and simulations of ERI
in the Keplerian regime are of great interest, as laboratory demonstrations of MRI have
proved difficult due to the fact that to trigger MRI, even for the most highly conducting
liquid metals, one must reach Re in excess of 106. Specifically, in recent years Bai,
Crumeyrolle & Mutabazi (2015) have identified four different modes in viscoelastic TCF
experiments in the Keplerian regime, namely, a stationary axisymmetric mode composed
of vortices with an axial wavelength smaller than the gap width, a disordered wave mode,
a solitary vortex mode and a pure elasticity mode. Interestingly, the first three modes
cease to exist in the anti-Keplerian regime ( p = 3/2), so they are ERI modes which are
analogous to MRI (Ogilvie & Potter 2008; Boldyrev et al. 2009; Bai et al. 2021). As
expected, the purely elastic mode arises regardless of rotating conditions (Larson, Shaqfeh
& Muller 1990). Experimental evidence to date suggests that sufficiently large shear and
elastic energies are a prerequisite for triggering ERI modes. However, the aforementioned
experimental observations and theoretical analysis of ERI are of limited use due to their
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small Re (<100), which are close to the onset condition for ERI. In fact, as suggested by
Ogilvie & Potter (2008), the analogy between viscoelastic and MHD flows is more accurate
at large values of Re. In this respect, the ERI-induced turbulence would be analogous to a
turbulent accretion disk containing a magnetic field. This analogy is of great interest as it
allows examination of the turbulent regime of viscoelastic TCF with Keplerian rotation.

Hence, we conduct DNS of Keplerian turbulence, namely, the turbulent state with
Keplerian rotation, in TCF of dilute polymeric solutions up to Re = 104. Polymer additives
can induce turbulence in Keplerian flow realized in axially periodic TCF via the ERI. We
closely examine the coherent flow structures in this novel turbulent flow state and reveal a
scaling law between angular momentum transport and the driving force. Furthermore, we
analytically derive the exact relation between energy dissipation and angular momentum
transport, which demonstrates that the combination of Newtonian and polymeric effects
results in the observed scaling law.

2. Numerical details

We explore Keplerian turbulence in TCF of dilute polymeric solutions by DNS via a
high-fidelity robust and efficient finite-difference algorithm that has proven successful in
simulating inertially to elastically dominated turbulent flows (Lin et al. 2022). We have
chosen d = ro − ri, U = ri|ωi − ωo|, d/U and ρU2 as scales for length, velocity u, time
and pressure P, respectively. Here, ρ denotes the solution density and u consists of three
components (ur, uθ , uz) corresponding in sequence to the cylindrical coordinates (r, θ, z).
The polymer stress τ is related to the conformation tensor C through the FENE-P (finitely
extensible nonlinear elastic-Peterlin) model. To capture the shear and rotation effects, we
perform simulations in a frame of reference that co-rotates with the outer cylinder. The
dimensionless governing equations are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇P + β

Re
∇2u + 1 − β

Re
∇ · τ − Ro−1ez × u (2.2)

and
∂C

∂t
+ u · ∇C = C · ∇u + (∇u)T · C − τ , (2.3)

where β = ηs/ηt is the viscosity ratio between the solvent viscosity ηs and the viscosity of
the solution at zero shear rate, ηt, and Re = ρUd/ηt is the shear Reynolds number based
on the azimuthal velocity of the inner cylinder in the rotating frame. The effect of outer
cylinder rotation is manifested in a Coriolis force Ro−1ez × u, where Ro = U/(2ωod)

is the Rossby number and ez is the unit vector in the axial direction (Ostilla-Mónico
et al. 2014). Moreover, the polymer stress τ is related to the conformation tensor via the
relationship τ = ( f (C)C − I)/Wi, where f (C) = (L2 − 3)/(L2 − trace(C)) is the Peterlin
function, I is the unit tensor and Wi = λU/d is the Weissenberg number, with λ and
L being the polymer relaxation time and the maximum chain length, respectively. The
governing equations are supplemented with no-slip boundary conditions at walls, as well
as periodic boundary conditions in the axial direction.

