ON MORITA DUALITY

BRUNO J. MÜLLER

1. Introduction. A contravariant category-equivalence between categories $\mathfrak{A}, \mathfrak{B}$ of right *R*-modules and left *S*-modules (all rings have units, all modules are unitary) that contain R_R , $_sS$ and are closed under submodules and factor modules, is naturally equivalent to a functor Hom (-, U) with a bimodule $_sU_R$ such that $_sU$, U_R are injective cogenerators with $S = \operatorname{End} U_R$ and $R = \operatorname{End} _sU$, and all modules in $\mathfrak{A}, \mathfrak{B}$ are *U*-reflexive. Conversely, for any $_sU_R$, Hom(-, U) is a contravariant category equivalence between the categories of *U*-reflexive modules, and if *U* has the properties just stated, then these categories are closed under submodules, factor modules, and finite direct sums and contain R_R , U_R , $_sS$, and $_sU$. Such a functor will be called a (Morita) duality between *R* and *S* induced by *U* (see (5)).

The following question naturally arises: Which rings R possess a duality? Osofsky (7) has shown that if R has duality, it is semi-perfect. Then U_R will be a finite direct sum of all the isomorphism types of injective hulls of simple right R-modules (Lemma 1), and $S = \text{End } U_R$. We call $\langle R, U_R, S \rangle$ "standard" if R is a semi-perfect ring, U_R is the minimal (injective) cogenerator, and $S = \text{End } U_R$. Here, a duality exists if and only if:

(1) ${}_{s}U$ is an injective cogenerator, and

(2) R = R', the second commutator End _sU of U_R .

We would like to replace these two conditions by more explicit ones like those known in the following two cases: If R is right-Artinian, then duality exists if and only if U_R has finite length (5; 1). If R is commutative-Noetherian, then duality exists if and only if R is complete (4).

We shall show that condition (2) (R = R') holds if and only if R is complete in that uniformity for which the completely meet-irreducible right ideals form a subbase for the neighbourhoods of 0. Then we investigate rings R for which the intersection of the powers of the Jacobson radical is zero; such a ring turns out to have duality if and only if it is right-Noetherian, complete (in the topology defined by the powers of the radical), and if U_R is Artinian.

2. Prerequisites. A semi-perfect ring possesses a basic ring which is similar to it; hence we may (and will to simplify some formulations) assume that R and S are self-basic rings.

LEMMA 1. If we have duality between (self-basic) rings R and S, then $_{s}U$ and

Received May 31, 1968. This research was partially supported by the National Research Council of Canada, Grant A-4033.

MORITA DUALITY

U_R are the minimal cogenerators (the direct sums of the injective hulls of the simple modules).

Proof. Every cogenerator contains the minimal cogenerator. Since $_{S}S$ is finitely generated and the lattices of submodules of $_{S}S$ and U_{R} are antiisomorphic, U_{R} is co-finitely generated, hence essential over a finite socle, therefore a finite direct sum of injective hulls of all types of simple *R*-modules. Since $S = \text{End } U_{R}$ is self-basic, these summands are mutually non-isomorphic.

Next we collect a number of essentially known facts when $\langle R, U_R, S \rangle$ is standard. S is self-basic semi-perfect (cf. 3, § 4.4); the radical factor rings $R/\operatorname{rad} R$ and $S/\operatorname{rad} S$ are isomorphic under $s \leftrightarrow x$, given by su = ux for all uin the socle Soc U_R . Since Soc U_R is isomorphic to $R/\operatorname{rad} R_R$, it is actually an S-R-submodule of U; it coincides with the S-socle of U and as such is isomorphic to ${}_{S}S/\operatorname{rad} S$. ${}_{S}U$ is essential over its socle. The maps $I \to \operatorname{Ann}_{U} I$ and $W \to \operatorname{Ann}_{S} W$ onto the annihilators in U and S are order-inverting one-to-one maps of the sets of submodules of R_R and U_R into the sets of submodules of ${}_{S}U$ and ${}_{S}S$; actually, $\operatorname{Ann}_{R}\operatorname{Ann}_{U} I = I$ and $\operatorname{Ann}_{U}\operatorname{Ann}_{S} W = W$. Simple right R-modules and left S-modules are U-reflexive; semi-simple modules are reflexive if and only if they are of finite length; submodules of reflexive R-modules are reflexive. ${}_{S}U$ is an injective cogenerator if it is only injective or a cogenerator. If U_R is of finite length, then ${}_{S}U$ is injective (cf., e.g., 1).

