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Modal and non-modal linear stability analyses are employed to investigate the effect
of internal and external heating on disturbance temporal growth for the Darcy–Bénard
convection with throughflow. A matrix-forming approach is employed for both purposes,
where the generalised eigenvalue problem is built using the generalised integral transform
technique. Although the disturbance equations are not self-adjoint, the non-modal analysis
indicates that there is no transient growth. Hence, any disturbance growth in time must
be induced by modal mechanisms. An absolute instability analysis reveals that viscous
dissipation has a destabilising effect and introduces new modes that are eventually
destabilised by increasing the Péclet number. Beyond critical values of the Péclet number,
where codimension-two absolutely unstable points exist, these modes become more
unstable than the classical mode found in the absence of viscous dissipation, which is
stabilised by an increasing Péclet number. This internal heating mechanism generated by
viscous dissipation is so strong at high enough Péclet numbers that instability becomes
possible through heating from above.

Key words: Bénard convection, convection in porous media, absolute/convective instability

1. Introduction

Transition from stability to instability in fluid flows is a subject widely explored in
the literature. Bénard (1901) was among the first to study it experimentally when he
observed the appearance of convection cells in a thin layer of fluid after heating it from
below beyond a certain critical temperature difference. The first explanation for this
phenomenon was proposed by Rayleigh (1916), who used a linear stability analysis to
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introduce buoyancy as the driving mechanism, which is the reason why this became known
as the Rayleigh–Bénard problem. Many decades later, however, Pearson (1958) also used
linear stability analysis to propose a second explanation. He pointed out that the small
film thickness employed by Lord Rayleigh essentially renders buoyancy effects negligible
and, in turn, promotes surface tension gradients as the driving mechanism. The natural
convection described by the Rayleigh–Bénard problem also occurs in a fluid saturated
porous medium, in which case it is known as the Darcy–Bénard problem. Horton & Rogers
(1945) as well as Lapwood (1948) were the first to investigate its linear instability. Prats
(1966) was the first to extend it to include a horizontal throughflow and, hence, to consider
mixed convection.

The above-mentioned studies focus on the asymptotic behaviour of individual normal
modes in either time or space. This eigenvalue, or modal, based description is the
traditional way linear stability analyses have been performed (Chandrasekhar 1961; Drazin
& Reid 1981). Some key developments, however, have appeared since then. When the
disturbance is local, i.e. it does not vary in the direction of the longitudinal flow, at least in
an approximate sense, convective and absolute instability concepts took over the previous
temporal/spatial understanding (Huerre & Monkewitz 1990). When the disturbance is no
longer local, parabolised stability (Herbert 1997) and global stability (Theofilis 2011)
concepts can be employed. Adjoint equations (Luchini & Bottaro 2014) also deserve
special mention, since they have been connected to absolute instability in both discrete
(Lesshafft & Marquet 2010) and continuous (Alves et al. 2019) senses. Many of these
techniques have been applied to both natural and mixed convection in porous media. Most
cases focus on convective instabilities (Nield & Bejan 2006), but there have been some
recent attempts to investigate absolute instabilities as well (Barletta 2019; Barletta, Celli &
Alves 2020; Schuabb, Alves & Hirata 2020).

On the other hand, the short time/space behaviour of superposed normal modes can
also be relevant. This non-modal description is key in explaining transition in modally
stable flows under subcritical conditions (Schmid 2007). In general, Rayleigh–Bénard-type
problems are self-adjoint and non-modal growth is not possible. This can change, however,
in the presence of throughflow. Biau & Bottaro (2004) studied the effect of stable thermal
stratification in shear flows whereas Sameen & Govindarajan (2007) studied the effect of
wall heating in channel flows from the perspective of both modal and non-modal linear
growth. Finally, Jerome, Chomaz & Huerre (2012) studied non-modal growth in both
Rayleigh–Bénard–Poiseuille and Rayleigh–Bénard–Couette problems. In the context of
porous media flows, only a few studies have dealt with the non-modal linear growth of
disturbances, but they focused on density-driven instability (Rapaka et al. 2008, 2009).

One of the main goals of the present paper is to fill this gap, investigating modal
as well as non-modal mechanisms for linear disturbance temporal growth that might
exist for flows in porous media. Another goal is to do so while also considering the
influence of viscous dissipation effects, often neglected due to their small magnitude.
Gebhart (1962) has identified, however, the parametric conditions under which viscous
dissipation can be relevant for natural convection in pure fluids. Furthermore, mixed
convection renders viscous dissipation effects even more important due to the added forced
component. In the context of porous media, the former was shown to be true by Nakayama
& Pop (1989), where Murthy (1998) extended this study to show that this is also true
for the latter. According to Gebhart (1962), viscous dissipation effects can be dominant
in many scenarios. He mentioned processes under a strong gravitational field (e.g. on
larger planets), devices operating at high rotative speeds (e.g. internal cooling of turbine
blades) as well as processes with large characteristic lengths (e.g. geophysical flows).
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Nield (2000) included particle bed nuclear reactors among possible interesting
applications. Furthermore, Magyari, Rees & Keller (2005) pointed out that many natural
convection processes could be qualitatively altered by viscous dissipation effects even
when they appear negligible. The characteristic dimensionless parameter quantifying the
strength of the viscous dissipation effect for buoyant flows is today known as Gebhart
number, Ge, which can be interpreted as the ratio between the kinetic energy of the flow
and the heat transferred to the fluid (Gebhart 1962). Gebhart (1962) and, after him, Turcotte
et al. (1974) were the first to propose it, although they did so using a different name, i.e.
the dissipation number. Nevertheless, they showed that such a parameter is usually small,
but can achieve order unity under the aforementioned scenarios.

The effect of viscous dissipation on the onset of instability for several mixed convection
problems in porous media was investigated in a series of studies. Barletta, Celli & Rees
(2009a) and Storesletten & Barletta (2009) were the first to study the particular case where
the internal heating generated by viscous dissipation is the sole cause of destabilisation.
In their studies, no additional thermal forcing was imposed either internally or externally,
namely through the walls or otherwise. The combined effect of internal heating through
viscous dissipation and external heating through different thermal boundary conditions
was studied by Barletta & Storesletten (2010) as well as Barletta, Celli & Nield (2010)
and Nield, Barletta & Celli (2011). Nield & Barletta (2010) also explored two different
models for the viscous dissipation effect. Viscous dissipation effects on non-Darcy models
for flows in porous media were explored by Barletta, Celli & Rees (2009b) and Barletta,
di Schio & Celli (2011b) whereas thermal non-equilibrium, heterogeneity and viscoelastic
fluid models were explored by Barletta & Celli (2011), Barletta, Celli & Kuznetsov (2011a)
and Alves et al. (2014), respectively. Roy & Murthy (2015) investigated the Soret effect
on the double diffusive convection, where the convection is occurring just by means of
viscous dissipation effects. Later on, Roy & Murthy (2017) studied the influence of viscous
heating on the instability induced by an inclined temperature gradient. More recently,
Barletta & Mulone (2021) showed that the classical problem studied by Horton & Rogers
(1945) and Lapwood (1948) is conditionally stable from a nonlinear point of view in the
presence of viscous dissipation.

