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Abstract
The analysis of insurance and annuity products issued on multiple lives requires the use of statistical models which
account for lifetime dependence. This paper presents a Dirichlet process mixture-based approach that allows to
model dependent lifetimes within a group, such as married couples, accounting for individual as well as group-
specific covariates. The model is analyzed in a fully Bayesian setting and illustrated to jointly model the lifetime
of male–female couples in a portfolio of joint and last survivor annuities of a Canadian life insurer. The inferential
approach allows to account for right censoring and left truncation, which are common features of data in survival
analysis. The model shows improved in-sample and out-of-sample performance compared to traditional approaches
assuming independent lifetimes and offers additional insights into the determinants of the dependence between
lifetimes and their impact on joint and last survivor annuity prices.

1. Introduction
The pricing of insurance products issued on multiple lives, such as couple members, requires the use of
statistical models which can best predict their future lifetimes. The assumption of independent lifetimes
can sensibly reduce the model complexity and ease the implementation of computational routines for
pricing. However, this assumption is not tenable in practice. For example, partners are likely to share
the same socioeconomic characteristics, which affect their living standards and their exposure to similar
risks (Denuit and Cornet, 1999; Denuit et al., 2001).

Furthermore, the use of the simplistic independence assumption can have a material impact on actuar-
ial valuations. For example, Denuit and Cornet (1999) use a Markov model where the force of mortality
depends on marital status and show how the premium of a widow pension annuity is 10% lower com-
pared to the case where lifetime independence between husband and wife is assumed. Frees et al.
(1996) employ a one-parameter copula model, demonstrating the presence of a positive dependence
between husband and wife lifetimes and show that the annuity value is 5% lower compared to the case
of independent lifetimes.

A wealth of approaches have been proposed for the analysis of dependent lifetimes, especially in
the biostatistical and in the actuarial fields, with copula models being among the most employed ones.
The aforementioned paper of Frees et al. (1996) analyzes a one-parameter Frank copula with Gompertz
marginals for the lifetimes of the male and the female within a couple. Carriere (2000) extends this
analysis by considering other marginal distributions for the future lifetime, as well as other types of
copulas, and Deresa et al. (2022) focus on the statistical properties of copula models in presence of
left-truncation and dependent censoring. Bivariate survival data are also modeled using Archimedean
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copulas for the spouses’ stochastic intensities, see Luciano et al. (2008), and the non-parametric esti-
mators of Lopez (2012) and Gribkova and Lopez (2015). Youn and Shemyakin (1999) were the first
to account for covariates when modeling dependence. More precisely, they employ a Gumbel copula
with Weibull marginals, with dependence parameter which accounts for the age difference between the
spouses. They find that this feature is likely to influence the statistical association between husband and
wife lifetimes. Dufresne et al. (2018) use Gompertz marginals for the time to death of the male and of
the female within a couple and observe how the gender of the eldest partner has also an influence on
the lifetime dependence. A first alternative to copula models to account for lifetime dependence is the
use of Markovian models, drawing on the earlier idea of Norberg (1989), such as the papers of Denuit
and Cornet (1999), Spreeuw and Owadally (2013) and Ji et al. (2011). In particular, Ji et al. (2011)
and Spreeuw and Owadally (2013) also consider the temporary impact of bereavement on the mortality
of the surviving spouse through a semi-Markov model. Ji et al. (2012) discuss the application of this
semi-Markov model when analyzing reverse mortgage terminations. We refer to Ji et al. (2011) for an
account of the key differences between Markov models and copulas to model dependent lifetimes.

Another possibility to model-dependent lifetimes is given by models using random effects (or frailty
components, see Vaupel et al., 1979) to capture the dependence between lifetimes. This means that
conditional on a latent variable, then lifetimes are independently distributed. For example, the paper
of Gourieroux and Lu (2015) extends a Freund model accounting for the bereavement effect through a
common gamma-distributed frailty for the analysis of mortality dependence between couple members,
and Yashin and Iachine (1995) develop a correlated gamma frailty model for the analysis of the joint
lifetime of Danish twins. The lifetime dependence of the latter was analyzed also in the paper of van den
Berg and Drepper (2022) using a mixed proportional hazard model à la Abbring and van den Berg (2003)
with a frailty which follows a Cherian bivariate Gamma distribution. They find that the dependence
can be chiefly attributed either to genetic features or to early childhood upbringing, rather than the
bereavement effect. Similarly, the paper of Lu (2017) analyzes the mortality profile of couples in a
portfolio of joint life annuities of a French insurer using a flexible bivariate semi-parametric model
based on the Gamma distribution, which is motivated by its mathematical tractability.

In the field of biostatistics, a closely related problem is given by modeling dependent time to event
and time to censoring. Huang and Wolfe (2002) address this problem by assuming a Cox proportional
hazard model for the hazard function of two random variables, whose linear term includes a normally
distributed log-frailty component. Gorfine and Hsu (2011) consider other parametric functions for the
distribution of the individual frailty.

The current approaches based on copula, Markov multi-state models and random effects are based
on specific parametric or semi-parametric assumptions about lifetime dependence. Their possible mis-
specification may have the impact of yielding biased estimates for the joint (conditional) distributions
of interest. The papers of Ungolo and van den Heuvel (2022, 2024) overcome this potential misspeci-
fication issue by using a multivariate random effect with a discrete distribution and unknown location
and number of levels, which are to be estimated.

On the other hand, existing approaches using random effects do not account for covariates in their
distribution in order to explain the dependence among time to events.

This paper contributes to the literature by proposing the augmented variable Dirichlet process mixture
(AVDPM) model, which consists of a joint probability distribution of the time to events and of the group-
specific covariates, where all these variables are independently distributed, conditional on a multivariate
latent variable, whose discrete probability distribution is drawn from a Dirichlet process. In this way, we
can flexibly account for the lifetime dependence among units within a group, and at the same time we
can account for those common covariates which capture the dependence between lifetimes. The model
parameters are estimated by means of a fully Bayesian analysis, which may include the information
available to the researcher. In addition, we show how this approach can easily account for right censoring
and left truncation.
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This paper is organized as follows: Section 2 briefly introduces the Dirichlet process and the Dirichlet
process mixture model, and Section 3 presents the AVDPM model for the analysis of dependent lifetimes.
Section 4 describes the empirical dataset used for illustrating the model and the additional parametric
features for the joint lifetime of male–female couples and for the couple-specific covariates. Section 5
describes the Bayesian inferential framework for the analysis of the AVDPM model. Section 6 presents
the results of the empirical analysis, and Section 7 shows how the model can be used when pricing joint
life and last survivor annuities, and how it compares with approaches assuming independent lifetimes.
Section 8 extends the AVDPM to the analysis of more general groups of dependent lifetimes, and Section
9 concludes.

2. Dirichlet processes and Dirichlet process mixtures
The Dirichlet process (DP) was first introduced by Ferguson (1973) to specify a probability model for
the random masses of a discrete distribution G. We thus say that G follows a Dirichlet process on the
measurable space (�, G) if for any measurable partition

(
W1, . . . , Wq

)
of �, then(

G (W1) , . . . , G
(
Wq

))∼ Dirichlet
(
φG0 (W1) , . . . , φG0

(
Wq

))
which we write G ∼ DP (G0, φ). Hence, a random draw from the DP yields an almost sure discrete
probability distribution over a countably infinite number of points drawn independently from a base
distribution denoted as G0, which specifies the DP together with the concentration parameter φ (see
Gelman et al., 2013, Chapter 23 and De Iorio et al., 2004). The φ parameter captures the degree of
shrinkage of G toward G0, or in other words, the strength of the prior assumption G0 over G, analogous
to the prior assumption about the parameters of a probability distribution in Bayesian statistics.

Sethuraman (1994) outlines a construction of G as a mixture distribution with a countably infinite
number of components, indexed by k:

G =
∞∑

k=1

πkδγk , (2.1)

where γk
i.i.d.∼ G0 for k = 1, 2, . . ., and δγk denotes the Dirac measure that assigns unitary mass if γ = γk

and zero otherwise. The mixture weights πk are randomly generated using the so called stick breaking
procedure (SBP), which rescales a set of i.i.d. random variables ψk

i.i.d.∼ Beta (1, φ) as follows:

πk ≡ πk (ψ1:k)=ψk

k−1∏
j=1

(
1 −ψj

)
. (2.2)

where ψ1:k = (ψ1, . . . ,ψk). The “stick breaking” definition refers to the decreasing size of the mixture
weights as the index k increases. From this characterization, we can observe how a random draw from
a Dirichlet process yields a discrete distribution over a countably infinite number of atoms from G0.

In this paper, we are interested in a flexible model for the probability distribution of a random variable
Ti, eventually multivariate, for the ith unit, whose density f (·; β, γi) is indexed by a global parameter
vector β, common to all units, and by a unit-specific parameter vector γi. Unit-specific parameters, com-
monly referred as random effects in biostatistics, are introduced in a probability model to characterize
the heterogeneity among the units due to unobservable variables.