3. A topology on rings. For any faithful module X_R over an arbitrary ring R, the second commutator R' is a topological ring under the finite topology which is Hausdorff and actually defines a uniform structure, in a natural way. R is embedded into R' and is hence topologized by the relative topology which will be called the X-topology (uniformity). The Hausdorff completion \hat{R} of Rwith respect to this uniformity operates on X (a generalized Cauchy sequence $\hat{r} = (r_{\alpha})$ satisfies $xr_{\alpha} = xr_{\beta}$ for large α , β and fixed $x \in X$; define this value to be $x\hat{r}$) and we obtain an embedding $R \subseteq \hat{R} \subseteq R'$ since for $s \in \text{End } X_R$, $x \in X$, $\hat{r} = (r_{\alpha}) \in \hat{R}$, and sufficiently large α , we have $s(x\hat{r}) = s(xr_{\alpha}) = (sx)r_{\alpha} = (sx)\hat{r}$. Consequently, X-completeness of R is necessary for the second commutator relation to hold for X_R .

LEMMA 2. If X_R is a cogenerator, then R is dense in R'.

Proof. Let $x_1, \ldots, x_n \in X$ and $\rho \in R'$ be given. Set

$$Y = \bigoplus_{i=1}^{n} X, \qquad y = (x_1, \ldots, x_n),$$

and observe that the second commutator of Y is R'. Then for all $s \in \text{End } Y_R$ with sy = 0 we obtain $0 = (sy)\rho = s(y\rho)$, hence

$$y\rho \in \bigcap \{ \text{Ker } s \mid s \in \text{End } Y_R, sy = 0 \} = K.$$

BRUNO J. MÜLLER

Consider any $y' \in Y$, $y' \notin yR$; then we have a maximal submodule

$$y'R + yR \supseteq M \supseteq yR$$

hence a map $Y \to Y$ which vanishes on yR but not on y', since Y is a cogenerator. Consequently, $y' \notin K$ and K = yR; therefore $y\rho = yr$ for a suitable $r \in R$, which means that $x_i\rho = x_ir$, $i = 1, \ldots, n$.

Observing that \hat{R} is the closure of R in R', we see that for a cogenerator X, X-completeness of R is necessary and sufficient for the second commutator relation to hold. In particular, this is valid for the minimal cogenerator U. We characterize the U-topology intrinsically.

LEMMA 3. The completely meet-irreducible right ideals of R form a subbase for the neighbourhoods of 0 in the U-topology.

Proof. The right ideals $\operatorname{Ann}_{\mathbb{R}} u$, where u is any element of an injective hull of any simple right R-module T, form a subbase. We have $uR \cong R/\operatorname{Ann}_{\mathbb{R}} u$; and a cyclic module R/I is isomorphic to some uR if and only if it is essential over a simple submodule isomorphic to T. This means that the right ideals properly containing I all contain one right ideal $L \supseteq I$ with $L/I \cong T$; hence Iis completely meet-irreducible.

THEOREM 4. The following are equivalent for any ring R:

(1) R is complete in the completely meet-irreducible uniformity;

(2) The minimal right cogenerator U satisfies the second commutator relation;

(3) Every right cogenerator satisfies the second commutator relation; cf. (4, Theorem 16.2).