These studies show that the presence of viscous dissipation has a significant impact
on the onset of instability for flows in porous media when compared with the classical
scenario where this effect is absent (Prats 1966). For instance, throughflow destabilises the
onset of instability in the presence of viscous dissipation but it has no effect on this onset in
the absence of viscous dissipation. This destabilising role of the viscous dissipation effects
on the transition from stable conditions to convective instability also appears in the case of
buoyant flows in clear fluids, as was demonstrated by Requilé, Hirata & Ouarzazi (2020).
The transition from convective to absolute instability, on the other hand, is stabilised by
throughflow in the absence of viscous dissipation (Hirata & Ouarzazi 2010). This is due
to the fact that disturbances require more thermal energy from the base flow to be able
to propagate upstream as the throughflow becomes stronger. The same is not true in the
presence of viscous dissipation, although this is not yet entirely clear in this case (Brandão,
Alves & Barletta 2014).

This literature review shows that linear disturbance temporal growth for convective
porous media flows is not yet fully understood from an asymptotic (modal) perspective
in the presence of viscous dissipation. Furthermore, this is not understood at all from a
transient (non-modal) perspective, with or without viscous dissipation. Hence, the present
paper explores both issues in detail in an attempt to fill these gaps. This is done here by
investigating the possibility of transient disturbance growth, first by looking at eigenvector
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orthogonality, and then by performing a non-modal stability analysis based on optimal
initial conditions. Then, an absolute instability analysis is performed in order to understand
the time asymptotic disturbance behaviour. Section 2 shows the mathematical formulation
of the physical problem, as well as the derivation of the linear disturbance equations.
Section 3 shows the methodologies considered here to solve the eigenvalue problem, and
also the particular issues of the non-modal and modal analyses. Section 4 discusses the
results, while § 5 addresses the most relevant conclusions. Finally, the reader can find
a convergence analysis in Appendix A and more details about the eigenvector matrix
analysis in Appendix B.

2. Mathematical formulation

Fluid flow through a horizontal porous channel with a vertical temperature gradient
induced by external heating from below and an internal heating induced by viscous
dissipation is considered. The channel walls, located at z = 0, 1, are assumed impermeable
with prescribed temperatures, where the lower boundary is hotter than the upper boundary.
Momentum transfer is modelled by Darcy’s law, where thermal equilibrium is assumed
between solid and fluid phases for the local energy balance equation. Furthermore, viscous
dissipation is taken into account and the Oberbeck–Boussinesq approximation is assumed
valid. Therefore, the governing equations of the present problem can be written as

∇ · u = 0, (2.1)

u = RaTk̂ − ∇P (2.2)

and
∂T
∂t

+ u · ∇T = ∇2T + Ge
Ra

u · u, (2.3)

which is subject to the boundary conditions

w = 0 and T = 1 at z = 0 (2.4a,b)

and
w = 0 and T = 0 at z = 1, (2.5a,b)

where the following dimensionless quantities are employed

u = u∗

χ∗/h∗ , x = x
h∗ , t = t∗

σh∗2/χ∗ , (2.6a–c)

P = P∗

μ∗χ∗/κ∗ and T = T∗ − T∗
0

T∗
h − T∗

0
, (2.7a,b)

leading to the following definitions for the Rayleigh, Gebhart and Péclet numbers,

Ra = ρ∗g∗β∗(T∗
0 − T∗

h )κ
∗h∗

μ∗χ∗ , Ge = g∗β∗h∗

c∗ and Pe = u∗
0h∗

χ∗ , (2.8a–c)

where the superscript asterisk denotes a dimensional quantity. In particular, h∗ is the
distance between channel walls, u∗ = {u∗, v∗,w∗} is the velocity vector, x∗ = {x∗, y∗, z∗}
is the coordinate vector, μ∗ is the dynamic viscosity, κ∗ is the permeability, t∗ is the time
coordinate, T∗ is the temperature, ρ∗ is the fluid density at the reference temperature T∗

0 ,
c∗ is the specific heat of the fluid, χ∗ is the effective thermal diffusivity, P∗ is the gauge
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pressure with respect to the hydrostatic pressure, g∗ is the gravity acceleration and β∗ is the
fluid thermal expansion coefficient. Furthermore, σ is the dimensionless ratio between the
volumetric heat capacity of the saturated porous medium and ρ∗

h c∗. Finally, the lower wall
temperature is T∗

h , the upper wall temperature is T∗
0 and the uniform streamwise velocity

is u∗
0. See Alves et al. (2014) for more details about the model.

2.1. Asymptotic expansion
The first step employed here to study the aforementioned problem is to assume an
asymptotic expansion can be used to decompose its dependent variables as

u(x, y, z, t) = ub(z)+ εud(x, y, z, t)+ O(ε2), (2.9)

T(x, y, z, t) = Tb(z)+ εTd(x, y, z, t)+ O(ε2) and (2.10)

P(x, y, z, t) = Pb(z)+ ε Pd(x, y, z, t)+ O(ε2), (2.11)

where the subscripts b and d denote base flow and disturbances, respectively, while ε
represents a dimensionless disturbance amplitude parameter. Two key assumptions are
implicit to this expansion. First, z is the only inhomogeneous coordinate. This implies that
the base flow can be written as a steady state that depends on z alone. Second, disturbance
amplitudes are small, i.e. ε � 1. This implies that all nonlinear terms, represented by the
O(ε2) terms, are negligible.

2.2. Base flow
Equations (2.1)–(2.4a,b) have such a steady state and it is given by

ub(Z) = {Pe, 0, 0}, (2.12)

Tb(z) = 1 − z + GePe2

2Ra
(1 − z)z and (2.13)

Pb(x, z) = P0 − Pe x + Ra
2
(2 − z)z + GePe2

12
(3 − 2z)z2, (2.14)

where P0 is a reference pressure. Two things are worth noting about the effect of viscous
dissipation on this steady state. First, it can only act in the presence of throughflow
(Pe /= 0), because the steady state is a rest state otherwise. Second, it can create a stable
temperature stratification near the hot wall, but only when the throughflow is strong enough
(Pe � 1). Finally, the steady pressure field is non-local, i.e. it has a linear dependence on
the x coordinate. However, only the pressure gradient appears in the governing equations.
Hence, this steady pressure gradient depends on z alone, where its component in the x
direction is constant and responsible for the generation of a steady streamwise throughflow.

2.3. Linear disturbances
Substituting (2.9)–(2.11) into (2.1)–(2.4a,b), cancelling out the O(ε0) steady terms and
neglecting the O(ε2) nonlinear terms, leaves the O(ε) linear terms that form the linear and
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homogeneous disturbance equations

∇ · ud = 0, (2.15)

ud = RaTdk̂ − ∇Pd (2.16)

and

∂Td

∂t
+ ub · ∇Td + ud · ∇Tb = ∇2Td + 2

Ge
Ra

ub · ud, (2.17)

which is subject to the linear and homogeneous boundary conditions

wd = Td = 0 at z = 0 (2.18)

and

wd = Td = 0 at z = 1, (2.19)

where viscous dissipation has a direct effect on the linear disturbances through the last
term in (2.17) when Ge > 0, in addition to the indirect one through the base flow.

Disturbances are further assumed to behave as normal modes in the homogeneous
directions, namely x, y and with respect to time t. In other words,

{ud, Td,Pd} = {û(z), T̂(z), P̂(z)} exp
[
i(αx + βy − ωt)

] + c.c., (2.20)

where c.c. denotes complex conjugate. Furthermore, α and β are the streamwise and
spanwise complex wavenumbers, respectively. Their real parts can be used to calculate
the real wavelengths whereas their imaginary parts are the spatial damping rates. Finally,
ω is the complex angular frequency. Its real part is the real angular frequency whereas its
imaginary part is the temporal growth rate.