To achieve this goal, we assume that γi are drawn from a discrete distribution G, which follows a
Dirichlet process. Therefore, convolving the density of Ti with G ∼ DP (G0, φ) yields a Dirichlet process
mixture (DPM) model (Lo, 1984):

f (t | β, G)=
∫
	γ

f (t | β, γ ) dG (γ )=
∞∑

k=1

πkf (t | β, γk) (2.3)

where 	γ denotes the sample space of γ .
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The DPM model hereby defined allows for a more flexible distribution of Ti, which can capture
complex features in the data, such as fat tails and multimodality, as opposed to the case where we specify
a parametric model for γi, such as the normal distribution.

This DP construction is flexible since despite its apparent nonparametric nature, it regularizes the
distribution of G toward a simple parametric form G0 through the concentration parameter φ.

From another perspective, a discrete distribution for γi ∼ G is akin to the creation of ties among the
units, which can configure clusters of observations with the same values of γ . Let si = k to indicate that
the ith unit belongs to the kth cluster characterized by the parameter γ ∗

k . We use the superscript ∗ to
denote the common values of γi across the n units in the sample. The clustering procedure, tuned by
the parameter φ, allows to sequentially group the observations through a sampling process known in
the literature as the Chinese restaurant process (see Heinz, 2014 for an illustration). In words, as we
observe the units in a sequence, these are more likely to be in a certain class with a probability that
depends on the number of units already therein, or to belong to a newly created class with a probability
which depends on φ (see Blackwell and MacQueen, 1973 for a characterization in terms of the Pólya
urn distribution).

The use of Dirichlet processes can also be seen as a method to infer the number of components
of a mixture distribution, as opposed to strategies based on appropriate model selection criteria (see
Ungolo and van den Heuvel, 2022 for a discussion). Their advantage is to avoid the specification and
the estimation of several models with different numbers of mixture components, which can be time
consuming.

Summing up, the DPM model assumes the following data generating process for a sample t1, . . . , tn:

πk | φ ∼ SBP (φ) , k = 1, 2, . . . ;

γ ∗
k | G0

i.i.d.∼ G0, k = 1, 2, . . . ;

si | π1, π2, . . .
i.i.d.∼ Discrete (π1, π2, . . .) , i = 1, . . . , n;

ti | β, γ ∗
si

i.i.d.∼ f
(
ti | β, γ ∗

si

)
i = 1, . . . , n.

(2.4)

3. The Augmented Variable DPM model
This section introduces the augmented variable Dirichlet process mixture (AVDPM) model for the
analysis of nonexchangeable joint dependent lifetimes within a group, where individual as well as group-
specific covariates are available. For example, husband and wife lifetimes are likely to be positively
associated (Denuit et al., 2001), since they share the same living conditions (e.g. diet, socioeconomic
factors), are exposed to similar risks (e.g. during a catastrophic event they are likely to be in the same
place), or eventually subject to the broken-heart syndrome (Parkes et al., 1969). Other examples include
the joint lifetimes of the primary and secondary head of an insurance policy, families with husband, wife
and one child, and so on. We describe the framework in the context of a model for the joint lifetime of
male–female couples. In Section 8, we discuss how to extend the framework to more general cases of
groups with different numbers of exchangeable lifetimes.

Let Ti =
(
Ti,1, Ti,2

)
, where Ti,1 and Ti,2 denote the random future lifetime of husband and wife, respec-

tively, for the ith couple, with individual-specific vector of characteristics xi,1 and xi,2 (such as age,
medical status, and so on) fixed and observable, and couple-specific covariates vector Zi, which can
include for example household income and geo-demographic profile (an indicator of the socioeconomic
status, see Ungolo et al., 2019), which we treat as a random variable. Therefore, Zi includes any fea-
tures that can explain the statistical association between the lifetimes of the husband and of the wife.
For example, the household income can explain the heterogeneity in the longevity profile of each couple
member since a wealthy couple can access better healthcare services all else being equal, compared to a
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deprived one. Similarly, the geo-demographic profile, capturing the effect of the area where the couple
lives (e.g. urban or rural), can also be a proxy for the socioeconomic characteristics of a couple.

For the ith couple, we assume that conditional on a couple-specific bivariate random effect γi =(
γi,1, γi,2

)
, then Ti,1 and Ti,2 are independently distributed. This is, for example, the approach followed in

Ungolo and van den Heuvel (2022) when analyzing a joint model for the time to event and the time to
censoring and by Ungolo and van den Heuvel (2024) where they develop a joint model for the time to
competing risk events.

The AVDPM model “augments” the joint probability distribution of
(
Ti,1, Ti,2

)
by specifying a joint

probability model for
(
Ti,1, Ti,2, Zi

)
:

f
(
ti,1, ti,2, zi | xi,1, xi,2;β1, β2, G

)
=
∫
	γ ,ζ

[
2∏

j=1

f
(
ti,j | xi,j;βj, γi,j

)]
f (zi | ζi) dG

(
γi,1, γi,2, ζi

)
(3.1)

where βj is the parameter specific to the future lifetime density of the husband (j = 1) or of the wife
(j = 2), ζi is the couple-specific parameter vector indexing the distribution of Zi (which can also include
global parameters, i.e. not couple-specific), and 	γ ,ζ denotes the sample space of (γ1, γ2, ζ ). We
generically denote by f the probability density function of continuous variables and the mass function
of the discrete ones.

The joint distribution of Equation (3.1) allows to capture the dependence between Ti,1 and Ti,2 and
between

(
Ti,1, Ti,2

)
and Zi through the joint distribution of

(
γi,1, γi,2, ζi

)
. The individual-specific fixed

covariate vector xi,j directly enters the regression function of Ti,j. On the other hand, the ith couple-
specific covariate vector Zi is assumed to affect the individual lifetime distribution only indirectly,
through

(
γi,1, γi,2, ζi

)
. Indeed, it is reasonable to assume that individual variables like medical status

and age affect the individual mortality directly, while couple-specific variables like household income
can have an indirect effect on mortality through the affordability of good quality healthcare services.
This model differs from treating Zi as an exogenous variable, for example by including this observable
variable among the set of fixed covariates within a regression function, such as in the paper of Deresa
et al., (2022). Both approaches allows to estimate the effect of Zi on the distribution of Ti,j, as shown in
Equation (3.3) below. In addition, the density of Equation (3.1) allows to have an understanding of the
differing strength of the statistical association between Ti,1 and Ti,2 as we show in the empirical analysis
of Section 6.

We complete the model specification by assuming that the multivariate discrete distribution G is
a random draw from a Dirichlet process, and write G ∼ DP (G0, φ). For simplicity, we assume G0 =
G0,γ × G0,ζ , that is γ and ζ are independently distributed in the base distribution. This specification still
induces a dependence between γ and ζ through the concentration parameter φ. A further simplification
can be to specify G0,γ = G0,γ1 × G0,γ2 , leaving the distribution of

(
γi,1, γi,2, ζi

)
fully tuned by φ. However,

the former approach allows to account for the prior information from the researcher about the joint
distribution of the parameters, including the statistical association between γ1 and γ2, as more reasonable
for the analysis of male–female couples.

An additional feature of this factorization, which enhances the flexibility of this joint model is that we
can specify different parametric models for Ti,1 and Ti,2, and that it allows for both positive and negative
dependencies between lifetimes, similarly to the model of Lu (2017).

As in Equation (2.3), we can rewrite the density in (3.1) as a mixture distribution with an infinite
number of components, obtaining the augmented variable DPM (AVDPM)model:

f
(
ti,1, ti,2, zi | xi,1, xi,2;β1, β2, G

)
=

∞∑
k=1

πk

[
2∏

j=1

f
(
ti,j | xi,j;βj, γ

∗
k,j

)]
f
(
zi | ζ ∗

k

)
(3.2)
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where πk (k = 1, 2, . . .) is the mixture weight characterized by the stick-breaking procedure described
in Section 2, and the superscript ∗ denotes the unique values of γi,j and ζi.

The flexibility of this factorization allows to understand the impact of Zi on the distribution of Ti,j (or
of
(
Ti,1, Ti,2

)
) by using standard probability calculus:

f
(
ti,j | xi,j, zi; βj, γ

∗
·,j, ζ

∗
·
)=

∞∑
k=1

πkf
(
ti,j | xi,j; βj, γ

∗
k,j

)
f
(
zi | ζ ∗

k

)
∞∑

k=1

πkf
(
zi | ζ ∗

k

) . (3.3)

where γ ∗
·,j = (γ ∗

1,j, γ
∗

2,j, . . . ) and ζ ∗
· = (ζ ∗

1 , ζ ∗
2 , . . . ).

In a similar fashion, we can derive the probability distribution of the time to death of the last
survivor T1,2 = max (T1, T2). We omit the subscript i for notational convenience. The corresponding
survivor function, simplistically denoted as Sx1,x2 (t | z), is useful especially in actuarial calculations, as
we illustrate in Section 7:

Sx1,x2 (t | z) : = P
(
T1,2 > t | x1, x2, z

)= 1 − P (T1 < t, T2 < t | x1, x2, z) , (3.4)

where

P (T1 < t, T2 < t | x1, x2, z)=

∞∑
k=1

πkf
(
z | ζ ∗

k

) [ 2∏
j=1

∫ t

0

f
(
u | xj; βj, γ

∗
k,j

)
du

]
∞∑

k=1

πkf
(
z | ζ ∗

k

) .