We performed simulations at a radius ratio of η = ri/ro = 0.8, which leads to Ro−1 ≈
1.2577 for the Keplerian regime ωo/ωi = η3/2. The fluid confined between the two
concentric cylinders is a dilute polymeric solution composed of long linear polymer
chains with β = 0.9 and L = 100. To extensively explore the flow dynamics, including
the scaling feature in the Keplerian regime, simulations over a broad range of Re are
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Re 100 500 1000 2000 3000 10 000

Lz 2πd 2πd 2πd 2πd 2πd πd
Nr 128 128 128 160 192 256
Nθ 384 384 384 384 384 768
Nz 384 384 384 448 512 512
100Δε 0.06 0.24 0.59 0.51 0.36 1.04

Table 1. Grid resolutions for different cases, with Nr, Nθ and Nz being the numbers of grid points in the
radial, azimuthal and axial directions, respectively. Here, Lz represents the axial periodicity length and Δε =
(4Nuω/(1 − η)2 − (βεv + (1 − β)εe))/(βεv + (1 − β)εe) denotes the relative difference between the energy
dissipation per unit mass calculated from a volume average of the local dissipation rate and from the global
balance. The definitions of Nuω, εv and εe are given in the main text.

carried out: specifically, Re is increased over two decades from 102 to 104, corresponding
to an elasticity number (El = Wi/Re) range of 3 × 10−3 ∼ 0.3 at a selected Wi = 30.
According to Bai et al. (2015), the critical modes observed for El < El0 arise due to ERI,
where El0 represents the transition threshold from ERI to purely elastic instability; El0 =
0.672 for η = 0.8. Hence, ERI that signifies the combination of elastic and rotational
effects should destabilize the flow under consideration. Table 1 contains the details of the
grid resolutions at various Re. To strike a balance between flow resolution accuracy and
computational efficiency, we gradually refine the grids with the increase of Re. Moreover,
we cluster grid points near the cylinder walls to accurately capture the localized flow
structures. The low values of Δε for all Re demonstrate the adequacy of grids used in
the simulations. Specifically, Ostilla-Mónico et al. (2013) have shown that a value of
less than 1 % for Δε leads to reliable results at the simulated Re. The time step is varied
between 4 × 10−3 and 1 × 10−3 depending on the flow conditions. To obtain statistically
stationary flow states, we perform long simulations typically of 500T , where T = d/U is
the convective time unit. Moreover, we use ensemble averaging for time periods of at least
500T to evaluate the turbulence statistics.

3. Results and discussions

Upon the introduction of polymers in the Keplerian regime, ERI destabilizes the azimuthal
Couette flow for all the Re considered. As depicted in figure 1(a), the rise of Keplerian
turbulence is demonstrated by the obvious deviation of the mean angular velocity 〈ω〉
from the laminar profile, where ω = uθ /r and 〈·〉 = 〈〈〈·〉θ 〉z〉t denotes hereafter averaging
in the θ - and z-directions and in time. Overall, three regions can be identified in the gap,
namely, the inner- and outer-wall boundary layers, which are connected by the bulk zone.
With the increase of driving forces, the 〈ω〉 slopes near the walls become steeper, and the
bulk zone becomes wider to accommodate the enhanced angular momentum transport. In
order to quantify the angular momentum transport, we examine the angular momentum
current Jω via the following expression (Song et al. 2019):

Jω = r3[〈urω〉 − β∂r〈ω〉/Re − (1 − β)〈τrθ 〉/(rRe)]. (3.1)

The right-hand side terms of (3.1) represent in sequence the contributions of the convective
flux (Jω

c ), the diffusive flux (Jω
d ) and the elastic source/sink term (Jω

p ) to angular
momentum. As shown in figure 1(b), the constant value of Jω across the gap is direct
evidence of the accuracy of our DNS. Comparison of various effects’ contributions to Jω

shows the dominant transport mechanisms in different regions. Specifically, due to the
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Figure 1. (a) Profiles of the mean angular velocity 〈ω〉 for various Re. Hereafter, r̃ = (r − ri)/d denotes
the dimensionless distance to the inner cylinder wall. The black solid line indicates the azimuthal laminar
flow ωlam = (r2

i − η2r2)/((1 − η2)r2). Note that the angular velocity has been rescaled by ωi − ωo to
obtain a range of 0 ∼ 1. (b) Balance of angular momentum current across the gap for the highest case at
Re = 10 000 and Wi = 30.
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Figure 2. Contour plots of (a) the instantaneous streamwise vorticity ωθ and (b) the time and θ -direction
averaged streamwise vorticity 〈ωθ 〉θ,t for various Re. Note that patterns are not shown for Re = 104, at which
similar vortical features are obtained with a smaller Lz. The vectors show the corresponding in-plane velocity
field.

presence of cylinder walls, viscous diffusion in the boundary layers of ω is the dominant
transport mechanism. However, in the bulk region the transport induced by elastic stresses
plays a crucial role in addition to the Newtonian flow convective mechanism. Here, Jω

p
makes the dominant contribution to the balance of Jω in the region of r̃ = 0.05 ∼ 0.95,
while Jω

c is rather low across the gap, indicating the trivial contribution of convective
fluid motions in angular momentum transport. Thus, it implies that purely hydrodynamic
turbulence cannot transport angular momentum effectively in the Keplerian regime in the
parameter range studied (Ji et al. 2006).