Substituting (2.20) for the normal modes into (2.15)–(2.19) for the linear disturbances
leads to the differential eigenvalue problem

iαû(z)+ iβv̂(z)+ ŵ′(z) = 0, (2.21)

iαP̂(z)+ û(z) = 0, iβP̂(z)+ v̂(z) = 0, P̂′(z)+ ŵ(z) = Ra T̂(z), (2.22a,b)

i(Peα − ω)T̂(z)+ T ′
b(z) ŵ(z) = T̂ ′′(z)− (α2 + β2)T̂(z)+ 2

GePe
Ra

û(z), (2.23)

which is subject to the following normal mode boundary conditions:

ŵ = T̂ = 0 at z = 0, (2.24)

ŵ = T̂ = 0 at z = 1. (2.25)

It is convenient to rearrange this system into a single ordinary differential equation,
which can be written in terms of the normal disturbance velocity as

ŵ′′′′(z)− i(Peα − 2 i(α2 + β2)− ω)ŵ′′(z)− 2 iαGe Pe ŵ′(z)

+ (α2 + β2)(i Peα + (α2 + β2)− iω + Ra T ′
b(z)) ŵ(z) = 0, (2.26)

which is a fourth-order ordinary differential equation. Hence, it requires two additional
boundary conditions. They can be obtained from the relation between temperature and
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normal velocity disturbances, derived from (2.21) and (2.22a,b) and given by

T̂(z) = (α2 + β2)ŵ(z)− ŵ′′(z)
Ra(α2 + β2)

, (2.27)

and, hence, (2.26) is subject to the following boundary conditions:

ŵ = 0 and ŵ′′ = 0 at z = 0, (2.28a,b)

ŵ = 0 and ŵ′′ = 0 at z = 1. (2.29a,b)

3. Analysis methodology

Equation (2.26) and its boundary conditions (2.28a,b) and (2.28a,b) are solved here using
a matrix-forming approach. It transforms the ordinary differential equation into a system of
algebraic equations that is recast as a generalised eigenvalue problem. The main difference
between modal and non-modal analyses lies on which information they extract from this
eigensystem to model linear disturbance growth. On one hand, a modal analysis evaluates
the eigenvalues of the generalised eigenvalue problem. On the other hand, a non-modal
analysis evaluates their respective eigenvectors. When doing so, the former models the
behaviour of a single disturbance in the case of convective instability, and of a disturbance
wavepacket in the case of absolute instability. On the same token, the latter models the
behaviour of superposed disturbances.

One consequence of this process is that a modal analysis provides the time asymptotic
behaviour of linear disturbances. In the case of a convectively unstable flow, an excitation
source is capable of promoting the spatial growth of the targeted disturbance downstream
of its location. In the case of an absolutely unstable flow, a disturbance present in the initial
condition grows spatially both downstream and upstream of its original location. In other
words, the former displays the extrinsic dynamics typical of a noise amplifier whereas
the latter displays the intrinsic dynamics typical of an oscillator. Another consequence
of this process is that a non-modal analysis provides initial transient behaviour induced
by weighted disturbance superposition. Commonly known as transient growth, it can
predict a temporary disturbance superposition energy growth even when each individual
disturbance being superposed is time asymptotically stable. All the steps employed by each
approach to the eigenvalue problem are described next.

3.1. Integral transform pair
A truncated series solution for the vertical velocity disturbance is first proposed in the form
of the inverse function

ŵ(z) =
Nt∑

m=1

w̃mψ̃m(z), (3.1)

where the number of terms Nt in this summation series must be chosen high enough to
guarantee a user-prescribed tolerance.
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The orthogonal basis function is obtained from

ψ ′′′′
m (z) = λ4

mψm(z), (3.2)

which is a Sturm–Liouville-type problem subject to boundary conditions

ψm = ψ ′′
m = 0 at z = 0 (3.3)

and

ψm = ψ ′′
m = 0 at z = 1. (3.4)

One can then define the orthonormal basis function

ψ̃m(z) = ψm(z)√
Nm

= −sinh(λm) sin(λmz)√
Nm

, (3.5)

which satisfies the normalised versions of (3.2) and (3.3), as well as eigenvalues

λm = mπ, (3.6)

which allows (3.5) to also satisfy the normalised version of (3.4), where the normalisation
function is defined as

Nm = cos(2λm)+ cosh(2λm)

4
− 1

2
, (3.7)

in order to guarantee (3.5) is orthonormal, i.e.

∫ 1

0
ψ̃m(z)ψ̃n(z) dz = δm,n, (3.8)

where δm,n is the Kronecker delta.
Finally, multiplying (3.1) by the orthonormal eigenfunction in (3.5), integrating the

result over the domain length and using (3.8) leads to

w̃m =
∫ 1

0
ψ̃m(z)ŵ(z) dz, (3.9)

which defines the integral transformed vertical velocity disturbance.

3.2. Matrix-forming approach
The procedure that transformed (3.1) into (3.9) can be applied to (2.26) as well. In other
words, multiplying it by the orthonormal eigenfunction, integrating the result over the
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domain length and using the orthonormality condition leads to

∫ 1

0
ψ̃m(z)ŵ′′′′(z) dz − i

(
Peα − 2i(α2 + β2)− ω

) ∫ 1

0
ψ̃m(z)ŵ′′(z) dz

− 2iαGe Pe
∫ 1

0
ψ̃m(z)ŵ′(z) dz − (α2 + β2)Ge Pe2

∫ 1

0
zψ̃m(z)ŵ(z) dz

+ 1
2(α

2 + β2)
(

Ge Pe2 + 2i
(

Peα − ω − i(α2 + β2 − Ra)
)) ∫ 1

0
ψ̃m(z)ŵ(z) dz = 0,

(3.10)

after replacing the base flow terms, defined in (2.12)–(2.14), where the first term can be
further simplified to yield

∫ 1

0
ψ̃m(z)ŵ′′′′(z) dz =

∫ 1

0
ψ̃ ′′′′

m (z)ŵ(z) dz = λ4
m

∫ 1

0
ψ̃m(z)ŵ(z) dz = λ4

mw̃m, (3.11)

after using the boundary conditions in (2.28a,b), (2.28a,b), (3.3) and (3.4) when
integrating by parts, (3.2) to eliminate the eigenfunction derivative and (3.9). Equation
(3.10) can now be simplified using (3.11), as well as the inverse/transform pair given by
(3.1) and (3.9), respectively, to yield

Nt∑
n=1

Am,nŵn = 0 or A · ŵ = 0, (3.12)

where the coefficients Am,n of the matrix A formed are defined as

Am,n =
(
λ4

m + 1
2 (α

2 + β2)
(

GePe2 + 2i
(

Peα − ω − i(α2 + β2 − Ra)
)))

δm,n

− (α2 + β2)Ge Pe2 A(1)m,n − 2 iαGe Pe A(2)m,n − i (Peα − 2 i (α2 + β2)− ω)A(3)m,n,

(3.13)

which depends on the integral transformed coefficient matrices

A(1)m,n =
∫ 1

0
zψ̂m(z)ψ̃n(z) dz, (3.14)

A(2)m,n =
∫ 1

0
ψ̂m(z)ψ̃ ′

n(z) dz and (3.15)

A(3)m,n =
∫ 1

0
ψ̂m(z)ψ̃ ′′

n (z) dz, (3.16)

whose integrals can be obtained analytically.
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3.3. Non-modal analysis
Extending the inner product between two functions u(z) and v(z) used earlier to define the
real orthogonal eigenfunctions in (3.8) towards complex functions, i.e.

