ON MORITA DUALITY
BRUNO J. MULLER

1. Introduction. A contravariant category-equivalence between categories
9, B of right R-modules and left S-modules (all rings have units, all modules
are unitary) that contain Ry, ¢S and are closed under submodules and factor
modules, is naturally equivalent to a functor Hom (—, U) with a bimodule
sUg such that U, Uz are injective cogenerators with S = End Uz and
R = End gU, and all modules in A, B are U-reflexive. Conversely, for any
sUg, Hom(—, U) is a contravariant category equivalence between the
categories of U-reflexive modules, and if U has the properties just stated, then
these categories are closed under submodules, factor modules, and finite
direct sums and contain Rg, Ug, sS, and sU. Such a functor will be called a
(Morita) duality between R and S induced by U (see (5)).

The following question naturally arises: Which rings R possess a duality?
Osofsky (7) has shown that if R has duality, it is semi-perfect. Then Uy will
be a finite direct sum of all the isomorphism types of injective hulls of simple
right R-modules (Lemma 1), and S = End Ug. We call (R, Ug, S) ‘‘standard”’
if R is a semi-perfect ring, Uz is the minimal (injective) cogenerator, and
S = End Ug. Here, a duality exists if and only if:

(1) sU is an injective cogenerator, and

(2) R = R/, the second commutator End sU of Up.

We would like to replace these two conditions by more explicit ones like those
known in the following two cases: If R is right-Artinian, then duality exists if
and only if Uy has finite length (5; 1). If R is commutative-Noetherian, then
duality exists if and only if R is complete (4).

We shall show that condition (2) (R = R’) holds if and only if R is complete
in that uniformity for which the completely meet-irreducible right ideals form
a subbase for the neighbourhoods of 0. Then we investigate rings R for which
the intersection of the powers of the Jacobson radical is zero; such a ring turns
out to have duality if and only if it is right-Noetherian, complete (in the
topology defined by the powers of the radical), and if Uy is Artinian.

2. Prerequisites. A semi-perfect ring possesses a basic ring which is similar
to it; hence we may (and will to simplify some formulations) assume that R
and S are self-basic rings.

LeEmMA 1. If we have duality between (self-basic) rings R and S, then sU and
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Ux are the minimal cogenerators (the direct sums of the injective hulls of the simple
modules).

Proof. Every cogenerator contains the minimal cogenerator. Since &S is
finitely generated and the lattices of submodules of S and Uy are anti-
isomorphic, Uy is co-finitely generated, hence essential over a finite socle,
therefore a finite direct sum of injective hulls of all types of simple R-modules.
Since S = End Uy, is self-basic, these summands are mutually non-isomorphic.

Next we collect a number of essentially known facts when (R, Ug, S) is
standard. S is self-basic semi-perfect (cf. 3, § 4.4); the radical factor rings
R/rad R and S/rad S are isomorphic under s <> x, given by su = ux for all
in the socle Soc Ug. Since Soc Uy is isomorphic to R/rad Rg, it is actually an
S-R-submodule of U; it coincides with the S-socle of U and as such is iso-
morphic to gS/rad S. sU is essential over its socle. The maps I — Anny I and
W — Anng W onto the annihilators in U and S are order-inverting one-to-one
maps of the sets of submodules of R and Ug into the sets of submodules of
sU and sS; actually, Anng Anny I = I and Anny Anng W = W. Simple
right R-modules and left S-modules are U-reflexive; semi-simple modules are
reflexive if and only if they are of finite length; submodules of reflexive
R-modules are reflexive. gU is an injective cogenerator if it is only injective or
a cogenerator. If Ug is of finite length, then sU is injective (cf., e.g., 1).