Analogous formula can be used for the joint life survival probability, denoted as Sx1,x2 (t | z), character-
izing the random variable T1,2 = min (T1, T2).

The DPM naturally clusters each couple into different classes. If we say that W is the random class
allocation for a couple, we can calculate the probability of belonging to a certain class k conditional on
the value of Z:

P (W = k | Z = z)= πkf
(
z | ζ ∗

k

)
∞∑

h=1

πhf
(
z | ζ ∗

h

) . (3.5)

In this way, we can understand how the various couples belonging to the kth class can share the same
mortality profile and husband–wife mortality dependence relationships.

Compared to earlier literature in the field, the AVDPM model extends the mixture model analyzed
by Ungolo and van den Heuvel (2022) since the authors consider a discrete random component (inde-
pendent of Z) with unknown number of levels, chosen by means of a model selection procedure. The
limitation of this approach is the need of estimating several models, which can be particularly time
consuming for larger datasets as mentioned in Section 2. Ungolo and van den Heuvel (2024) overcome
this issue by assuming that the random component is drawn from a discrete distribution following a
Dirichlet process as in this paper. However, their joint lifetime model does not account for the statistical
association among competing risks due to common factors.

To the best of our knowledge, the aforementioned papers (Section 1) of Youn and Shemyakin (1999)
and Dufresne et al. (2018) are the sole contributions accounting for the common variable Z (the absolute
value of the age difference between the spouses and gender of the oldest partner) within the copula
dependence parameter.

The factorization implied by the AVDPM model can also find application in the analysis of the time to
competing causes of death, where Z accounts for those genetic factors affecting the dependence between
the causes. Alternatively, the AVDPM model can be used to jointly model dependent frequency and/or
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severity of claims in nonlife and health insurance by type of event or line of business, without necessarily
specifying a strong parametric assumption on the dependence, as can be the case with copula models.

4. Data and parametric model
We showcase the approach outlined in Section 3 to the analysis of the Canadian life insurance dataset
initially studied by Frees et al. (1996) and then by Deresa et al. (2022) and Dufresne et al. (2018) among
others. After some data processing operations, briefly described in Section 1 of the Supplementary
Material, we have information about 13,482 joint and last-survivor annuity contracts in force between
December 29, 1988 and December 31, 1993 (the observation period).

Specifically, we focus on a joint model for the lifetime distribution of individual members of male–
female couples, for which we observe the starting date of the contract, the date of birth (thus their age at
the start of the contract), and the date of death if any couple member dies within the observation period.
This dataset contains a large number of censored units: indeed, we only observe 1,424 deaths among
males and 500 deaths among females, while the remaining units are all right censored. In addition,
most couples’ lifetime data are subject to left truncation. This means that we are able to observe the
annuity contract only if both couple members are alive at the start of the observational period. Right
censoring and left truncation must then be taken into account when deriving the likelihood function of
the observations, as we have shown in Section 5.

In this dataset, the age at the start of the contract is the only individual-specific covariate (average of
65.54 for males and 62.64 for females), which we denote as xi,j for the jth member of the ith couple. As
in Dufresne et al. (2018) and Youn and Shemyakin (1999), we consider also the age difference (mean
of 2.91 years) through the random variable ZA

i = ln
(|Xi,1 − Xi,2|

)
and the indicator variable ZM

i , which
is equal to 1 if the male is older than the female and 0 otherwise (the male is the oldest policyholder in
76.9% of the couples in the dataset). According to their analysis, a model including these two variables
captures some additional features of the association between the lifetime of the husband and of the
wife. More precisely, they claim that the larger the age difference, the lower the lifetime dependence.
In addition, Dufresne et al. (2018) observe how the ZM

i covariate has an influence in the relationship
between husband and wife, consequently affecting their lifetime dependence. Therefore, we will consider
ZA

i and ZM
i as the two elements of the couple-specific covariates, Zi =

(
ZA

i , ZM
i

)
.

We randomly split the dataset into a training set, corresponding to 75% of the policyholders within
the dataset (10,112 units), and use the remaining 25% to assess the out of sample performance of the
model (3,370 units).

Following Frees et al. (1996) and Carriere (2000), we specify a Gompertz-type hazard function to
characterize the probability distribution of the male (j = 1) and the female (j = 2) lifetime within the ith
policy:

μ
(
t | xi,j; αj, βj, γi,j

)= exp
(
αj + βj

(
xi,j − x + t

)+ γi,j

)
, (4.1)

where x = 70 is set in order to decrease the posterior correlation between αj and βj, which improves
the convergence of the MCMC sampler. The choice of x is based on an indicative average value of x as
calculated across males and females. For example, Ungolo et al. (2020) set x = 77.5 since they analyzed
a pension scheme dataset with older scheme members.

We consider the male–female lifetime dependence by assuming a couple-specific frailty term
exp

(
γi,j

)
and a joint model for

(
γi,1, γi,2

)
. The parameter αj denotes the log-baseline hazard function

and βj measures the log-linear increase in the hazard function due to the individual age. The probability
density function of Ti,j can be written as:

f
(
t | xi,j;αj, βj, γi,j

)= exp

[
−
∫ t

0

μ
(
s | xi,j; αj, βj, γi,j

)
ds

]
μ
(
t | xi,j; αj, βj, γi,j

)
. (4.2)
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For the couple-specific covariates, we assume that ZA
i ∼ N

(
ζ A

i , σ 2
A

)
and ZM

i ∼ Bernoulli
(
ζM

i

)
. The

density of Ti,j as a function of xi,j and zi follows from Equation (3.3). In this way, we can easily observe
how the resulting joint model for

(
Ti,1, Ti,2, Zi

)
has an additional layer of flexibility since the effect of Zi

on the hazard function (through dependent γi,j, ζ A
i and ζM

i ) is not necessarily proportional nor monotone.
The ith couple-specific parameters are drawn from a multivariate random discrete distribution G,(

γi,1, γi,2, ζ A
i , ζM

i

)∼ G, where G is a draw from a Dirichlet process with concentration parameter φ and
base measure G0:

G0 = g
(
γi,1, γi,2 | 0,γ

)︸ ︷︷ ︸
MVN(0, γ )

g
(
ζ A

i | mA, s2
A

)︸ ︷︷ ︸
N(mA , s2

A)

g
(
ζM

i | 13.31, 4.44
)︸ ︷︷ ︸

Beta(13.31, 4.44)

. (4.3)

This model for the base distribution is motivated by the need to carry out a computationally efficient
Bayesian inference by exploiting the conditional conjugacy of the parameters where possible, whilst
keeping the model simple and flexible enough to capture the complex features of the data.

The parameters of the Beta distribution for ζM
i follow from an elicitation process where we specify

a weakly informative distribution. Indeed, we expect that for most contracts the male couple member is
the oldest in the couple; therefore, we set ζM

i to have mean 0.75 and standard deviation equal to 0.1 in
the base distribution. In our analysis, we have also tried a prior distribution with a standard deviation
of 0.05, which did not significantly impact the final results in terms of the convergence of the chain
towards a stationary distribution, posterior distribution of the other parameters, and cluster allocation of
the couples.

For all the other parameters of the base distribution, we assume that these are random to enhance the
robustness of the inference, as from the prior elicitation process and the sensitivity analysis described
in Section 5.1.

5. Inference
First of all, we approximate the mixture distribution of Equation (3.2) by setting an upper bound K = 25
to the number of mixture components as in Ungolo and van den Heuvel (2024), which results in the
truncated SBP of Ishwaran and James (2001). Indeed, as motivated in Section 5.1, this is a conservative
choice since only few components are sufficient to model the additional heterogeneity in the data, while
all other components turn out to have a mixture weight nearly equal to zero. This simplifies the imple-
mentation of the Markov Chain Monte Carlo (MCMC) sampler compared to the use of the bound-free
slice samplers of Walker (2007) and Kalli et al. (2011), or the retrospective sampler of Papaspiliopoulos
and Roberts (2008).

5.1. Prior elicitation, specification, and sensitivity
In this paper, we carefully consider the specification of the prior distribution of the parameters. This is
motivated by the number of layers of the hierarchical model hereby proposed and the large number of
coarsened observations in this dataset, which can hinder the convergence of any MCMC scheme and
cause poor mixing whenever different starting values are used.

As already observed by Dunson (2010) and Beraha et al. (2023), specifying base distributions with
large variances implies that all couples will tend to be allocated in the same mixture component, which
does not capture the heterogeneity in the data.

Therefore, we specify at least weakly informative prior distributions, especially for the lowest levels
of the model. Where possible, we assume that the parameters (or groups of parameters) are pairwise
independently distributed and use conditionally conjugate prior distributions in order to facilitate the
computation of the posterior distribution.