〈u, v〉 =
∫ 1

0
u v∗ dz, (3.17)

where ∗ denotes the complex conjugate, enables one to write

〈Lw, ξ〉 = 〈w,Lξ〉, (3.18)

which defines ξ , the adjoint of w. In the above integral relation, L is the linear operator
associated with (2.26) and, hence, L is the respective adjoint linear operator. It is obtained
using integration by parts to derive the right-hand side of (3.18) from its left-hand side
while imposing appropriate boundary conditions to maintain homogeneity. Doing so
yields

ξ̂ ′′′′(z)− i{Peα − 2 i(α2 + β2)− ω}ξ̂ ′′(z)+ 2iαGe Pe ξ̂ ′(z)

+ (α2 + β2){i Peα + (α2 + β2)− iω + Ra T ′
b(z)} ξ̂(z) = 0, (3.19)

which means operators L and L are identical, except for their third term having opposite
signs. In other words, (2.26) is no longer self-adjoint when both viscous dissipation
(Ge > 0) and throughflow (Pe > 0) are present. This implies that transient growth is
indeed possible.

In order to quantify transient growth, an energy metric must be defined. The most
common choice for incompressible isothermal flows is the kinetic energy. Otherwise, when
temperature gradients become relevant, one can use instead

E(t) =
∫ 1

0

(
σ(|û|2 + |v̂|2 + |ŵ|2)+ γ |T̂|2

)
dz, (3.20)

where σ and γ are arbitrary positive scalars. Nevertheless, it is always possible to prescribe
one of the constants, e.g. σ = 1, since only relative growth measures are important.
Furthermore, even though γ has a quantitative impact on the energy metric, such an
impact is usually not significant (Hanifi, Schmid & Henningson 1996; Biau & Bottaro
2004; Sameen & Govindarajan 2007). The same lack of sensitivity with respect to γ was
noted in the present problem, so the results shown here use γ = 1 as well. Finally, the
inner product defined in (3.17) can be associated with an energy norm as follows:

E(t) = 〈q, q〉 = ‖q(z, t)‖2
E, (3.21)

where q(z, t) = {û, v̂, ŵ, T̂}tr and superscript tr represents the transpose.
It is now possible to define the gain as

G(t) = max
q0 /= 0

(
E(t)
E(0)

)
= max

q0 /= 0

‖q(z, t)‖2
E

‖q(z, 0)‖2
E
, (3.22)

which represents the maximum possible growth at a given time t over all possible initial
conditions q0 = q(0). The state vector q is defined as a linear combination of infinite
eigenvectors. However, this infinite summation has to be truncated for numerical reasons.
Hence, the state vector q must be approximated by

q(z, t) � q̃i(z) ki(t), (3.23)

using Einstein summation notation for a repeated index, where i = 1, 2, 3, . . . ,N, with N
characterising the truncation of the infinite summation. Furthermore, ki(t) = ki(0)e−iωit
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represents the weight of each eigenvector q̃i on the final composition of the state vector q,
as well as the time evolution of each eigenvector q̃i given by its associated eigenvalue ωi.
Substituting (3.23) into (3.21) yields

‖q(z, t)‖2
E =

∫
q∗(z, t)q(z, t) dz =

∫ (
q̃∗

j (z)k
∗
j (t)

) (
q̃k(z) kk(t)

)
dz

= k∗
j (t)Mj,kkk(t) = k∗(t)Mk(t), (3.24)

where the matrix M coefficients are given by

Mj,k =
∫

q̃∗
j (z)q̃k(z) dz, (3.25)

and k = {k1, k2, . . . , kN}. Since M is a positive-definite Hermitian matrix, it can be
decomposed as M = F †F , where F † is the adjoint (conjugate transpose) of F . It is
possible to transform the energy norm in (3.21) into

‖q(z, t)‖2
E = k∗(t)Mk(t) = k∗(t)F †Fk(t) = ‖F k(t)‖2

2, (3.26)

namely an Euclidean norm, leads to the new expression for the gain

G(t) = max
k0 /= 0

‖Fk(t)‖2
2

‖Fk(0)‖2
2

= max
k0 /= 0

‖FΛk(0)‖2
2

‖F k(0)‖2
2

= max
k0 /= 0

‖FΛF−1F k(0)‖2
2

‖Fk(0)‖2
2

, (3.27)

where k0 = k(0) and Λ = diag(e−iω1t, e−iω2t, . . . , e−iωNt). Hence, the gain can be
optimised over all initial conditions at each time t by solving the matrix norm

G(t) = ‖FΛF−1‖2
2, (3.28)

where the superscript −1 means inverse. In other words, (3.28) provides the maximum
energy growth at a given time t for any given pair α and β. An important feature of the
formula given by (3.28) is that it can be easily determined by means of a singular value
decomposition (SVD), as it is always true for the Euclidean norm of a matrix. If this gain
is large enough for a given initial disturbance amplitude, it will likely trigger a subcritical
transition towards a more complex flow pattern.

Since the eigenvectors become orthogonal in the absence of viscous dissipation and
throughflow, it is interesting to note that (3.28) reduces to

G(t) = ‖Λ‖2
2 = e2Im[ω]maxt, (3.29)

because M and F become diagonal matrices, where Im[ω]max is the imaginary part of the
least stable (or most unstable) eigenvalue.

3.4. Absolute instability analysis
In order to identify the transition to absolute instability, one must investigate the behaviour
of a disturbance wavepacket in the limit of very large times (t → ∞). If the analysis is
restricted to a two-dimensional wavepacket, one must evaluate an integral on α over a path
γ , which coincides with the infinite real domain α ∈ (−∞,∞). Its temporal behaviour
for t → ∞ can be given by the largest growth rate on the saddle point of ω on α0
(∂ω/∂α = 0 at α = α0). This conclusion cames from the steepest-descent approximation,
which requires the wavepacket to be holomorphic and the paths γ , coincident to the
real axis of α, and γ ∗, crossing the saddle point α0, to be homotopic. In other words,
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it must be possible to continuously deform γ into γ ∗ in order to apply this approximation.
As already pointed out by Barletta (2019), if there are multiple saddle points α0, the
steepest-descent approximation just keeps those with largest Im[ω]. In the case such saddle
points share the same value of Im[ω], their contributions have to be summed up in order
to apply the steepest-descent approximation. The aforementioned considerations are based
on a two-dimensional wavepacket. However, as pointed out by Brevdo (1991), the same
should be true for three-dimensional wavepackets, namely the asymptotic behaviour of the
wavepacket can be given by looking at Im[ω] on the saddle points of ω on α0 (∂ω/∂α = 0
at α = α0) and β0 (∂ω/∂β = 0 at β = β0).