We depict the coherent flow structures of ERI-induced Keplerian turbulence in figure 2
by the streamwise vorticity patterns for various Re. Distinct penetrating vortices that
span the entire gap appear at Re = 100. Increasing Re results in a considerable increase
in the population of small-scale vortices (see figure 2a). These small-scale structures
predominantly occupy the near-wall regions, where the turbulent shear and consequently
the polymer stretch are high. Corresponding to the enhanced incoherence indicated by
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Figure 3. (a) Two-point autocorrelation functions in the axial direction for the radial velocity ur sampled at
the middle of the gap for various Re. (b) The positions of the first minimum of Rrr as a function of Re, where
the dashed line denotes the best fit �zmin = (1.2 ± 0.5)Re−0.22±0.04.

the instantaneous plots, penetrating vortices deteriorate due to the continuous increase
of Re. However, one can still see their remnants from the time and θ -direction averaged
plots (see figure 2b). Moreover, the flow patterns at Re = 100 ∼ 1000 clearly depict their
penetrating characteristics. As the shear strength increases, these intriguing vortices persist
with gradually decreasing axial length scales. Therefore, it is reasonable to assume that the
turbulent states obtained are in the same flow regime characterized by the persistence of
penetrating vortices. It is worth noting that flow structures with axial length scales smaller
than the gap width have been reported by Dong (2008) for counter-rotating TCF. However,
the generation mechanisms are different in these two cases, i.e. penetrating vortices here
result from an ERI, as suggested by linear stability analysis (Bai et al. 2015). Moreover, it is
interesting to compare the present results with the standard TCF, i.e. ICRO cases reported
in Song et al. (2019). In contrast, the ICRO viscoelastic TCF at comparable η = 0.833 and
Re = 3000 is populated by well-organized large-scale Taylor vortices that stack axially and
occupy the entire gap, with no small-scale vortices. These observations further underscore
the mechanistic differences between the flow driven by ERI and that driven by elastic and
centrifugal forces.

To quantify the scale change of the coherent structures described above, the two-point
autocorrelation function (Rrr) for the radial velocity in the axial direction is calculated by

Rrr(�z) = 〈u′
r(r, θ, z, t)u′

r(r, θ, z + �z, t)〉/〈u′
r
2
(r, θ, z, t)〉, (3.2)

where φ′ represents the fluctuating part of a variable φ, obtained as φ′ = φ − 〈φ〉. As
shown in figure 3(a) for all Re considered, Rrr decays to approximately zero at half of
the domain size in the spanwise direction, demonstrating that the computational domain
used is sufficiently large to accommodate the coherent flow structures of interest. In flow
physics, radial velocity fluctuations across an azimuthal vortex tube tend to be negatively
correlated. Thus, the axial length scales (at the middle of the gap) of the penetrating
vortices are determined by the axial separation �zmin that corresponds to the first
minimum of Rrr (Dong 2008). As depicted in figure 3(b), �zmin monotonically decreases
from 0.43d to 0.15d as the shear strength is increased from Re = 102 to 104, corresponding
to the axial squeeze of the penetrating vortices observed in figure 2(b). These length scales
are consistent with those of the linear stability analysis and experiments conducted by Bai
et al. (2015), in which they had shown that at small El the critical mode of ERI appears
as vortices with an axial wavelength smaller than the gap width. Interestingly, the log–log
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Figure 4. (a) The mean elastic hoop stress (1 − β)〈τθθ 〉/Re across the gap for various Re. Here δi
e/δ

o
e

represents the elastic BL thickness, defined as the distance from the wall to the maximum values of
(1 − β)〈τθθ 〉/Re. (b) The inner and outer kinetic and elastic BL thicknesses for various Re. The dashed line
denotes the best fit of the inner kinetic BL thickness, δi

u = (1.1 ± 0.1)Re−0.48±0.02, and the dash–dotted line
denotes the best fit of the inner elastic BL thickness, δi

e = (0.73 ± 0.13)Re−0.49±0.02.

plot of �zmin suggests that the axial length scale of coherent structures in viscoelastic
Keplerian turbulence nearly scales as �zmin ∼ Reξ with ξ = −0.22.