Previous analyses of mixtures involving proportional hazard models (see for example Ungolo et al.,
2020 and Ungolo and van den Heuvel, 2022) show how three components can be useful to explain the
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heterogeneity in the data. Given the sample size of this dataset and the dimensionality of G, we specify
a conjugate Gamma(6, 12) prior for φ (Escobar and West, 1995), which yields a right-skewed prior
probability distribution for the number of occupied components (the number of classes with at least
one observation) with mean 5.5 and mode equal to 4. Conversely, a lesser informative Gamma(1, 1)
prior increases the number of occupied components a priori and a posteriori, without any impact on the
posterior inference for the other parameters.

The parameterγ follows a conjugate inverse-Wishart distribution with positive-definite scale matrix

λ×
[

1 0.6

0.6 1

]
and 5 degrees of freedom. We set the scalar λ= 2 in order to strengthen the prior

assumption toward a covariance matrix, which induces a positive correlation between γi,1 and γi,2. In
our prior-posterior sensitivity analysis, we notice how the posterior distribution of γ turns out to be
sensitive with respect to λ, hence the specification of an informative prior distribution plays an important
role in the inference for this parameter. The posterior distribution for all other parameters is robust with
respect to this assumption.

The location parameter of ζ A
i , mA is drawn from a conjugate normal distribution with mean 3 and

variance 0.5, while the scale s2
A is assumed to follow an inverse-Gamma(3, 0.5) distribution, ensuring

that mean and variance of s2
A are defined. Our sensitivity analysis, which used a lesser informative prior

on these two parameters, showed how the posterior distribution of mA is robust with respect to the
specification of a weaker prior distribution with a larger variance, while the opposite holds for s2

A. In the
latter case, we observe a shift in the posterior distribution for mA toward larger values, and the posterior
density of of s2

A is very flat and centered toward very large values. This evidence suggests the necessity
to carefully specify the prior distribution for s2

A.
We complete the full specification of the prior distribution by assuming that exp

(
αj

)∼ Gamma (1, 1)
(which ensures conditional prior-posterior conjugacy) and βj (j = 1, 2) follows a priori a truncated
normal distribution with mean 0.1 and variance 0.25, bounded below at zero to ensure biologically
reasonable mortality rates, which should increase with age. The location parameter was chosen on the
basis of previous analyses of similar models, which estimated a value of β around 0.10 (see for example
Ungolo et al., 2020 and Richards, 2008). Finally, we assume that σ 2

A ∼ Inv-Gamma (2, 1).
Our sensitivity analysis shows how the posterior inference for β and σ 2

A is robust with respect to
the specification of weaker prior distributions and that the posterior distribution of the other model
parameters are unaffected by this. On the other hand, the posterior distribution for α can be affected by
its posterior correlation with the parameters γ ∗

k,1 and γ ∗
k,2, as we discuss in Section 6.

5.2. Likelihood
Let di,j denote an indicator variable that is equal to 1 if the male (j = 1) or the female couple member
(j = 2) is observed to die throughout the observational study and 0 otherwise (hence, the lifetime variable
is right censored). We assume that the censoring mechanism can be ignored since the censoring event
for a couple member is caused by the end of the observation period (Type I censoring). Furthermore,
we assume that the individual times to event for each couple member are independently distributed,
conditional on the covariates and the multivariate random effect.

As discussed in Section 4, data are subject to left truncation since each contract is observable upon
survival of both members at the start of the study. The level of left truncation for each couple is denoted
by the variable ai, denoting the time (in years) from the start of the contract to the start of the obser-
vational study. This means that we need to work with the lifetime density function conditional on both
couple members being alive at the beginning of the observation period. Note that ai is equal to zero if
the contract starts during the observation period.

Let t = (t1,1, t1,2, . . . , tn,1, tn,2

)
, x = (xi,1, xi,2, . . . , xn,1, xn,2

)
, d = (d1,1, d1,2, . . . , dn,1, dn,2

)
, zA =(

zA
1 , . . . , zA

n

)
, zM = (zM

1 , . . . , zM
n

)
, a = (a1, . . . , an), α = (α1, α2), β = (β1, β2), ψ = (ψ1, . . . ,ψK−1),
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γ ∗ = (γ ∗
1,1, γ

∗
1,2, . . . , γ

∗
K,2

)
, ζ A∗ = (ζ A∗

1 , . . . , ζ A∗
K

)
and ζM∗ = (ζM∗

1 , . . . , ζM∗
K

)
. We introduce the latent

indicator variable si,k, which is equal to 1 if the ith couple belongs to the kth class, and zero otherwise.
This auxiliary variable facilitates an efficient computation of the posterior distribution (Müller et al.,
1996).

The likelihood function of the parameters conditional on t, x, a, d, zA, zM and the latent allocation
variable s = (s1,1, . . . , sn,K

)
is given by

L
(
α, β, γ ∗, ζ A∗, ζM∗, σ 2

A ,ψ | t, x, d, a, zA, zM, s
)

∝
n∏

i=1

K∏
k=1

π
si,k
k

{[
2∏

j=1

f
(
ti,j | xi,j, di,j, ai; αj, βj, γ

∗
k,j

)]
f
(
zA

i | ζ A∗
k , σ 2

A

) (
ζM∗

k

)zM
i
(
1 − ζM∗

k

)1−zM
i

}si,k

(5.1)

where f
(· | ζ A∗

k , σ 2
A

)
denotes the probability density function of the normal distribution with mean

ζ A∗
k and variance σ 2

A , and
(
ζM∗

k

)zM
i
(
1 − ζM∗

k

)1−zM
i is the probability mass function of the Bernoulli-

distributed random variable ZM
i with parameter ζM∗

k . The jth couple member likelihood contribution
f
(
ti,j | xi,j, di,j, ai; αj, βj, γ ∗

k,j

)
is derived to account for right censoring and left truncation by simple algebra

as follows:

f
(
ti,j | xi,j, di,j, ai; αj, βj, γ

∗
k,j

)

=
exp

[
− ∫ ti,j+ai

0
μ
(
s | xi,j;αj, βj, γ ∗

k,j

)
ds
]
μ
(
ti,j + ai | xi,j; αj, βj, γ ∗

k,j

)di,j

exp
[− ∫ ai

0
μ
(
q | xi,j; αj, βj, γ ∗

k,j

)
dq
] (5.2)

where the numerator is the likelihood contribution for a noninformative right-censored observation,
which is divided by the probability of being alive between policy inception (time 0) until the start of the
observation period. Given the specification of the hazard function in Equation (4.1), the logarithm of
the likelihood contribution is given by

ln f
(
ti,j | xi,j, di,j, ai; αj, βj, γ

∗
k,j

)
= −exp

[
βj

(
ti,j + ai

)]− exp
(
βjai

)
βj

exp
(
αj + βj

(
xi,j − x̄

)+ γ ∗
k,j

)
+ di,j

(
αj + βj

(
xi,j − x̄ + ti,j + ai

)+ γ ∗
k,j

)
. (5.3)

5.3 Posterior distribution
The (unnormalized) posterior distribution follows as the product of the likelihood and the prior distribu-
tion. In this latter, we assume that all parameters are pairwise independently distributed, with densities
generically denoted by p:

p
(
α, β, γ ∗, ζ A∗, ζM∗, σ 2

A ,γ , mA, s2
A, φ,ψ | t, x, d, a, zA, zM, s

)
(5.4)

∝ L
(
α, β, γ ∗, ζ A∗, ζM∗, σ 2

A ,ψ | t, x, d, a, zA, zM, s
) ⎡⎢⎣ 2∏

j=1

p
(
αj | 1, 1

)︸ ︷︷ ︸
Gamma(1,1)

⎤
⎥⎦
⎡
⎢⎣ 2∏

j=1

p
(
βj | 0.1, 0.25

)︸ ︷︷ ︸
N+(0.1, 0.25)

⎤
⎥⎦
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×

⎡
⎢⎢⎣

K∏
k=1

p
(
γ ∗

k,· | 0,γ

)︸ ︷︷ ︸
MVN(0,γ )

p
(
ζ A∗

k | mA, s2
A

)︸ ︷︷ ︸
N(mA ,s2

A)

p
(
ζM∗

k | 13.31, 4.44
)︸ ︷︷ ︸

Beta(13.31,4.44)

⎤
⎥⎥⎦ p (mA | 3, 0.5)︸ ︷︷ ︸

N(3,0.5)

p

(
γ

∣∣∣5,

[
2 1.2

1.2 2

])
︸ ︷︷ ︸
Inv-Wishart

⎛
⎜⎝5,

⎡
⎢⎣ 2 1.2

1.2 2

⎤
⎥⎦
⎞
⎟⎠

× p
(
σ 2

A | 2, 1
)︸ ︷︷ ︸

Inv-Gamma(2,1)

p
(
s2

A | 3, 0.5
)︸ ︷︷ ︸

Inv-Gamma(3, 0.5)

⎡
⎣K−1∏

k=1

p (ψk | 1, φ)︸ ︷︷ ︸
Beta(1,φ)

⎤
⎦ p (φ | 6, 12)︸ ︷︷ ︸

Gamma(6,12)

.

In order to efficiently learn the posterior distribution of Equation (5.4), we propose to first data aug-
ment the dataset of the missing value of the latent class si,k and then use a blocked Gibbs sampler scheme
(Ishwaran and James, 2001), consisting of a sequential draws of the parameters (exploiting their con-
ditional conjugacy where possible). The steps of this data augmentation-blocked MCMC sampler are
detailed in Appendix A. We implement this sampler in R (R Core Team, 2013) in order to have a full con-
trol over the MCMC sampling process. The code implementing the sampler is available at the GitHub
repository https://github.com/ungolof/AVDPM.