3. A topology on rings. For any faithful module X over an arbitrary
ring R, the second commutator R’ is a topological ring under the finite topology
which is Hausdorff and actually defines a uniform structure, in a natural way.
R is embedded into R’ and is hence topologized by the relative topology which
will be called the X-topology (uniformity). The Hausdorff completion Rof R
with respect to this uniformity operates on X (a generalized Cauchy sequence
? = (r.) satisfies xr, = x7gfor large @, B and fixed x € X ; define this value to be
x?) and we obtain an embedding R C R C R’ since for s € End Xz, x € X,
? = (r.) € R,and sufficiently large a, we have s(x?) = s(x7.) = (5x)7 = (s%)7.
Consequently, X-completeness of R is necessary for the second commutator
relation to hold for X5.

LeEmMMA 2. If X is a cogenerator, then R is dense in R’.

Proof. Let x1, ..., x, € X and p € R’ be given. Set
Y=@1Xy y=(xly"'7xn)v

and observe that the second commutator of ¥ is R’. Then for all s € End Yg
with sy = 0 we obtain 0 = (sy)p = s(yp), hence

yp € N{Kers|s € End Yg, sy = 0} = K.
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Consider any y’ € YV, v" ¢ yR; then we have a maximal submodule
y'R+yR 2D M D yR

hence a map ¥ — Y which vanishes on yR but not on y’, since Y is a cogener-
ator. Consequently, y’ ¢ K and K = yR; therefore yp = yr for a suitable
r € R, which means thatx,p = x,7,2 =1, ..., n.

Observing that R is the closure of R in R’, we see that for a cogenerator X,
X-completeness of R is necessary and sufficient for the second commutator
relation to hold. In particular, this is valid for the minimal cogenerator U.
We characterize the U-topology intrinsically.

LeEmMA 3. The completely meet-irreducible right ideals of R form a subbase
for the neighbourhoods of 0 in the U-topology.

Proof. The right ideals Anny %, where # is any element of an injective hull
of any simple right R-module 7', form a subbase. We have uR =2 R/Anng u;
and a cyclic module R/I is isomorphic to some R if and only if it is essential
over a simple submodule isomorphic to 7". This means that the right ideals
properly containing I all contain one right ideal L D I with L/I = T'; hence I
is completely meet-irreducible.

THEOREM 4. The following are equivalent for any ring R:

(1) R is complete in the completely meet-irreducible uniformity;

(2) The minimal right cogenerator U satisfies the second commutator relation;

(3) Every right cogenerator satisfies the second commutator relation;
cf. (4, Theorem 16.2).

Proof. It remains to show that (2) implies (3). If X is a cogenerator, it
contains the injective hulls of all simple R-modules, as direct summands;
hence U@® P =~ @X = Y. The second commutator of X is the same as that of ¥,
and the latter is mapped, by restriction to U, into the second commutator of U.
This map is onto since the second commutator of U is R, by assumption. For
any p # 0 in the second commutator of ¥ and ¥ € ¥ with yp # 0 we obtain
amap o from Y to U that does not vanish on yp, since U is a cogenerator. Since
o: Y- UCYVY is in End Yz, we have 0 5 o(yp) = (sy)p € Up, hence
p|U #£ 0 and the restriction map is one-to-one; consequently, the second
commutators of X, Y, and U all agree, and the last one is R.

Examples. (1) The following statements are equivalent:
(i) The X-topology is discrete (and therefore R is X-complete);
(i1) There exist elements %1, . .., x, € X with Nj—1 Anngz x; = 0;
(iii) Ry is embeddable in a finite direct sum of copies of Xz.
In case (R, Uy, S) is standard and X = Up, then (i)—(iii) are equivalent to:
Rz is essential over a finite socle.
(2) Consequently, a right-Artinian ring R is discrete in the X-topology for
every faithful Xg; in particular, every cogenerator over an Artinian ring
satisfies the second commutator relation.
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(3) Let (R, Ug, S) be standard; then R = R’ means that Ry is reflexive,
hence all submodules are reflexive and Soc Ry, is of finite length. Since every
right module over a left-perfect ring is essential over its socle, a left-perfect
ring is complete in the completely meet-irreducible topology if and only if
Soc Ry, is of finite length.