Identifying the transition to absolute instability can be computationally quite intensive
when employing classical techniques, e.g. finding the steepest descent curve or verifying
the collision criterion, unless saddle points can be cheaply calculated a priori (Alves et al.
2019). In the present case, this can be done by applying the zero group velocity conditions
to the dispersion relation, coupling it with auxiliary dispersion relations that can identify
saddle points. They are, however, a necessary but not sufficient condition for absolute
instability. Once these points have been found, one must either obtain a steepest descent
curve or verify the collision criterion in order to make sure they are, in fact, pinching
points (Barletta 2019).

In order to find the aforementioned saddle points, one must first note that (3.12) only has
non-trivial solutions when

det (A) = 0, (3.30)

for a fixed value of Nt. This equation is, in fact, the dispersion relation for this problem. It
must then be coupled with the additional equations

∂ det (A)
∂α

= 0 and
∂ det (A)
∂β

= 0, (3.31a,b)

respectively, restricted by the zero group velocity conditions

∂ω

∂α
= 0 and

∂ω

∂β
= 0, (3.32a,b)

to provide the auxiliary dispersion relations for this problem. Together, they form a set
of three complex equations that yields the saddle points in the complex α and β planes
and their complex frequency ω for a set of prescribed control parameter values. The
reader is referred to recent in depth reviews for more information about absolute instability
calculations (Alves et al. 2019; Barletta 2019).

4. Results and discussion

4.1. Code verification
Before modal and non-modal linear stability analyses are employed to investigate the
effects of viscous dissipation on the asymptotic and transient disturbance growth in time,
respectively, the codes developed for these analyses are verified under four different
scenarios. The first two involve the modal onset of (convective) instability. In the absence
of viscous dissipation, which is the first scenario, the present model reduces to the
classical problem originally solved by Prats (1966). Furthermore, the classical critical
Rayleigh number for the onset of instability when Pe = 0, i.e. Ra = 4π2, is recovered
even when truncating (3.12) with Nt = 1. This simplified dispersion relation is given
by 4β(2iπ2 − iRa − αPe + 2i(α2 + β2)+ ω) = 0 when Pe /= 0, which suggests that
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Figure 1. Critical Rayleigh number for the onset of convective (a) and absolute (b) instability as a function
of the Péclet number when Ge = 0.1 and 0.0, respectively. Lines represent current results whereas points
represent results from the literature for the former (Nield et al. 2011) and latter (Hirata & Ouarzazi 2010) cases,
respectively.

(convective) instability first appears with β = 0 unless ω = α Pe, since αi = βi = ωi = 0.
Numerical evaluations of the converged (Nt � 1) dispersion relation indicate that this
is indeed the case. It turns out this is also true in the presence of viscous dissipation,
which is the second scenario. Figure 1(a) shows the critical Rayleigh number for the
onset of (convective) instability as a function of the Péclet number obtained from the
present code (line) when Ge = 0.1 and from Nield et al. (2011) (points). There is a very
good agreement between both sets of results. The third scenario considered for verification
purposes is the modal onset of absolute instability in the absence of viscous dissipation.
Figure 1(b) shows the critical Rayleigh number for the onset of absolute instability as
a function of the Péclet number obtained from the present code (line) when Ge = 0.0
and from Hirata & Ouarzazi (2010) (points). Once again, a very good agreement is
observed between both sets of results. Furthermore, this onset also occurs for β = 0.
The fourth and final verification scenario considers non-modal growth. Since direct and
adjoint linear disturbance governing (2.26) and (3.19) are identical in the absence of
viscous dissipation, i.e. when Ge = 0, transient growth cannot occur. Figure 2 compares
the gain temporal behaviour calculated by two metrics for Pe = 100, Ra = 39, α = π
and β = 0 when Ge = 0. One metric is given by (3.29), which calculates the linear gain
based on the dominant eigenvalue (red dashed lines). The other metric is given by (3.28),
which calculates the gain associated with the entire linear dynamics, i.e. based on both
eigenvalues and eigenvectors (black dotted lines). The modal behaviour is manifested in
the exponential temporal evolution of the gain, which is recovered as a straight line in
semi-logarithmic plots. Since this figure shows that both curves are essentially identical
straight lines, it indicates that transient growth indeed does not occur. Finally, summation
series convergence studies are presented in Appendix A.

4.2. Transient disturbance growth
Non-modal growth in the presence of viscous dissipation is considered next. Since
direct and adjoint linear disturbance governing (2.26) and (3.19) are not identical when
Ge > 0 and Pe > 0, transient growth is possible. Gain calculations under several different
parametric conditions, however, do not reveal any significant transient growth. Figure 3
provides evidence in favour of this claim by showing the same results from figure 2 but
for the particular cases where Pe = 200, Ra = −800 and Ge = 0.1 with α = 1, 2, 3 and
4. Differences between results from (3.28) and (3.29) are barely noticeable. Hence, the
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Figure 2. Gain as a function of time for Pe = 100, Ra = 39, α = π, β = 0 and Ge = 0, obtained from (red
dashed) (3.29) and (black dotted) (3.28).
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Figure 3. Gain vs time for Pe = 200, Ra = −800 and Ge = 0.1 for different α with β = 0, obtained from
(red dashed) (3.29) and (black dotted) (3.28).

behaviour of all four cases is essentially modal, with the former three (α = 1, 2 and 3)
being stable and the latter (α = 4) being unstable. The condition number of the eigenvector
matrix can quantify this dominance of the modal behaviour, or weakness of the non-modal
one, since this number is equal to one (infinity) when the eigenvectors are orthogonal
(parallel). Present calculations show that its value is indeed 1 when Ge = 0 and remains
at O(1) when Ge > 0. Table 1 provides similar evidence through the condition number of
the eigenvector matrix for different Rayleigh, Péclet and streamwise wavenumbers when
Ge = 0.1. Even though the aforementioned results were obtained for β = 0, the same
trends were observed for non-zero β as well. Hence, one can conclude that transient growth
is not relevant in this problem.

4.3. Asymptotic disturbance growth

4.3.1. Without internal heating
Since transient growth cannot induce a disturbance amplitude increase in time that is
strong enough to cause a transition from stability to instability, the only other known
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Pe = 10 Pe = 200

Ra α = 1 α = 2 α = 3 α = 4 α = 1 α = 2 α = 3 α = 4

−800 1.04904 1.02566 1.01611 1.01520 2.69633 2.19485 2.42773 2.55025
−200 1.02394 1.06748 1.03055 1.02861 2.24688 2.80835 2.48812 2.45103
0 1.01321 1.02227 1.02632 1.02685 2.08672 3.02338 2.96000 2.77367
10 1.01293 1.02095 1.02410 1.02438 2.07947 3.00730 3.01136 2.85965
30 1.01240 1.01875 1.02070 1.02068 2.06514 2.97036 3.11125 3.05687
500 1.00651 1.00616 1.00588 1.00570 1.78297 2.28230 2.53791 2.68726

Table 1. Condition number of the eigenvector matrix for β = 0 and Ge = 0.1.

linear mechanism that can do so is asymptotic growth. Hence, this section presents results
regarding the influence of viscous dissipation on the transition from convective to absolute
instability. The onset of the former has been investigated for mixed convection within a
porous medium in the presence of viscous dissipation (Nield et al. 2011), but the onset of
the latter has only been investigated for this problem in the absence of viscous dissipation
(Hirata & Ouarzazi 2010). Nevertheless, before doing so, it is important to review some key
aspects of this asymptotic growth when Ge = 0. Figure 4(a) shows the critical Rayleigh
numbers for the onset of convective (dashed line) and absolute (solid line) instability as
a function of the Péclet number obtained using the present code. The former is Péclet
independent, as expected. The latter, on the other hand, shows that an increasing Péclet
number has a stabilising effect. This is a typical result (Barletta 2019). More energy must
be provided to the wavepacket for it to overcome a convectively stronger base flow and
propagate upstream, which is obtained from the external heat source by increasing the
Rayleigh number. Figure 4(b) shows the collision criterion for the particular case with
Pe = 50, showing that the saddle point found using (3.30)–(3.31a,b) is indeed a pinching
point. Although not shown here, the same trends were observed at several other Péclet
numbers. Hence, there is enough evidence supporting the claim that all saddle points
shown in figure 4(a) are indeed pinching points. Two final remarks deserve special mention
for their relevance to subsequent results. First, extensive numerical simulations found no
additional saddle points competing for the role of a pinching point. Second, all pinching
points found have β = 0.