6. Results
6.1. Convergence
The steps of the MCMC sampler devised for the analysis of the posterior distribution outlined in Section
5.3 are iterated 100,000 times. We discard the first 80,000 iterations (burn-in) and we thin the chain every
20 draws to reduce the degree of autocorrelation between iterations, resulting in a final posterior sample
of 1000 draws. We run the sampler four times, based on sparse starting values, in order to assess the
mixing of the chains and the convergence of the MCMC sampler toward a stationary distribution.

The trace plots of the parameters show that the chains converge toward a stationary distribution for
all parameters, except for γ ∗

k,1, γ ∗
k,2, ζ A∗

k , ζM∗
k , and πk for those mixture components where few units are

allocated at each iteration of the MCMC sampler.
Furthermore, the overlap of the four trace plots for each parameter show a good mixing for all of

those, and the marginal densities are all unimodal with similar location. The chains for the parameter αj

converge toward a stationary distribution, although they do not mix with one another. Nevertheless, the
marginal posterior densities for this parameter from all the chains do not differ significantly. This result
is likely to be connected with the correlation in the posterior distribution between αj and γk,j.

We do not analyze these two aspects for
(
γ ∗

k,1, γ ∗
k,2, ζ

A∗
k , ζM∗

k

)
due to the label switching problem, which

characterizes mixture distributions as discussed in Betancourt (2017), Ungolo et al. (2020) and Ungolo
and van den Heuvel (2022). This issue affects solely the interpretation of the groups from the results of
one chain compared to another. Indeed, when looking at the occupancy of the classes across iterations,
we note a tendency of the sampler to have a similar number of units. Nevertheless, this does not represent
an issue when making predictions, or when the purpose is to learn the global parameters, such as βj.

The overall convergence of the MCMC sampler is further analyzed through the trace plot of the
clustering entropy shown in Figure 1 for two chains, as used for the analysis of mixture models (Beraha
et al. 2023). The entropy is calculated at the �th iteration as follows:

Entropy (�)=
K∑

k=1

n(�)k · ln n(�)k

We note that all chains converge toward the same value. This is also observed when these chains are
compared to those obtainable under the different prior distributions discussed in Section 5.1. This is an
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Figure 1. Trace plot of the entropy across all iterations of the MCMC sampler for two different runs.

indication of the stability of the allocation of each couple to the groups characterized by the mixture
components.

6.2. Model analysis
Model results
The analysis of the histogram of the number of occupied classes across all iterations shows that a min-
imum of 8 and a maximum of 24 mixture components have at least one observation (Figure 2.1 in
the Supplementary material). The posterior mean of the number of couples allocated in each mixture
component shows that only six of these contain at least 2.5% (253 couples) of the total number of obser-
vations, and the sum of these six components totals 9,458 observations (93.5% of the total). These two
results show that a truncation level of K = 25 on the number of mixtures is sufficient to approximate the
joint distribution of

(
Ti,1, Ti,2, ZA

i , ZM
i

)
.

Table 1 shows the summary statistics of the posterior distribution of the most relevant parameters for
the AVDPM approach of this paper. The log-baseline mortality (α) for females is lower than for males,
as we can see also from the value of the 95% credible interval extremes which do not overlap. On the
other hand, the female members of the couple are characterized by a larger sensitivity of the hazard
function with respect to the age as measured by the parameter β compared to males.

Six mixture components are associated with mixture weights πk whose posterior mean totals around
93.5% (k = 1, 2, 3, 4, 6, 9), twelve have mixture weights below 0.1%, and the remaining ones are asso-
ciated with mixture weights below 2%. Each component is characterized by different values of the
class-specific parameters

(
γ ∗

k,1, γ ∗
k,2, ζ

A∗
k , ζM∗

k

)
.

These parameters, which capture the level of heterogeneity among the observations, allow to obtain
hazard functions which can take a flexible shape, and where the effect of the other covariates is not
necessarily proportional, nor monotone as we can see for the age difference in Figure 2. For example,
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Table 1. Posterior summaries of α, β, γ ∗
k , ζ A∗

k , ζM∗
k , πk for k = 1, 2, 3, 4, 6, 9 and φ.

Parameter Mean 95% Cred. Int. Parameter Mean 95% Cred. Int.
α1 −3.45 (−3.71, −3.27) α2 −4.53 (−4.90, −4.12)
β1 0.1064 (0.0963; 0.1160) β2 0.1440 (0.1274; 0.1614)
γ ∗

1,1 −1.00 (−1.75; −0.53) γ ∗
2,1 −2.14 (−3.74; −0.93)

γ ∗
1,2 −0.72 (−0.94; −0.49) γ ∗

2,2 −0.39 (−0.86; 0.16)
γ ∗

1,3 0.39 (0.15; 0.68) γ ∗
2,3 −1.21 (−1.67; −0.81)

γ ∗
1,4 −0.51 (−0.89; −0.26) γ ∗

2,4 −0.39 (−0.87; 0.02)
γ ∗

1,6 −0.19 (−0.44; 0.17) γ ∗
2,6 −0.32 (−0.97; 0.14)

γ ∗
1,9 −1.19 (−1.48; −0.84) γ ∗

2,9 −1.19 (−1.32; −0.97)
ζ A∗

1 1.13 (0.99; 1.28) ζM∗
1 0.66 (0.52; 0.75)

ζ A∗
2 1.71 (1.63; 1.81) ζM∗

2 0.95 (0.93; 0.98)
ζ A∗

3 0.50 (−4.15 2.46) ζM∗
3 0.73 (0.53; 0.90)

ζ A∗
4 −0.36 (−1.49; 0.68) ζM∗

4 0.58 (0.47; 0.77)
ζ A∗

6 0.24 (−1.70; 1.90) ζM∗
6 0.68 (0.53; 0.88)

ζ A∗
9 −1.73 (−2.90; −1.02) ζM∗

9 0.54 (0.42; 0.68)
π1 0.2291 (0.1321; 0.3167) π2 0.4078 (0.3240; 0.4834)
π3 0.0328 (0.0005; 0.1334) π4 0.1205 (0.0272; 0.2311)
π6 0.1064 (0.0020; 0.2329) π9 0.0387 (0.0112; 0.0639)
φ 0.97 (0.55; 1.54)
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Figure 2. Hazard function for males (black) and females (gray) aged x·,j = 60 within a couple for
different values of the covariates male older and age difference (exp (ZA)).

at younger ages, when the female is five years older than the male couple member, the hazard function
for the females is higher compared to the case of an age difference of two years, while this relationship
reverts around age 75.

Analysis of the effect of couple-specific covariates
We plot the value of the log-hazard function of males and females for different values of ZA and ZM

(Figure 2). This hazard function is calculated as follows:
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Figure 3. Value of the Spearman ρ (left panel) and of the Kendall τ (right panel) for different values
of AD and MO.

μ
(
t | x·,j, zA, zM; αj, βj, γ

∗
·,j, π , ζ A∗, ζM∗)

=

K∑
k=1

πkf
(
t | x·,j; αj, βj, γ

∗
k,j

)
f
(
zA | ζ A∗

k , σ 2
A

) (
ζM∗

k

)zM (
1 − ζM∗

k

)1−zM

K∑
k=1

πk

(
1 − F

(
t | x·,j; αj, βj, γ

∗
k,j

))
f
(
zA | ζ A∗

k , σ 2
A

) (
ζM∗

k

)zM (
1 − ζM∗

k

)1−zM

(6.1)

where F denotes the cumulative distribution function of the random time to event T , hence 1 − F denotes
the survival function. Both numerator and denominator are averaged over the parameter draws.

As observed, this model allows for a nonmonotone effect of the covariates on the hazard function
compared to a typical proportional hazard model approach as used in Deresa et al. (2022) and later
analyzed to compare the models.

First of all, we notice that in the case where the male is the older couple member (ZM = 1), there is
a slight shift upward of the hazard function at each age and for all all values of ZA. The only exception
occurs when a male is aged between 60 and 68 years and ZA = 10. A similar finding can be observed
when analyzing the fitted hazard function for the females.

These results demonstrate how the model is capable to flexibly capture the effect of interactions
between X, ZA and ZM without an explicit modeling assumption about these. We remark how these three
variables do not have any linear relationship among them following the definition of ZA in Section 4.

Dependent lifetime events
We analyze the statistical association between T1 and T2 by calculating the Spearman ρ and the Kendall
τ rank correlation coefficients over 20,000 random samples of (T1, T2) generated for each value of the
age difference between 1 and 20 and of ZM (Figure 3). For each sample, we first draw the male age from
a Uniform(40, 80), with the female age following from the value of ZA and ZM.