(4) Considering right-Artinian rings whose left socle is infinite, we obtain
examples of rings that are discrete and complete in the (right-) completely
meet-irreducible topology, but neither discrete nor complete in the analogously
defined left topology.

(5) If R is a commutative Noetherian ring, the Artin-Rees Lemma implies
that the radical topology is finer than the completely meet-irreducible topology.
Conversely, if R is also semi-local, then R/rad R® is Artinian, hence discrete,
which shows that rad R" is open in the completely meet-irreducible topology,
and that both topologies agree. If R is not semi-local, this will no longer hold,
in general: e.g., for a Dedekind domain R, the open ideals in the completely
meet-irreducible topology are precisely the non-zero ideals, while rad R = 0
if R is not semi-local.

4. Rings with N, _orad R* = 0.

LeEMMA 5. If Ny-orad R" =0, if R is complete in the radical topology, and if
X 1s a right ideal such that X /X rad R is finitely generated, then X is finitely
generated.

Proof. By assumption, we have X = 3 i x;R + XJ, where J = rad R,
which implies that XJ* = > i_; x;J* + XJ**1, Therefore, any x € X may be
written as

n n
1 1 1 1
x = Z xiri(O) + L. + Z xiri(n> + x(ﬂ+ )’ ri(k) € Jk, x(n+) € XJrH- __C_ Jﬂ+ ;
im1 i=1

hence x = X1 x:(ri @ + ... + ;™) 4+ x®*+D, The sequences
r @+ .4+ r®
converge to limits #;, and we obtain x = Y .1 x#;, hence X = 271 x;R.
LeEMMA 6. If (R, Ug, S) is standard and if Uy is Artinian, then
Anng Anng rad R* = rad S*.

Proof. It is well known that rad.S = AnngSoc Ur = AnngSocsU =
Anng Anny rad R, since Uy is the injective hull of Soc Ug (cf. 3, §4.4).
Suppose that the statement is true for #, and consider s € rad S, ¢ € rad S
With J = rad R and U, = Anng J*, we obtain sU,..J" C sU; = 0 since
U,1J"J = 0; therefore sU,+1 € U, and tsU,41 < tU, = 0, and consequently
rad S**! U,;; = 0 and rad S**! C Anng Anny rad R**!; observe that this
inclusion does not require the assumption that Ug is Artinian.
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Now consider any s € Anng U,,1. Since Uy is a cogenerator, we obtain
N{Kert| ¢t €S, tU, = 0} = Uy, and since U is Artinian, this reduces to a
finite intersection MN7-1 Ker ¢; = U,. Define to = @®7-1t;: U— @71 U, let H
be an injective hull of the image Im ¢, of ¢y in @U; then QU = H @ H'. The
map sto~': Im ty — U is well-defined since Ker s 2 U,1 2 U, = Ker fo; it is
extendable to H by the injectivity of Ug, and to @U by setting it equal to
zero on H'; call the resulting map b = @b;: QU — U. We have

s=0bty = bit; and ¢; € AnngU, = rad S,
i=1
by hypothesis of induction. The socle of Im £, is annihilated by rad R, hence
contained in #y(U,+1), and therefore 0 = sU,y1 = btoU,y1 2 b(Soc Im ¢y) =
b(Soc H); on the other hand, 5(Soc H') C b(H') = 0 and consequently
b(Soc @U) = 0 hence b;(Soc U) = 0 and b; € rad S. This proves that

S = Z bztz E rad Sn+l.
i=1

THEOREM 7. Suppose that N, —orad R* = 0, and that R has duality with a
ring S, induced by a bimodule U. Then R is right-Noetherian, S is left-Noetherian,
Nr—orad S* = 0, R and S are complete in the radical topology, sU and Ug are
Artinian, Anny rad R* = Anny rad S” for all n, and U = U, -0 Anny rad R™.