Proof. It remains to show that (2) implies (3). If X is a cogenerator, it contains the injective hulls of all simple R-modules, as direct summands; hence $U \oplus P \cong \bigoplus X = Y$. The second commutator of X is the same as that of Y, and the latter is mapped, by restriction to U, into the second commutator of U. This map is onto since the second commutator of U is R, by assumption. For any $\rho \neq 0$ in the second commutator of Y and $y \in Y$ with $y\rho \neq 0$ we obtain a map σ from Y to U that does not vanish on $y\rho$, since U is a cogenerator. Since $\sigma: Y \to U \subseteq Y$ is in End Y_R , we have $0 \neq \sigma(y\rho) = (\sigma y)\rho \in U\rho$, hence $\rho | U \neq 0$ and the restriction map is one-to-one; consequently, the second commutators of X, Y, and U all agree, and the last one is R.

Examples. (1) The following statements are equivalent:

(i) The X-topology is discrete (and therefore R is X-complete);

(ii) There exist elements $x_1, \ldots, x_n \in X$ with $\bigcap_{i=1}^n \operatorname{Ann}_R x_i = 0$;

(iii) $R_{\mathbf{R}}$ is embeddable in a finite direct sum of copies of $X_{\mathbf{R}}$.

In case $\langle R, U_R, S \rangle$ is standard and $X = U_R$, then (i)-(iii) are equivalent to: R_R is essential over a finite socle.

(2) Consequently, a right-Artinian ring R is discrete in the X-topology for every faithful X_R ; in particular, every cogenerator over an Artinian ring satisfies the second commutator relation.

https://doi.org/10.4153/CJM-1969-147-7 Published online by Cambridge University Press

(3) Let $\langle R, U_R, S \rangle$ be standard; then R = R' means that R_R is reflexive, hence all submodules are reflexive and Soc R_R is of finite length. Since every right module over a left-perfect ring is essential over its socle, a left-perfect ring is complete in the completely meet-irreducible topology if and only if Soc R_R is of finite length.

(4) Considering right-Artinian rings whose left socle is infinite, we obtain examples of rings that are discrete and complete in the (right-) completely meet-irreducible topology, but neither discrete nor complete in the analogously defined left topology.

(5) If R is a commutative Noetherian ring, the Artin-Rees Lemma implies that the radical topology is finer than the completely meet-irreducible topology. Conversely, if R is also semi-local, then $R/\operatorname{rad} R^n$ is Artinian, hence discrete, which shows that rad R^n is open in the completely meet-irreducible topology, and that both topologies agree. If R is not semi-local, this will no longer hold, in general: e.g., for a Dedekind domain R, the open ideals in the completely meet-irreducible topology are precisely the non-zero ideals, while rad R = 0 if R is not semi-local.

4. Rings with $\bigcap_{n=0}^{\infty} \operatorname{rad} R^n = 0$.

LEMMA 5. If $\bigcap_{n=0}^{\infty} \operatorname{rad} R^n = 0$, if R is complete in the radical topology, and if X is a right ideal such that X/X rad R is finitely generated, then X is finitely generated.

Proof. By assumption, we have $X = \sum_{i=1}^{n} x_i R + XJ$, where $J = \operatorname{rad} R$, which implies that $XJ^n = \sum_{i=1}^{n} x_i J^n + XJ^{n+1}$. Therefore, any $x \in X$ may be written as

$$x = \sum_{i=1}^{n} x_{i} r_{i}^{(0)} + \ldots + \sum_{i=1}^{n} x_{i} r_{i}^{(n)} + x^{(n+1)}, \quad r_{i}^{(k)} \in J^{k}, x^{(n+1)} \in XJ^{n+1} \subseteq J^{n+1};$$

hence $x = \sum_{i=1}^{n} x_i (r_i^{(0)} + \ldots + r_i^{(n)}) + x^{(n+1)}$. The sequences

$$r_i^{(0)} + \ldots + r_i^{(n)}$$

converge to limits \hat{r}_i , and we obtain $x = \sum_{i=1}^n x_i \hat{r}_i$, hence $X = \sum_{i=1}^n x_i R$.