We note how the model captures the presence of a positive statistical association between males and
females lifetime. However, we note how this statistical association is unchanged with the values of ZA

and ZM. As additional experiment, we then narrow the endpoints of the uniform distribution of the male
individual age and repeat the same experiment. First, we note how both ρ and τ are much smaller than
the previous case, while T1 and T2 are still positively associated. For an age difference of one year, ρ and
τ are relatively larger and then have a constant value for every value of ZA, especially for the case where
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Table 2. Features of the four largest classes as determined by Bayes’ rule.

Group 1 Group 2 Group 4 Group 9 Train. sample
% Composition 29.25 50.73 12.99 5.39 –
Age male (mean) 64.68 66.29 64.96 64.56 65.55
Age female (mean) 65.22 60.28 64.89 64.55 62.63
log(|Age Diff.|) (mean) 0.74 1.71 −0.47 −2.07 0.91
Male older (in %) 53.75 98.71 56.39 55.05 77.26

γ ∗
·,1 −1.00 −0.71 −0.51 −1.19 –
γ ∗

·,2 −2.14 −0.39 −0.39 −1.19 –
ζ ∗

AD,· 1.13 1.71 −0.36 −1.72 –
ζ ∗

MO,· 0.66 0.95 0.58 0.54 –

the female is the oldest couple member. In the opposite case where ZM = 1, we observe a decreasing
value of ρ and τ as ZA increases. A different midpoint of the uniform distribution for the males age does
not bring any change in the results. The modest impact of the age difference on the values of ρ and τ
might be due to the direct relationship between the age and the computation of the age difference. We
remark how we perform this analysis on the basis of the solely available joint covariates. In any case,
we could show how the AVDPM approach of this work can account for the Z-lifetime dependence as
by-product.

Class analysis
The mixture modeling nature of AVDPM allows to classify the observations a posteriori, which can
be helpful to learn further information about the resulting groups. A similar analysis was carried out in
Ungolo and van den Heuvel (2024).

For this purpose, we use Bayes’ rule: for the ith couple, we calculate the probability to be in the kth
class, denoted as qi,k, conditional on the observable data and the model parameters as follows:

qi,k = P
(
Wi = k | ti,1, ti,2, xi,1, xi,2, ai, di, zA

i , zM
i

)

=
πk

[
2∏

j=1

f
(
ti,j | xi,j, di,j, ai; αj, βj, γ

∗
k,j

) ]
f
(
zA

i | ζ A∗
k , σ 2
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(6.2)

where we average both the numerator and the denominator (separately) over the posterior draws of the
parameters.

The ith couple is then hard-assigned to the kth class, by setting wi = k if qi,k > qi,h for h �= k. The four
largest classes total 98.4% of the observations. Table 2 illustrates the key features of groups 1, 2, 4,
and 9, alongside the posterior mean of their class-specific parameters

(
γ ∗

·,1, γ
∗
·,2, ζ

A∗
· , ζM∗

·
)
. The difference

between % Composition in Table 2 and π is due to the specific classification rule we use.
A first striking evidence is that these four classes have different features compared to the whole

training sample. This means that we can be able to identify groups of couples that have distinctive
features.

Around 50% of the couples compose Group 2, which is characterized by the largest log-absolute
age difference among the four groups and the males are the oldest member of the couple for almost all
observations.
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Table 3. AIC and WAIC of the models (the lowest value is
shown in bold).

(W)AIC BG PH AVDPM
In sample 13,603.41 13,603.11 13,527.50
Out of sample 4537.42 4541.64 4515.14

Group 1 is characterized by the lowest percentage of couples where the males are the oldest couple
members and where females have an average age higher than males. Furthermore, this group is charac-
terized by the lowest hazard function for males and females, given their γ ∗ posterior mean coefficient.
Groups 4 and 9 are almost similar in terms of average age of the males and females therein, as well as
the percentage of older males, while these differ in terms of the log-absolute age difference in couples.

Comparison with other models
The results of the AVDPM approach are compared with those obtainable by assuming a basic Gompertz
(BG) hazard function, and with a proportional hazard model which includes all covariates (PH), similarly
to Deresa et al. (2022)1 which assume that:

μBG
(
t | xi,j;αj, βj

)= exp
(
αj + βj

(
xi,j − x̄ + t

))
μPH

(
t | xi,j, zA

i , zM
i ;αj, βj, δj,1, δj,2

)= exp
(
αj + βj

(
xi,j − x̄ + t

)+ δj,1z
A
i + δj,2z

M
i

)
with parameters estimated by using maximum likelihood (results in Section 3 of the Supplementary
Material). Therefore, under BG and PH models, we assume that conditional on the individual age, and
the two common covariates, then the males and females lifetimes are independently distributed.

We quantitatively compare the three models by using the Akaike information criteria (Akaike, 1974)
for the BG and PH models, and its generalization to a Bayesian framework with latent variables, known
as widely applicable information criteria (WAIC, Watanabe, 2009) for the AVDPM model. Their calcu-
lation is detailed in Appendix B. AIC and WAIC are computed for both the training sample and the held
out part of the dataset (Table 3), and we chose the model which minimizes the value of these criteria.

The inclusion of the covariates within a proportional hazard model has the effect to slightly improve
the performance of the model compared to the base Gompertz hazard function, as earlier discussed.
The benefit of including covariates is very negligible when looking at the out-of-sample performance
of the PH model. Conversely, the AVDPM approach shows a smaller value of the WAIC for both the
training and test dataset. Therefore, we conclude that the enhanced flexibility of AVDPM yields a better
in sample and out of sample fit for these data.

These results are confirmed also when calculating AIC and WAIC by gender (Table 4). The use of
the AVDPM yields a better in sample and out of sample performance for both males and females (the
sum of the WAICs by gender is not equal to the overall WAIC as consequence of the Jensen’s inequality,
as we can observe from its computation in Appendix B.).

7. Actuarial illustration of AVDPM
Let Yx1,x2 (z) denote the present value of a cash flow of $1 paid continuously to a couple with characteris-
tics z, where the male is aged x1 and the female x2, as long as both are alive (joint status). Conversely, let
Yx1,x2 (z) denote the present value of a $1 cash flow paid continuously until the death of the last survivor
of a similar couple.

1Compared to this paper, we consider the fact that age increases over time, instead of being a fixed covariate, and take the
logarithm of the absolute value of the age difference. In our analysis, this shows an improvement in the value of the Akaike
information criteria. The results are available upon request to the authors.
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Table 4. AIC and WAIC of the models by gender (the lowest value is shown in bold).

Males Females

(W)AIC BG PH AVDPM BG PH AVDPM
In sample 9576.52 9579.78 9498.77 4026.89 4023.33 3948.61
Out of sample 3185.87 3188.66 3166.74 1351.55 1352.98 1330.25
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Figure 4. Last survivor annuity factor calculated using the AVDPM model (solid line), the PH model
(dashed line), and the BG model (dotted line) for different values of age difference (exp

(
ZA
)
, x-axis)

and ZM when the oldest member is aged 60 (top panel) and 70 (bottom panel), for ι= 1% (left panel)
and ι= 5% (right panel).

Assuming a force of interest ι, we can obtain the annuity factor of these cash flows as the expected
value of Yx1,x2 (z) and Yx1,x2 (z) (Dickson et al., 2013):

ax1,x2 (z)=E
[
Yx1,x2 (z)

]= ∫ ∞

0

exp (−ιt) Sx1,x2 (t | z) dt;

ax1,x2 (z)=E
[
Yx1,x2 (z)

]= ∫ ∞

0

exp (−ιt) Sx1,x2 (t | z) dt,

where the last survivor function Sx1,x2 (t | z) was defined in Section 3, and Sx1,x2 (t | z) denotes the
corresponding joint survivor function.

We analyze the effect of the covariates by comparing the annuity value under the AVDPM with the
annuity value obtainable using the BG model in order to assess the effect of the covariates (as well as
the dependence), and with the value obtained using the PH model to assess the effect of the dependence.

Figure 4 shows the value of the last survivor annuity factor obtainable under the AVDPM model and
the other two competing models PH and BG described in Section 6. The annuity factors are evaluated
at different male ages (60 and 70), different values of Z = (ZA, ZM

)
, and two different forces of interest
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ι= (0.01, 0.05). The same plot for the joint life annuity is shown in Section 4 of the Supplementary
Material (Figure 4.1).

The plot shows that the AVDPM annuity value is always higher than the value obtained using the PH
model. When the male is the oldest couple member, the difference between these two values is highest
when the age difference is within five years and narrows afterward. Such annuity price difference is also
negligible for an age difference of one year. This means that neglecting the effect of the dependence has
the effect of underpricing the last survivor annuity, especially when the age difference is between two
and five years. A similar evidence is obtained when the female is the oldest couple member, whenever
the male is lesser than ten years younger. This evidence is in contrast with earlier findings in the literature
which use copula models to account for lifetime dependence. Using a Frank copula, Frees et al. (1996,
Figure 3) show that the price of a last survivor annuity is higher under a model that assumes independent
lifetimes, especially for couples where males and females have a similar age. Similarly, Dufresne et al.
(2018, Figure 5.2) observe that the difference between independent and dependent lifetime (using a
Clayton and a Joe copula) in the last-survivor life expectancy is highest for an age difference around 0,
regardless the value of ZM.