Proof. The existence of the duality implies that for every right ideal X of R,
X/X rad R is reflexive and semi-simple, hence of finite length. Furthermore,
we have order anti-isomorphisms of the lattices of submodules of &S and
Ry with the lattices of submodules of Uy and U given by the annihilators.
Therefore, N rad R* = 0 implies U Anngy rad R = U. Next we show that the
U-topology and the radical topology on R agree: For every # € U we obtain
u € Anng rad R* for some #, hence rad R* € Anny # and the radical topology
is finer than the U-topology. Conversely, for each n, R/rad R” is semi-primary
and rad R/rad Rg? is of finite length, hence R/rad R* is right-Artinian
(7, Lemma 11). This implies that R/rad R” is discrete in the completely meet-
irreducible topology; in other words, rad R is open in this topology. Since the
duality guarantees the U-completeness of R, we obtain the radical completeness
of R. Then by Lemma 5, R is right-Noetherian, and therefore U is Artinian.

From the proof of Lemma 6 we know that rad S* U, = 0, and since we have
already proved that U = UU,, we obtain U Annyrad S* = U and by the
duality, M rad S = 0. All the remaining statements except for Anny rad R* =
Anny rad S” follow now from symmetry, and this equality from Lemma 6.

Remark. Theorem 7 yields a new result even in the commutative case:
A commutative ring with (N rad R* = 0 which has duality is Noetherian.

THEOREM 8. Let (R, Ug, S) be standard; suppose that MNy—orad R* = 0 and
that
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(1) R s complete in the radical topology,

(2) Ug 1s Artinian, and

(8) rad R/rad Rg? is of finite length.
Then R has duality.

Proof. By (9, Theorem 1.1) and since Uy is Artinian, we have
Anns Anl’ly L=1L

for all left ideals L of S, and from (9, Lemma 3.1) we obtain Anny Anng W = W
for all submodules W of Ug. Hence the lattices of submodules of S and Ug
are anti-isomorphic, and S is left-Noetherian.

The finite length of J/Jg? J = rad R, implies that the semi-primary ring
R/J™1 is right-Artinian; hence J"/Jg"t! is of finite length for all #. From
Lemma 5, Jz" is finitely generated; hence #J" is finitely generated for any
u € U, consequently, by Nakayama’s lemma, #J"” contains uJ"+! properly if
uJ" # 0. Therefore the descending sequence R D uJ D uJ? D ... terminates
with #J"* = 0 for some n, whence # € U, = Anny J” and UU, = U. As in the
proof of Theorem 7, we see that the radical topology and the completely
meet-irreducible topology agree; consequently, Uy satisfies the second commu-
tator relation.

U, = Anng J" is the minimal cogenerator over R/J"; for it is essential over
Soc Ur (= Ui) hence contains all simple modules, and it is (R/J")-injective:
An (R/J*)-map from a right ideal I/J* of R/J" into U, can be extended to an
R-map from R/J* to U, but such a map is always into U, and hence an
(R/J*)-map. The endomorphism ring of U,, gu» is S/Anng U, = S/rad S*
(by Lemma 6); it is left-Noetherian and semi-primary, hence left-Artinian.
Since the left ideals of .S/rad S* correspond to the submodules of U, z, this
module is of finite length. Observing finally that R/J" is right-Artinian (since
it is semi-primary and since J/Jz? is of finite length), we see that R/J" has
duality with S/rad S" induced by U,; and consequently, sU, has finite length
and is (S/rad S*)-injective.

Now consider any S-map f of a left ideal L of Sinto U. sL is finitely generated
and U = UU,, hence f (L) C U, for some m. Therefore L/Ker f is of finite
length, and this implies that Anny Ker f/Anny L is of finite length (by
lattice anti-isomorphism). It follows that Anny Ker f € Anny L + U, for
some 7, and again by anti-isomorphism, Ker f © L M Anng U, = LM rad S".
Therefore f induces an S-map f: (L + rad S")/rad S" = L/(LNrad S*) - U
which is actually into Annyrad S* = U, and an (S/rad S*)-map. Conse-
quently, f extends to S/rad S™

f(s) =f(s+radS*) = (s + rad S")u = su forsome u € U, C U;
and sU is injective, and we obtain duality.