Another length scale of interest in turbulent TCF is the boundary-layer (BL) thickness.
Here we examine both kinetic and elastic BLs in the viscoelastic TCF. Following
Ostilla-Mónico et al. (2013), we define the kinetic BL thickness δu as the depth where the
linear fit to the 〈ω〉 profile near the wall intersects the linear fit to the profile at mid-depth.
We define the elastic BL thickness δe as the distance from the wall to the maximum value
of the mean elastic hoop stress 〈τθθ 〉 (Song et al. 2021), as depicted in figure 4(a). The hoop
stress induced by the polymer stretch is frequently used to quantify the elastic nature of the
viscoelastic TCF, which is the driving force for the elastic instability (Somasi & Khomami
2000; Thomas, Khomami & Sureshkumar 2009; Larson & Desai 2015). As depicted in
figure 4(a), the mean elastic hoop stress magnitude becomes smaller with increasing
inertial driving force (Re). For each Re, away from the cylinder walls, we observe two
sharp increases of 〈τθθ 〉, with the inner one having a higher value than the outer one.
The asymmetry of the BL dynamics is evident in the kinetic and elastic BL thicknesses
in figure 4(b). Specifically, the outer BL is significantly thinner than the inner one for
Re ≤ 2000, after which they become almost equal, with the inner one still remaining
slightly thicker than the outer one for δi,o

u . This is different from the co-rotating Newtonian
TCF, in which a slightly thicker outer BL is usually observed (Ostilla-Mónico et al. 2013;
Brauckmann & Eckhardt 2017). This is because in the viscoelastic TCF, the elastic stresses
at the cylinder walls (see (3.1)) have a significant influence on the kinetic BL thicknesses
(∂r〈ω〉|i,o). Remarkably, one observes clear scaling laws for the inner kinetic and elastic BL
thicknesses as functions of Re, i.e. δu ∼ Re−0.48 and δe ∼ Re−0.49. This implies that the BL
of the viscoelastic Keplerian turbulent flow considered here is of the Prandtl–Blasius type,
where the classical BL scaling δ ∼ Re−0.5 is known to hold (Landau & Lifshitz 1987).
Nevertheless, a large parameter space exists in viscoelastic TCF. Future work aiming at
comprehensively examining the BL behaviour in viscoelastic wall-bounded turbulence
should consider a comprehensive range of (Wi, L, β).

To further examine the scaling behaviour of angular momentum transport in viscoelastic
Keplerian turbulent flow, we have calculated the pseudo-Nusselt number (Nuω) for
all Re considered. Specifically, Nuω is obtained as Jω/Jω

lam, where Jω
lam = 2(ωi −

ωo)r2
i r2

o/(Re(r2
o − r2

i )), corresponding to a purely azimuthal flow in which angular
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Figure 5. (a) The angular momentum transport pseudo-Nusselt number Nuω as a function of Re, where the
dashed line denotes the best fit Nuω = (0.5 ± 0.04)Re0.42±0.01. The inset shows Nuω as a function of Ta, with
the dash–dotted line showing the best fit Nuω = (0.47 ± 0.03)Ta0.21±0.05. Here Ta is defined as σd2r2

a(ωi −
ωo)

2/ν2
t , where σ = (1 + ri/ro)

4/(4ri/ro)
2 is the pseudo-Prandtl number, ra = (ri + ro)/2 is the arithmetic

mean of the radii and νt is the kinematic viscosity (Ostilla-Mónico et al. 2013). (b) The viscous (εv) and
elastic (εe) dissipation rates, 4Nuω/(1 + η)2 and βεv + (1 − β)εe obtained in (3.4) as a function of Re. The
dash–dotted line denotes the best fit εv = (0.51 ± 0.13)Re0.36±0.02, the dotted line εe = (2.2 ± 0.1)Re0.48±0.01

and the dashed line 4Nuω/(1 + η)2 = (0.62 ± 0.05)Re0.42±0.01.

momentum is transported solely by molecular diffusion (Eckhardt, Grossmann & Lohse
2007). As depicted in figure 5(a), Nuω increases monotonically as the driving force is
enhanced and follows a clear scaling relation of Nuω ∼ Re0.42, where the scaling exponent
is obtained via a least-squares linear fit of the log–log plots. Furthermore, in terms of the
non-dimensional forcing of the TCF system, with the more commonly used Taylor number
Ta, the scaling law is given as Nuω ∼ Taγ with γ = 0.21 (see inset in figure 5a). Overall,
this scaling law spans a large parameter space, i.e. two (four) orders of magnitude of Re
(Ta).