4.3.2. With internal heating: small Péclet numbers
The influence of viscous dissipation on the asymptotic disturbance behaviour is now
discussed, focusing first on small Péclet numbers, namely Pe ≤ 50. Table 2 presents
critical Rayleigh number, real frequency and complex wavenumber for a few given Péclet
and Gebhart numbers at the onset of absolute instability. On one hand, throughflow still
has a stabilising effect on the transition to absolute instability in the presence of viscous
dissipation. On the other hand, viscous dissipation has a destabilising effect on this
transition in the presence of throughflow. This is due to the fact that it acts as an internal
heating mechanism and, hence, less external heating is required. Further insight can be
gained using (3.13). According to this equation, throughflow effects are approximately
O(Pe) whereas viscous dissipation effects are approximately O(Ge Pe2), which explains
why viscous dissipation effects only become relevant at large Ge for these moderate
Pe. Such a dimensional analysis also indicates that throughflow will eventually have a
destabilising effect when it is large enough.
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Figure 4. (a) Critical Rayleigh numbers for the onset of convective (dashed line) and absolute (solid line)
instability as a function of the Péclet number for β = 0 and Ge = 0. (b) Collision criterion (coloured lines)
just before (blue), at (orange) and just after (green) the pinching point (large dot) for β = 0, Ge = 0, Pe = 50
and ωi = 0, with (αr, αi) = (2.88674,−3.12176), where the dashed line represents the steepest ascent path
followed by the pinching point since the onset of convective instability.

Ge Ra ωr αr αi

0 57.80357033 36.29466889 3.392971033 −1.892998861
0.00001 57.80357033 36.29466889 3.392971033 −1.892998861

Pe = 10 0.001 57.80356821 36.29466952 3.392971068 −1.892998943
0.1 57.78233868 36.30100884 3.393320799 −1.893823540
1 55.67720847 36.92610796 3.429577153 −1.975442770

0 91.95276822 80.58388204 3.244755359 −2.683080910
0.00001 91.95276822 80.58388204 3.244755359 −2.683080910

Pe = 20 0.001 91.95276001 80.58389979 3.244755329 −2.683081935
0.1 91.87048609 80.76161896 3.244443972 −2.693351530
1 81.76338060 101.9319733 2.475389669 −4.286565488

0 129.9473274 126.7509511 3.066056433 −2.955662038
0.00001 129.9473274 126.7509511 3.066056433 −2.955662038

Pe = 30 0.001 129.9473189 126.7510369 3.066055558 −2.955664635
0.1 129.8603359 127.6096349 3.057207133 −2.981686401
1 122.5620252 221.1465073 1.462549752 −4.088359361

0 169.0025765 173.2616599 2.955699944 −3.066023330
0.00001 169.0025765 173.2616599 2.955699944 −3.066023330

Pe = 40 0.001 169.0025829 173.2618972 2.955697625 −3.066027740
0.1 169.0531819 175.6356171 2.932236053 −3.110094807
1 164.5281883 384.3249026 1.093322115 −4.080419332

0 208.4410434 219.8576838 2.886746703 −3.121762192
0.00001 208.4410434 219.8576838 2.886746703 −3.121762192

Pe = 50 0.001 208.4410878 219.8581883 2.886742459 −3.121768676
0.1 208.8296192 224.8917744 2.843900004 −3.186302224
1 206.1932311 591.8241623 0.8791537033 −4.084421801

Table 2. Throughflow (Pe) and viscous dissipation (Ge) influence on the transition to absolute instability
(ωi = 0).
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Figure 5. Onsets of convective (small dashed line) and absolute instabilities for Ge = 0.1 and Pe ≤ 450,
showing saddle points (long dashed lines) competing for the role of pinching point (solid line). Red dots
labelled (a–f ) are evaluated at the critical points (Pe,Ra) = (10, 57.7822), (100, 413.001), (206.2, 857.197),
(300, 728.532), (373.2, 402.244) and (420,−58.0117), respectively.

Before proceeding any further, it is important to remind the reader about the Gebhart
number magnitude. In most engineering applications, Ge � 1. However, it is possible to
reach Ge ∼ O(1) in some geophysical flows. This is the reason why such a range was used
in table 2. Nevertheless, for the purposes of the present study, Ge = 0.1 is assumed to be
a reasonable upper bound in the following discussion.

4.3.3. With internal heating: large Péclet numbers
Focus is now switched to a larger Péclet number range, i.e. 50 ≤ Pe ≤ 450. It is important
to remind the reader that the Péclet number is the product of the Prandtl and Reynolds
numbers. Since the former can have quite high values even for moderate values of the latter,
such a large Péclet number range is indeed not uncommon. Furthermore, the influence of
viscous dissipation on the time asymptotic disturbance behaviour is discussed in detail
from this point for Ge = 0.1, which has already been established as a reasonable upper
bound for this parameter. Nevertheless, the disturbance behaviour at smaller Ge values is
summarised at the end of this subsection.

Figure 5 shows the onsets of convective (small dashed line) and absolute (solid line)
instabilities over the aforementioned (Ge,Pe) parametric region, where three different
saddle points (long dashed lines) compete for the role of pinching point. Their respective
collision criterions (solid lines) are provided in figure 6 for the six (Pe,Ra) critical points
(red dots) shown in figure 5. The paths taken by all three saddle points in the complex
streamwise wavenumber plane as the Péclet number varies between 0 ≤ Pe ≤ 450 are
also shown (non-solid lines) in figure 6. As already illustrated in figure 1, it is important
to note that the onset of convective instability is always destabilised by throughflow, so
much so that the flow becomes convectively unstable even when heated from above for
Pe ≥ 68.6575 (Nield et al. 2011). The effect of throughflow on the onset of absolute
instability, on the other hand, is significantly less straightforward. A single downstream
propagating branch α+ is involved in the collision that forms the pinching point for all
Péclet numbers within 0 ≤ Pe ≤ 450. This collision, however, occurs against one of three
different upstream propagating branches, namely α−

1 , α−
2 and α−

3 , within the same Péclet

974 A15-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

78
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.788


P.V. Brandão, L.S.d.B. Alves, D. Rodríguez and A. Barletta

–20

–15

–10

–5

–20

–15

–10

–5

2 4 6 82 4 6 8

αi

(a) (b)

–20

–15

–10

–5

–20

–15

–10

–5

2 4 6 82 4 6 8

αi

(c) (d)