Remark. One may ask if conditions (1), (2), and (3) of the theorem are
independent. Taking as R the localization of the integers at a prime p and
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U = Z,» we obtain an example satisfying all assumptionsof the theorem except
for (1). Taking for R any right-Artinian ring without duality, we see that all
assumptions other than (2) are fulfilled. However, for commutative R, (2) is
implied by the other conditions; for (1) and (3) yield rad R finitely generated
by Lemma 5, which implies that R is Noetherian (6, 31.7) and has duality (4).

We do not know if (3) may be derived from the other assumptions; however,
we prove the following result.

LeMMA 9. The following statements are equivalent:

(1) Ug Artinian implies rad R/rad Rg? of finite length, for any semi-perfect
ring R;

(2) Uy of finite length implies R right-Artinian, for every semi-primary ring R
with rad R? = 0;

(3) Ug of finite length implies the existence of a duality, for every ring R;

(4) Vector space dimension [Homy (X, T):D] < o0 smplies [X:T] < oo, for
every bimodule pX r over division rings D and T.

Remark. Statement (4) obviously follows from (7, p. 385, conjecture (P))
which may be phrased as: [X:7T] = NXimplies [Homz(X, T):D] > R for every
bimodule pX 7 over division rings D and 7.

Proof of Lemma 9. (2) is a special case of (1) since rad R/rad Rg?® of finite
length implies R right-Artinian for every semi-primary ring R.

If (2) holds and Ugis of finite length, then R is semi-primary (8, Theorem 4).
The minimal cogenerator for R/rad R? is U; = Anng rad R? which is of finite
length, hence R/rad R? is right Artinian by (2); consequently, rad R/rad Rz?
is of finite length and R is right-Artinian. Then duality exists.

Consider a bimodule X7 over division rings such that [Homz(X, T"):D] <0,

and define
D X
r= (7 5).

Then the minimal cogenerator Up is of finite length since
Hom(J/Jg% R/Jg)r = Homy(X, T)p, (rad R = J (7, Theorem 1)).

Therefore (3) yields duality, thus R is right-Artinian, and consequently
[X:T] < o0.

Now assume (4) and consider a semi-perfect ring R with Artinian minimal
cogenerator Ug. As in the proof of Theorem 8, we see that the minimal co-
generator over R/J?is U, = Anngy J? and has finite length; hence

Hom (J/J&/s% R/JTrir)r)s

has finite length. R/J is semi-simple, hence a direct sum of simple Artinian
rings K1 ® ... @ K,, and the bimodule /;J/J%z;; decomposes into

s
Z @ KiX‘U-Kj
i,ji=1
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and Hom (J/Jg/%, R/Jgi)rsr into Y. @;,; Hom (Xi,,Kj, Kj,Kj)Ki, hence all these
summands have finite length. Now K; = D, and K; = T,, are full matrix
rings over division rings D and T, and the finite length of Hom(Xz,., T.7) bm
implies the same for

Hom(X ®r, I'7™ T'n ®r, T7™) ®p, Dp"
=~ Hom (Hom (5,D", p,X Qzn I™)r, T7™)p
o= @lm I"IOH](YT,TT)D

with the bimodule Y, = Hom(,,D" p,X ®z,, ™) (where D" is the D,-D-
bimodule @, D). Consequently, (4) yields [Y:7] < o which implies that
[X @71, 7™ T] < co and that X, is of finite length; and we have the finite
length of J/Jg /2

5. Ring extensions. If a ring R has duality with a ring .S induced by U, and
if I is any two-sided ideal of R, it is rather immediate that Anngy I induces a
duality between R/I and S/Anng Anny I. Conversely, we discuss the simplest
type of ring extensions, namely a split extension of R by a bimodule Xy with
X? = 0. The elements of such an extension R + X are pairs (r,x) with
multiplication given by (r, x) (v, ') = (', rx’ + xr’).