To the best of our knowledge, no one has studied the scaling behaviour of angular
momentum transport in turbulent viscoelastic TCF. In contrast, a vast amount of literature
has documented the value of γ for the Newtonian counterparts of the flow studied.
Specifically, the effective exponent γ is approximately 0.39 for the so-called ‘ultimate
turbulence’ regime where both the bulk and the BL become turbulent (e.g. Ta > 3 × 108

for η = 0.71), while γ < 1/3 for the classical turbulent states (Grossmann et al. 2016).
Intriguingly, in magnetized TCF destabilized by standard MRI (Mishra, Mamatsashvili &
Stefani 2023) one obtains nearly identical exponent values of torque scaling, i.e. Re0.4∼0.5.
This highlights the analogy of scaling properties between MRI- and ERI-induced flow
instabilities and transitions.

To quantify the elastic effects on the scaling behaviour of angular momentum transport
in the Keplerian turbulence of dilute polymeric solutions, following Eckhardt et al. (2007),
we have developed an analytical relation between the viscous and elastic dissipation rates
of kinetic energy and the angular momentum transport. Specifically, for a statistically
stationary flow, volume averaging over (2.2) multiplied by u leads to the following balance
equation for the viscoelastic TCF:

β

Re
εv + 1 − β

Re
εe =

〈
β

Re
∂j(ui(∂jui + ∂iuj))

〉
V

+
〈

1 − β

Re
∂j(τijui)

〉
V

, (3.3)

where εv = 〈(∂iuj + ∂jui)
2〉V/2 and εe = 〈τij∂jui〉V are the viscous and elastic dissipation

rates, respectively, and 〈·〉V denotes volume averaging. Note that here the convective
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Keplerian turbulence in viscoelastic Taylor–Couette flow

surface terms and the Coriolis force term vanish as they do not contribute to energy
generation. Integrating the right-hand side of (3.3) in the limit of large aspect ratio or with
periodic boundary conditions in the axial direction, we obtain the following expression:

βεv + (1 − β)εe = 4Nuω/(1 + η)2. (3.4)

As demonstrated in figure 5(b), this relation is satisfied for all the simulations. Clearly the
combined effects of viscous and elastic dissipation rates result in the scaling behaviour
of the angular momentum transport. Indeed, one should obtain the classic Newtonian
expression by varying the rheological parameters, e.g. ultra-dilute solution (β → 1) or
exceedingly small Wi. For the present flow considered, these two energy dissipation rates
are shown to follow different scaling laws with respect to the driving force, i.e. εv ∼ Re0.36

and εe ∼ Re0.48, which are obtained by using a least-squares linear fit of the log–log plots.
This observation resembles the torque scaling in Newtonian TCF, in which one separates
the dissipation rate for the bulk and its BL contributions (Eckhardt et al. 2007). However,
(3.4) does not provide a theoretical prediction for the angular momentum transport (or
torque) scaling, as we need a more precise estimation for the scalings of the viscous and
elastic dissipation rates. That is, one must pay particular attention to the relation between
the elastic dissipation rate and the control parameters. Nevertheless, the analytical equation
(3.4) derived here is a good first step towards examining the contributions of the angular
momentum transport scaling of viscoelastic turbulent TCF.

4. Concluding remarks

In summary, we report Keplerian turbulence in TCF of dilute polymeric solutions for
the first time via three-dimensional DNS for a broad range of shear Reynolds numbers
of 102 ∼ 104. The turbulence in the Keplerian regime arises due to an ERI, which is
a close analogue of the MRI in astrophysical MHD flows. Instead of the convective
mechanism in Newtonian TCF, elastic stresses play a crucial role in the angular momentum
transport in Keplerian turbulence, which clearly indicates that Newtonian turbulence
cannot transport angular momentum effectively in the Keplerian regime in the parameter
range studied. For all the Re range considered, consistent with linear stability analysis and
experimental observations, the coherent flow structures induced by ERI are penetrating
vortices that span across the gap with axial length scales smaller than the gap width.
We have performed detailed examinations of the scaling behaviours for both kinetic and
elastic BL thicknesses, length scales of the coherent flow structures, angular momentum
transport, and viscous and elastic dissipation rates of kinetic energy. These analyses
demonstrate that the viscoelastic Keplerian turbulence belongs to the classical turbulent
regime of TCF with the Prandtl–Blasius-type BL dynamics. Furthermore, we have derived
an analytical expression between the viscous and elastic dissipation rates and angular
momentum transport and numerically validated it. This expression clearly highlights that
in the present parameter range a combination of viscous and elastic effects contributes to
the angular momentum transport scaling law, i.e. Nuω ∼ Re0.42. Thus, the present findings
have laid a foundation for future studies on the scaling relations of angular momentum
transport in astrophysical Keplerian turbulence.
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