–20

–15

–10

–5

–20

–15

–10

–5

2 4 6 82 4 6 8

αi

(e) ( f )

αrαr

Figure 6. Collision checks for the parametric conditions shown in figure 5 at (a) Pe = 10, where (αr, αi)

= (3.39332,−1.89382), (b) Pe = 100, between branches α+ and α−
1 , where (αr, αi)

= (2.54770,−3.41712), (c) Pe � 206.2 between branches α+ and α−
1 , where (αr, αi) = (1.92771,−3.81869)

and branches α+ and α−
2 , where (αr, αi) = (3.14560,−6.65050), (d) Pe = 300, between branches α+

and α−
2 , where (αr, αi) = (2.68895,−6.76400), (e) Pe � 373.2, between branches α+ and α−

2 , where
(αr, αi) = (2.15204,−7.06621), and branches α+ and α−

3 , where (αr, αi) = (2.70854,−8.96509), and
( f ) Pe = 420, between branches α+ and α−

3 , where (αr, αi) = (2.76478,−8.93637). The non-solid curves
represent the paths taken by each saddle point (i.e. modes 1, 2 and 3) as the Péclet number varies.

number range. Consider first scenario (a) from figures 5 and 6. This particular pinching
point is formed by a collision between branches α+ and α−

1 and called here mode 1. The
other two saddle points are formed by collisions between upstream propagating branches
and, hence, do not have any physical meaning. Mode 1 is the same transition mechanism
observed in the absence of viscous dissipation, as shown in figure 4, where the latter
two saddle points do not exist. A similar transition mechanism is observed in scenario
(b) from figures 5 and 6. The only qualitative difference observed at this higher Péclet
number is related to the wavenumber of the saddle points induced by viscous dissipation,
whose real part is no longer zero. A further increase in the throughflow magnitude to
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Figure 7. Stream function (a,c) and temperature (b,d) isolines for mode 1 (a,b) and mode 2 (c,d) at
Pe � 206.2, i.e. at the first codimension-two point.

Pe = 206.2, however, leads to the emergence of a new transition mechanism. Scenario
(c) from figures 5 and 6 show a codimension-two point where the traditional (convection
dominated) and novel (viscous dissipation dominated) saddle points are equally unstable.
In other words, branch α+ collides simultaneously with branches α−

1 and α−
2 . The latter

collision, however, is called mode 2 here and is the one that leads to the pinching point
at higher throughflow, as shown in scenario (d) from figures 5 and 6. Increasing the
throughflow even further to Pe � 373.2, on the other hand, leads to a new codimension-two
point, but now between both novel viscous dissipation dominated saddle points, as shown
in scenario (e) from figures 5 and 6. In other words, branch α+ collides simultaneously
with branches α−

2 and α−
3 . This second viscous dissipation related collision is called

here mode 3 and leads to the pinching point at higher throughflow, as shown in scenario
( f ) from figures 5 and 6. There are more viscous dissipation related saddle points, but
they only become relevant at higher Gebhart numbers, which are non-physical. Hence,
they are not discussed. Finally, it is important to note that a linear stability analysis
cannot provide additional information about either codimension-two point. Under either
parametric condition, a nonlinear analysis is required to clarify the dynamical system
behaviour.

Figures 7 and 8 show the disturbance streamlines and isotherms at the codimension-two
points Pe � 206.2 and � 373.2, respectively. Dashed (solid) lines stand for negative
(positive) values in the streamline plots. Modes 1, 2 and 3 are clearly distinct from one
another. Similarly to the typical cell pattern behaviour observed in convectively unstable
conditions, higher order modes have a larger number of cells. They are concentrated in
the downstream end of both figures because all three modes grow in space at the onset
of absolute instability. Finally, it is also interesting to note that the cell pattern is closer
to horizontal for mode 1 but closer to vertical for mode 3. This is related to the fact that
the spatial growth rates are different for each mode, as shown in figure 6. In figure 7,
αi = −3.81869 for mode 1 but αi = −6.65050 for mode 2. In figure 8, αi = −7.06621 for
mode 2 and αi = −8.93637 for mode 3.
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Figure 8. Stream function (a,c) and temperature (b,d) isolines for mode 2 (a,b) and mode 3 (c,d) at
Pe � 373.2, i.e. at the second codimension-two point.

Ge Pe ωr αr αi

10−6 4.34466 × 107 4.81994 × 108 1.65043 −7.12735
10−5 4.34466 × 106 4.81993 × 107 1.65043 −7.12735
10−4 4.34463 × 105 4.81982 × 106 1.65042 −7.12738
10−3 4.34431 × 104 4.81873 × 105 1.65026 −7.12759
10−2 4.34116 × 103 4.80784 × 104 1.64871 −7.12967
10−1 4.30897 × 102 4.69781 × 103 1.63212 −7.14877

Table 3. Saddle point data at the onset of absolute instability when Ra = 0 as a function of the Gebhart
number for mode 2.

When Ge = 0.1, as shown in figure 5, the transition from convective to absolute
instability for PeC � 414.651 occurs when Ra = 0. This means that transition is induced
by internal heating alone, i.e. without external heating. In other words, viscous dissipation
alone, without the influence of buoyancy effects, is responsible for the onset of absolute
instability. Furthermore, when Pe ≥ PeC, absolute instability occurs even in the presence
of negative Rayleigh numbers. Under these conditions, a stable temperature stratification
would be induced with Ge = 0. Hence, the internal heating mechanism created by viscous
dissipation is capable of inducing transition even in the presence of the stabilising external
heating mechanism created by buoyancy. It turns out this critical Péclet number is induced
by mode 3 and depends on the Gebhart number according to PeC � 41.9479/Ge, since
the mode 2 dependence is given by PeC � 43.3805/Ge. Both correlations were obtained
using nonlinear regression based on the data provided in tables 3 and 4, which also
provides eigenvalues. The standard errors of both parameters are 2.32605 × 10−3 and
1.35113 × 10−3, respectively. These correlations imply that PeC → ∞ (0) when Ge →
0 (∞), which is expected since more (less) throughflow is required to make viscous
dissipation important when the Gebhart number decreases (increases). Finally, this
correlation also implies that the qualitative trends shown in figures 5–8 would be the
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Linear disturbance growth induced by viscous dissipation

Ge Pe ωr αr αi

10−6 4.20583 × 107 4.6462 × 108 2.60535 −8.96112
10−5 4.20583 × 106 4.64618 × 107 2.60536 −8.96112
10−4 4.20577 × 105 4.64600 × 106 2.60548 −8.96109
10−3 4.20524 × 104 4.64422 × 105 2.60674 −8.96078
10−2 4.19987 × 103 4.62646 × 104 2.61944 −8.95770
10−1 4.14651 × 102 4.44953 × 103 2.75945 −8.92633

Table 4. Same as table 3 but for mode 3.

same for different Gebhart numbers, although occurring at different Rayleigh and Péclet
numbers, which has been confirmed but is not shown.