When comparing the annuity factor using the AVDPM with the value obtained using a Base Gompertz
model which assumes independent lifetimes and does not account for the effect of the covariates, we
note that using latter in annuity pricing yields a lower value compared to the former when the female is
the older couple member. Conversely, when ZM = 1, the BG model underprices the last survivor annuity
for an age difference lower than eight years. These evidences are consistent with the findings in Frees et
al. (1996, Figure 4) and Deresa et al. (2022), where the latter analyze only the case of a couple where
the male is aged 65 years and the female is two years younger.

A higher interest rate, which decreases the value of the annuity all else being equal, yields a reduction
of both the effect of the dependence and the effect of the price difference due to the covariates. On the
other hand, an increase in the age of the two heads (Figure 4 bottom panel) yields a higher percentage
difference between the annuity value priced using the AVDPM model and the two models which assume
independence. Therefore, in this latter case, the dependence turns out to have a higher impact in the
pricing of the last survivor annuity.

For the joint life annuity, we note that when the male is the oldest couple member, the joint life
annuity factor under the AVDPM is always higher compared to the value obtainable under the two
models assuming independent lifetimes for an age difference higher than a year, and the same is obtained
in case ZM = 0 and the age difference is between 1 and 15 years. This is obtained for both male ages and
for the two interest rates hereby analyzed. Similarly, the copula-based dependence model analyzed by
Deresa et al. (2022) yields a higher joint life annuity value compared to the independence case, although
they focus on the sole case where males and females are again aged 65 and 63 years, respectively.

8. Extension of AVDPM to the analysis of the joint lifetimes of nonexchangeable units
So far, we have illustrated the method for the case of male–female couples. If we want to allow for groups
with differing number of exchangeable members, as can be the case of collective insurance policies, we
can extend the framework through a hierarchical model with additional layers.

Suppose the ith group includes Ji members, with common set of variables zi, and individual
(within group) characteristics xi,j (j = 1, . . . , Ji). A possible solution is to model the group-specific joint
distribution of the lifetimes and Z as:

f
(
ti,1, . . . , ti,Ji , zi | xi; β, G

)= ∫
	γ ,η

[
Ji∏

j=1

f
(
ti,j | xi,j; β, γi,j

)]
f (zi | ζi) dQ

(
γi,j | ηi

)
dG (ηi, ζi) (8.1)

where Q denotes a suitable distribution function for γi,j, indexed by the group-specific parameter ηi.
Again, Q can also be a random draw from a Dirichlet process, although we would opt for a simpler known
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parametric form for computational reasons and also because we are indexing Q with a group-specific
parameter ηi whose distribution is drawn from a DP.

9. Conclusion
This paper contributes to the analysis of grouped dependent lifetime events by proposing a joint model
for the lifetimes which is augmented of the distribution of the group-specific covariates. The inclusion
of multivariate random effects captures the dependence among the lifetimes and between the lifetimes
and the group-specific covariates. The use of DPM models enhances the flexibility of the random effects
distribution and of the standard parametric assumptions for the covariates. The resulting AVDPM model
has been illustrated through the empirical analysis of the mortality rates of the male and female members
of a couple, which resulted in an enhanced in-sample and out-of-sample fitting performance. We showed
how the model output can be used to infer additional information on the nature of the male–female
mortality dependence and how this can affect the price of joint life and last survivor annuities.

The full Bayesian analysis of the AVDPM model of this work allows for the incorporation of the prior
information about possible parameter values from the user. An alternative to a fully Bayesian analysis can
be the assumption of a fixed, known number of mixture components and fit the model parameters using
maximum likelihood. The results of similar analysis in the field can be used at this purpose. In addition,
an approach based on the use of random effects allows for the specification of different parametric forms
for the lifetime of each couple or group member.

One limitation of the AVDPM model is that it does not explicitly disentangle the lifetime dependence
due to causal effects, as measured through group-specific covariates, from the dependence due to other
sources of unobserved heterogeneity. This aspect can be potentially relevant from a pricing perspective
(Gourieroux and Lu, 2015). One possibility, beyond the AVDPM of this work, is to consider a joint
model à la Lu (2017) where the causal effect is part of the regression function, with couple-specific
regression coefficients:

μ
(
t | xi,j, zi; αj, βj, δi,j

)= exp
(
αj + βj

(
xi,j − x̄ + t

)+ δi,jzi + γi,j

)
(9.1)

with
(
δi,1, δi,2

)
eventually drawn from either a parametric distribution, or a discrete distribution following

a Dirichlet process. In this way, we would be able to account for both the effect of zi on the individual
lifetime, as well as the lifetime dependence given zi. We leave the further analysis of this model for future
research.

Richer parametric structures for the Dirichlet processes are available in the literature, such as the
generalized Dirichlet process prior (GDP, see Hjort, 2000), which generalizes the basic DP through an
additional parameter, the dependent Dirichlet process (DDP, see MacEachern, 2000) which allows for
covariate dependent mixture weights πk and location of the random effects, and the dependent GDP
of Barcella et al. (2017) which combines DDP and GDPs. Such extensions can be useful to obtain a
better characterization of the groups associated with the mixture components. On the other hand, these
approaches would require more computationally intensive MCMC algorithms to estimate the posterior
distribution of the parameters.

Another important future research avenue is the development of fast approximation techniques for
the computation of posterior distribution of the parameters (for example, based on variational inference
techniques (Blei et al., 2016)), which would allow to quickly explore different parametric models for
the data on hand.
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A. Data Augmentation MCMC sampler
Below, we outline the steps of the data augmentation MCMC scheme to sample the parameters from the
posterior distribution:

Step 0: Set an initial value for the parameters(
α(0), β (0), γ ∗(0), ζ A∗(0), ζM∗(0), σ 2(0)

A ,(0)
γ

, m(0)
A , s2(0)

A , φ(0),ψ (0)
)
;

For each iteration �= 1, . . . , M:
Step 1: For each unit sample, the mixture component w(�)

i (W (�)
i ∈ {1, . . . , K}) from a discrete distri-

bution with probability:
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P
(
W (�)

i = k | ti,1, ti,2, xi,1, xi,2, ai, di,1, di,2, zA
i , zM

i

)
(A.1)

=
π

(�−1)
k

[
2∏

j=1

f
(
ti,j | xi,j, di,j, ai; α

(�−1)
j , β (�−1)

j , γ ∗(�−1)
k,j

) ]
f
(
zi | ζ ∗(�−1)

k

)
K∑

q=1

π (�−1)
q

[
2∏

j=1

f
(
ti,j | xi,j, di,j, ai; α

(�−1)
j , β (�−1)

j , γ ∗(�−1)
q,j

) ]
f
(
zi | ζ ∗(�−1)

q

) ,

where

f
(
zi | ζ ∗(�)

k

)= f
(
zA

i | ζ A∗(�)
k , σ 2(�)

A

) (
ζ

M∗(�)
k

)zM
i
(
1 − ζ

M∗(�)
k

)1−zM
i . (A.2)

Hence, s(�)
i,k = 1 if w(�)

i = k and 0 otherwise;
Step 2: Sample the stick-breaking weights ψ and update π :

Step 2.1: Sample ψ (�)
k (k = 1, . . . , K − 1, with ψK = 1):

ψ
(�)
k ∼ Beta

(
1 +

n∑
i=1

1[w(�)
i =k

], φ(�−1) +
n∑

i=1

1[w(�)
i >k

]
)

(A.3)

Step 2.2: Update πk:

π
(�)
k =ψ

(�)
k

∏
j<k

(
1 −ψ (�)

j

)
(A.4)

Step 3: Sample exp
(
α

(�)
j

)
from a conjugate Gamma distribution with shape �j,1 and rate �J,2:

�j,1 = 1 +
n∑

i=1

di,j

�j,2 = 1 +
n∑

i=1

exp
[
β

(�−1)
j

(
ti,j + ai

)]− exp
(
β

(�−1)
j ai

)
β

(�−1)
j

exp
(
β (�−1)

j

(
xi,j − x̄

)+ γ
∗(�−1)

w(�)
i ,j

)
(A.5)

Step 4: Sample β (�)
j (j = 1, 2) using the acceptance–rejection sampling method:

Step 4.1: Sample β∗
j from a truncated normal proposal distribution q with mean β (�−1)

j and variance
σ

2(�−1)
p,j . The proposal distribution has truncation bounds given by the parameters of the

uniform distribution specified as prior. The variance of the proposal distribution is itera-
tively updated using the robust adaptive metropolis (RAM) algorithm of Vihola (2012),
described in Step 4.4;

Step 4.2: Compute the ratio

r′ =

[
n∏

i=1

f
(

ti,j | xi,j, di,j, ai; α
(�)
j , β∗

j , γ ∗(�−1)

j,w(�)
i

)]
p
(
β∗

j | 0.1, 0.25
)

q10−5,5

(
β

(�−1)
j | β∗

j , σ 2(�−1)
p,j

)
[

n∏
i=1

f
(

ti,j | xi,j, di,j, ai; α
(�)
j , β (�−1)

j , γ ∗(�−1)

j,w(�)
i

)]
p
(
β

(�−1)
j | 0.1, 0.25

)
q10−5,5

(
β∗

j | β (�−1)
j , σ 2(�−1)

p,j

)
(A.6)

where q10−5,5 (a | b, c) denotes the density of the proposal distribution at the value of a,
with mean b and variance equal to c;
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Step 4.3: Set:

β (�)
j =

⎧⎨
⎩β

∗
j w.p. min (r′, 1)

β
(�−1)
j w.p. 1 − min (r′, 1)

(A.7)

Step 4.4: Update the standard deviation of the proposal distribution σp,j:

σ (�)
p,j = σ (�−1)

p,j

√
1 + �−0.6 (min (r′, 1)− 0.234) (A.8)

The parameter 0.6 is chosen following Vihola (2012), who suggests a value between 0.5
and 1, while 0.234 is the desired acceptance probability, chosen following Roberts et al.
(1997);

Step 5: Sample γ ∗ using the acceptance–rejection sampling method:

Step 5.1: For k = 1, . . . , K sample γk
′ = (γk,1

′, γk,2
′)� from a bivariate Normal proposal distribution

q with mean γ ∗(�−1)
k = (γ ∗(�−1)

k,1 , γ ∗(�−1)
k,2

)� and variance-covariance matrix �(�−1)
p,k :

Step 5.1.1: Sample h(�) ∼ MVN (02, I2), where 02 is a column vector of zeros, and I2 denotes the
2 × 2 identity matrix;

Step 5.1.2: Set γk
′ = γ

∗(�−1)
k + L(�−1)

k h(�),
where L(�−1)

k is the lower triangular matrix denoting the Cholesky decomposition of
�p,k = LkL�

k . The variance–covariance matrix of the proposal distribution is again
updated using the RAM algorithm described in Step 5.4 for its multivariate version;

Step 5.2: Compute the ratio:

r′ ′ =
p
(
γk

′ | 0,(�−1)
γ

) ⎡⎣ ∏
{i:w(�)

i =k}

2∏
j=1

fj

(
ti,j | xi,j, di,j, ai; α

(�)
j , β (�)

j , γk,j
′)
⎤
⎦ q

(
γ

′
k | γ ∗(�−1)

k , �(�−1)
p,k

)

p
(
γ

∗(�−1)
k | 0,(�−1)

γ

) ⎡⎣ ∏
{i:w(�)

i =k}

2∏
j=1

fj

(
ti,j | xi,j, di,j, ai; α

(�)
j , β (�)

j , γ ∗(�−1)
k,j

)⎤⎦ q
(
γ

∗(�−1)
k | γ ′

k , �(�−1)
p,k

)
(A.9)

Step 5.3: Set:

(
γ

∗(�)
k,1 , γ ∗(�)

k,2

)=
⎧⎨
⎩
(
γk,1

′, γk,2
′) w.p. min (r′ ′, 1)(

γ
∗(�−1)

k,1 , γ ∗(�−1)
k,2

)
w.p. 1 − min (r′ ′, 1)

(A.10)

Step 5.4: Update the lower triangular Cholesky factor of �p,k:

Step 5.4.1: Compute �(�)
p,k:

�(�)
p,k = L(�−1)

k

(
I2 + �−0.6 (min (r′ ′, 1)− 0.234)

h(�)h(�)�

||h(�)||2

)
L(�−1)�

k (A.11)

where ||h|| denotes the Euclidean norm of h;
Step 5.4.2: Compute L(�)

k as the Cholesky factor of �(�)
p,k;

Step 6: Sample γ from the conjugate posterior which is the Inv–Wishart distribution with degrees
of freedom �1 and scale matrix �2, calculated as:

�1 = 5 +
K∑

k=1

1[n(�)
k >0

] (A.12)
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�2 =
[

2 1.2

1.2 2

]
+

K∑
k=1

1[n(�)
k >0

]γ ∗(�)
k γ

∗(�)
k

�

where n(�)
k =

n∑
i=1

s(�)
i,k =

n∑
i=1

1[w(�)
i =k

];
Step 7: Sample ζ A∗(�)

k (k = 1, . . . , K) from a conjugate N
(
�3,k,�4,k

)
distribution, where:

�3,k =�4,k

⎛
⎜⎜⎜⎝
∑

{i:w(�)
i =k}

zA
i

σ
2(�−1)
A

+ m(�−1)
A

s2(�−1)
A

⎞
⎟⎟⎟⎠

�4,k =
(

n(�)
k

σ
2(�−1)
A

+ 1

s2(�−1)
A

)−1

Step 8: Sample ζM∗(�)
k (k = 1, . . . , K) from a conjugate Beta

(
�5,k,�6,k

)
distribution, with posterior

parameters calculated as follows:

�5,k = 13.31 +
∑

{i:w(�)
i =k}

zM
i

�6,k = 4.44 +
∑

{i:w(�)
i =k}

(
1 − zM

i

)
Step 9: Sample m(�)

A from a conjugate N (�7,�8) distribution, where:

�7 =�8

∑
{k: n(�)

k >0}
ζ

A∗(�)
k

s2(�−1)
A

�8 =

⎛
⎜⎜⎜⎜⎝2 +

K∑
k=1

1[n(�)
k >0

]

s2(�−1)
A

⎞
⎟⎟⎟⎟⎠

−1

Step 10: Sample σ 2(�)
A from a conjugate Inv-Gamma

(
�

(�)
9 ,�(�)

10

)
distribution where:

�
(�)
9 = 2 + 0.5n

�
(�)
10 = 1 +

n∑
i=1

(
zA

i − ζ
A∗(�)

w(�)
i

)2

Step 11: Sample s2(�)
A from a conjugate Inv-Gamma

(
�

(�)
11 ,�(�)

12

)
distribution where:

�
(�)
11 = 3 + 0.5

K∑
k=1

1[n(�)
k >0

]

�
(�)
12 = 0.5 +

∑
{k:n(�)

k >0}

(
ζ

A∗(�)
k − m(�)

A

)2
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Step 12: Sample φ by following the steps outlined in Escobar and West (1995):

Step 12.1: Sample ε ∼ Beta
(
φ(�−1) + 1, n

)
;

Step 12.2: Sample B ∼ Bernoulli (πε), where

πε =

K∑
k=1

1[n(�)
k >0

]

n (1 − ln ε)+
K∑

k=1

1[n(�)
k >0

]
(A.13)

Step 12.3: Sample φ:

φ(�) ∼1[B=1]Gamma

(
1 +

K∑
k=1

1[n(�)
k >0

], 1 − ln ε

)
(A.14)

+ 1[B=0]Gamma

(
K∑

k=1

1[n(�)
k >0

], 1 − ln ε

)

B. Computation of AIC and WAIC
Let θ̂ denote the set of the parameter estimates using maximum likelihood for BG and PH, and θ (�) the
retained �th draw from the posterior distribution of the parameters of the AVDPM approach. AIC and
WAIC are calculated as follows:

AIC = −2 ln L
(
θ̂ | t, x, a, d, zA, zM

)
+ 2r

WAIC = −2
n∑

i=1

ln

(
1

H

H∑
�=1

f
(
ti,1, ti,2 | xi,1, xi,2, zA

i , zM
i , ai, di,1, di,2; θ (�)

))+ 2pWAIC

pWAIC = 2
n∑

i=1

[
ln

(
1

H

H∑
�=1

f
(
ti,1, ti,2 | xi,1, xi,2, zA

i , zM
i , ai, di,1, di,2; θ (�)

))

− 1

H

H∑
�=1

ln f
(
ti,1, ti,2 | xi,1, xi,2, zA

i , zM
i , ai, di,1, di,2; θ (�)

) ]

where L
(
θ̂ | t, x, a, d, zA, zM

)
is the likelihood function of the parameters given the data, r denotes the

number of parameters of the model under analysis, H is the number of retained draws from the posterior
distribution, and

f
(
ti,1, ti,2 | xi,1, xi,2, zA

i , zM
i , ai, di,1, di,2; θ (�)

)
(B.1)

=

K∑
k=1

π
(�)
k

[
2∏

j=1

f
(
ti,j | xi,j, di,j, ai; α

(�)
j , β (�)

j , γ ∗(�)
k,j

) ]
f
(
zi | ζ ∗(�)

k

)
K∑

k=1

π
(�)
k f
(
zi | ζ ∗(�)

k

) .

In this equation, we take the joint distribution of Ti,1 and Ti,2 conditional to the values of ZA
i and ZM

i , in
order to make the three models comparable among them.
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When computing the WAIC by gender for the males, we compute:

f
(
ti,1 | ti,2, xi,1, xi,2, zA

i , zM
i , ai, di,1, di,2; θ (�)

)
(B.2)

=

K∑
k=1

π
(�)
k

[
2∏

j=1

f
(
ti,j | xi,j, di,j, ai; α

(�)
j , β (�)

j , γ ∗(�)
k,j

) ]
f
(
zi | ζ ∗(�)

k

)
K∑

k=1

π
(�)
k f
(
ti,2 | xi,2, di,2, ai; α

(�)
2 , β (�)

2 , γ ∗(�)
k,2

)
f
(
zi | ζ ∗(�)

k

) .

Similar calculations are performed for the WAIC of the AVDPM for the females.
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