TuroreM 10. If U induces a duality between R and S, then the minimal
cogenerator of R+ X is Homp(X, U) + U, with multiplication given by
(fyu) (', x") = (fr, fx' + ur'), and its endomorphism ring is

S + Homg(Homz (X, U), U).

We have a duality beiween these rings if and only if both X and Homg(X, U)z
are U-reflexive.

Proof. X is a nilpotent ideal in R 4+ X = T hence in the radical, and
rad(R + X) = rad R + X. Consequently, R and R + X have the same
simple modules, and the injective module Homg (7", U)r contains

Homg (7", Soc U)y 2D Homz (T, Soc U)y = Soc Uy

hence also contains all simple 7-modules. Then it is the minimal cogenerator
over 1 since it is essential over Homy (7", Soc U)r: For any non-zero map
f € Homg(T, U), either (0, xo) % 0 for some x, € X, then f(0, xor¢) 5 0,
(0, xoro) € Soc U since Uy, is essential over its socle, and - (0, xo7,) is non-zero
and in Homgz (T, Soc U); or f(0,x) =0 for all x, then f(1,0) =0
and f(r1,0) # 0, f(r1,0) € Soc U; therefore f- (r1,0) is non-zero and in
Homgz (7", Soc U). Now

Homg (T, U) =2 Homz(X @ R, U) =2 Homg(X, U) ®@ U
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as additive groups, and it is easily checked that R + X operates as indicated.
Next

End Homg(T, U)r) = Homg(Homg (T, U) @, T, U)
=~ Homg(Homz(R + X, U), U) = S + Homg(Homg(X, U), U)

and we check that the multiplication is given by (s, k) (s', h") = (ss’, sk’ + hs');
hence we have a ring extension of .S by the S-S-module

H = HOmR(HOmR(X, U), U)

of the same type as R 4+ X, and it operates on Homgp(X, U) + U by
(s, B)(f, u) = (sf, su + k).

Therefore the minimal cogenerator for S+ H is Homg(H, U) + U and
Hompy (X, U) 4+ U is an injective cogenerator as an (S + H) left module if
and only if it coincides with this module, in other words if

Homg(X, U) = Homg(HomzHomg (X, U), U), U)

or Homg(X, U)gis U-reflexive. If that is the case, we may compute the second
commutator of Homg(X, U) + Uryx as the endomorphism ring of
ssgHomg(H, U) + U and we obtain

R + Homg(Homg(H, U), U) = R + Homs(Homg(X, U), U);
therefore the second commutator relation holds if and only if X is U-reflexive.

Remark. The theorem may be used to obtain numerous examples. An
interesting case arises if we further assume that R = S and take the bimodule
2Xgr = sUg. Then Urp and Hom(Ug, Ur)r = Sz = Rr are reflexive; and
Homgz(X, U) + U =R+ U = R 4+ X; therefore the ring R+ X is an
injective cogenerator on both sides, a so-called generalized quasi-Frobenius
ring. Osofsky (7) has given an example of such a ring which is not quasi-
Frobenius; her example is obtained in our context by choosing for R the ring
of p-adic integers. An example of a non-commutative generalized quasi-
Frobenius ring (there seems to be none in the literature) is obtained as follows:
Take R = K[[x, ¥]], the power series ring in two indeterminates over a field,
then it has duality with itself. Choose X = R, where the R-module structure
on one side is modified by the automorphism of R that interchanges x and y;
then 7" = R 4+ X is non-commutative and has duality with itself. Our con-
struction is applied again to 7', to obtain a generalized quasi-Frobenius ring
that is neither commutative nor Artinian.
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