5. Conclusions

The present paper has investigated the appearance of natural convection, as induced
by temporal disturbance growth, in the otherwise forced convection in porous media.
At any given throughflow (Péclet number), instability could be induced by internal
(Gebhart number) and/or external (Rayleigh number) heating. Both modal (asymptotic)
and non-modal (transient) linear mechanisms have been considered. A matrix-forming
approach based on a continuous spectral method has been employed to solve the
differential eigenvalue problem. On one hand, the modal analysis has been performed
using the dispersion relation obtained from the determinant of the resulting matrix.
Auxiliary dispersion relations were then obtained by applying the zero group velocity
conditions to verify the possibility of modal growth in time through absolute instability.
On the other hand, the non-modal analysis has been performed using both the SVD of
this matrix as well as the condition number of the respective eigenvector matrix. They
allowed us to verify the possibility of transient growth. The major findings of our study
are summarised as follows:

(i) In the absence of viscous dissipation, i.e. when the Gebhart number is zero, the
differential eigenvalue problem is self-adjoint. However, this is no longer true for
positive Gebhart numbers. Hence, non-modal growth is possible.

(ii) Non-modal growth was found negligible for a wide range of Péclet, Gebhart and
Rayleigh numbers. Hence, it is possible to infer that there is no transient growth.
This is true for two- and three-dimensional disturbances.

(iii) In the absence of internal heating, modal growth does occur for strong enough
external heating, although throughflow has a stabilising effect. In the presence of
internal heating, however, this is only true for a weak enough throughflow.

(iv) For a moderate throughflow, internal heating drives modal growth, where
throughflow has a destabilising effect. Absolute instability is possible even in the
absence of external heating, i.e. at zero Rayleigh number.

(v) For strong throughflows, internal heating is capable of inducing modal growth even
in the presence of external cooling from below. In other words, absolute instability
occurs for negative Rayleigh numbers.

(vi) In the three cases mentioned above, namely weak, moderate and strong
throughflows, modal growth is controlled by mode 1, 2 and 3, respectively.
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Nt Ra ωr αr αi βr βi

1 805.84995 919.50910 2.6831710 −3.2447120 0 0
2 805.84995 919.50910 2.6831710 −3.2447120 0 0
3 805.84995 919.50910 2.6831710 −3.2447120 0 0

Table 5. Saddle point summation series convergence for Ge = 0 and Pe = 200.

(vii) Two codimension-two points separate these three cases when Ge = 0.1. The first
one, separating weak and moderate throughflows, is located at Pe � 206.2 whereas
the second one, separating moderate and strong throughflows, is located at Pe �
373.2.

(viii) Internal heating due to viscous dissipation effects is responsible for the appearance
of modes 2 and 3, becoming the dominant mechanism over external heating
responsible for the onset of absolute instability at moderate and strong throughflows.

(ix) Transverse modes are responsible for all modal growths discussed here. This is true
when either internal or external heating acts as the dominant mechanism.

Current research is simulating the fully nonlinear system of governing equations to
investigate both codimension-two points, which mark the switch between external and
internal heating dominated absolute instabilities, as well as the switch between both
internal heating dominated absolute instabilities, as throughflow increases. Furthermore,
the possibility of a spatial non-modal growth is also being investigated.
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Appendix A

This appendix contains GITT summation series convergence results for the modal analysis.
Table 5 lists the saddle point at Pe = 300 and Ge = 0 converging as the number of terms in
the series increases. A single term is enough to converge these results essentially because
the matrix formed by (3.13) becomes diagonal, i.e. the coefficients given by (3.13) become
decoupled.

Tables 6–8 are equivalent to table 5 but for Ge = 0.1 and three different values of Pe,
namely Pe = 200, 300 and 400, respectively. Comparing tables 5 and 6 shows that a larger
number of terms is required for convergence, which is caused by the stability problem no
longer being diagonal due to the use of a positive Gebhart number. In addition, comparing
tables 6, 7 and 8 indicates that a larger Péclet number slows down convergence, which is
caused by the orthogonal basis function used in the integral transformation being diffusive
in nature.
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Linear disturbance growth induced by viscous dissipation

Nt Ra ωr αr αi βr βi

1 805.84995 919.50910 2.6831710 −3.2447120 0 0
2 819.69602 1280.8055 1.8300841 −3.8381616 0 0
3 831.28737 1265.6553 1.9631675 −3.8001185 0 0
4 831.36828 1265.6391 1.9639903 −3.8009264 0 0
5 831.39062 1265.5917 1.9642950 −3.8008643 0 0
6 831.39311 1265.5960 1.9643095 −3.8008681 0 0
7 831.39426 1265.5945 1.9643222 −3.8008643 0 0

Table 6. Same as table 5 but for Ge = 0.1.

Nt Ra ωr αr αi βr βi

1 1204.8158 1385.9714 2.6616176 −3.2548205 0 0
2 354.24122 2100.6746 3.7937650 −5.4170145 0 0
3 796.35942 2812.0059 2.1351767 −6.6559389 0 0
4 729.85690 2681.4706 2.7003349 −6.7492057 0 0
5 728.57243 2681.3077 2.6881397 −6.7641335 0 0
6 728.50986 2681.0557 2.6888642 −6.7638850 0 0
7 728.53277 2681.0481 2.6889544 −6.7639994 0 0

Table 7. Same as table 6 but for Pe = 300.

Nt Ra ωr αr αi β

1 1603.8421 1852.4319 2.6509504 −3.2596476 0
2 −280.57751 2838.3252 3.8821172 −5.3232453 0
3 439.16445 4529.0916 1.4700156 −6.5769145 0
4 261.87251 4177.0527 2.0059728 −8.2224511 0
5 150.98768 4221.3669 2.7716122 −8.9152589 0
6 151.78042 4222.4975 2.7401118 −8.9160341 0
7 151.55003 4222.2187 2.7410558 −8.9148381 0

Table 8. Same as table 7 but for Pe = 400.

Appendix B

This appendix contains a description of the eigenvector matrix construction as well as the
condition number convergence. The eigenvectors are constructed based on the integral
transformation (3.1), where w̃m comes from the solution of the integral transformed
eigenvalue problem. To construct a matrix in which the columns are the eigenvectors it
is necessary to transform the continuous dependence on z into a discrete one. In that
way, one can have a matrix in which the columns are the eigenvectors, and the rows
represent the z dependence of each one. The number of columns and rows are related
with the number of terms used in the summation series truncation and the points used
in the discretisation, respectively. Here, the discretisation of the z component is based on
a uniform grid spacing, which is given by 1/Nz, where Nz is the number of points used
by the discretisation. The condition number calculations are then based on the condition
number definition for a generic matrix A, namely

cond(A) = ‖A‖ ‖A+‖, (B1)
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Nt Ra = −500 Ra = 10

2 1.578542192 1.600837310
3 1.935003686 2.010370077
4 2.206965557 2.322938213
5 2.338921606 3.110877145
6 2.388373033 3.010468575
7 2.387284039 3.011361264
8 2.387381751 3.011097911
9 2.387380690 3.011118643
10 2.387390999 3.011101956

Table 9. Condition number convergence for Ge = 0.1, Pe = 200, α = 3 and Nz = 10.

Nz Ra = −500 Ra = 10

5 1.954485218 1.972713310
10 2.387284039 3.011361264
15 2.387284039 3.011361264
20 2.387284039 3.011361264

Table 10. Same as table 9 but for Nt = 7.

where A+ is the pseudo-inverse of A. Tables 9 and 10 list the condition number
convergence in terms of Nt and Nz.

The convergence of the non-modal results is assumed, based on both modal and
eigenvector matrix condition number convergence. In other words, it is considered here
that the transient growth analysis is convergent because both eigenvector and eigenvalue
calculations are convergent.
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