LEMMA 6. If $\langle R, U_R, S \rangle$ is standard and if U_R is Artinian, then

$$\operatorname{Ann}_{S}\operatorname{Ann}_{U}\operatorname{rad} R^{n} = \operatorname{rad} S^{n}.$$

Proof. It is well known that $\operatorname{rad} S = \operatorname{Ann}_S \operatorname{Soc} U_R = \operatorname{Ann}_S \operatorname{Soc}_S U = \operatorname{Ann}_S \operatorname{Ann}_U \operatorname{rad} R$, since U_R is the injective hull of $\operatorname{Soc} U_R$ (cf. 3, § 4.4). Suppose that the statement is true for n, and consider $s \in \operatorname{rad} S$, $t \in \operatorname{rad} S^n$. With $J = \operatorname{rad} R$ and $U_k = \operatorname{Ann}_U J^k$, we obtain $sU_{n+1}J^n \subseteq sU_1 = 0$ since $U_{n+1}J^nJ = 0$; therefore $sU_{n+1} \subseteq U_n$ and $tsU_{n+1} \subseteq tU_n = 0$, and consequently $\operatorname{rad} S^{n+1} U_{n+1} = 0$ and $\operatorname{rad} S^{n+1} \subseteq \operatorname{Ann}_S \operatorname{Ann}_U \operatorname{rad} R^{n+1}$; observe that this inclusion does not require the assumption that U_R is Artinian.

BRUNO J. MÜLLER

Now consider any $s \in \operatorname{Ann}_{s} U_{n+1}$. Since U_{R} is a cogenerator, we obtain $\bigcap \{\operatorname{Ker} t \mid t \in S, tU_{n} = 0\} = U_{n}$, and since U is Artinian, this reduces to a finite intersection $\bigcap_{i=1}^{m} \operatorname{Ker} t_{i} = U_{n}$. Define $t_{0} = \bigoplus_{i=1}^{m} t_{i}$: $U \to \bigoplus_{i=1}^{m} U$, let H be an injective hull of the image $\operatorname{Im} t_{0}$ of t_{0} in $\bigoplus U$; then $\bigoplus U = H \oplus H'$. The map st_{0}^{-1} : $\operatorname{Im} t_{0} \to U$ is well-defined since $\operatorname{Ker} s \supseteq U_{n+1} \supseteq U_{n} = \operatorname{Ker} t_{0}$; it is extendable to H by the injectivity of U_{R} , and to $\bigoplus U$ by setting it equal to zero on H'; call the resulting map $b = \bigoplus b_{i}$: $\bigoplus U \to U$. We have

$$s = bt_0 = \sum_{i=1}^m b_i t_i$$
 and $t_i \in \operatorname{Ann}_S U_n = \operatorname{rad} S^n$,

by hypothesis of induction. The socle of Im t_0 is annihilated by rad R, hence contained in $t_0(U_{n+1})$, and therefore $0 = sU_{n+1} = bt_0U_{n+1} \supseteq b(\text{Soc Im } t_0) = b(\text{Soc } H)$; on the other hand, $b(\text{Soc } H') \subseteq b(H') = 0$ and consequently $b(\text{Soc } \oplus U) = 0$ hence $b_i(\text{Soc } U) = 0$ and $b_i \in \text{rad } S$. This proves that

$$s = \sum_{i=1}^m b_i t_i \in \text{rad } S^{n+1}.$$

THEOREM 7. Suppose that $\bigcap_{n=0}^{\infty} \operatorname{rad} R^n = 0$, and that R has duality with a ring S, induced by a bimodule U. Then R is right-Noetherian, S is left-Noetherian, $\bigcap_{n=0}^{\infty} \operatorname{rad} S^n = 0$, R and S are complete in the radical topology, ${}_{S}U$ and U_R are Artinian, $\operatorname{Ann}_{U} \operatorname{rad} R^n = \operatorname{Ann}_{U} \operatorname{rad} S^n$ for all n, and $U = \bigcup_{n=0}^{\infty} \operatorname{Ann}_{U} \operatorname{rad} R^n$.

Proof. The existence of the duality implies that for every right ideal X of R, X/X rad R is reflexive and semi-simple, hence of finite length. Furthermore, we have order anti-isomorphisms of the lattices of submodules of ${}_{S}S$ and R_{R} with the lattices of submodules of U_{R} and ${}_{S}U$ given by the annihilators. Therefore, \bigcap rad $R^{n} = 0$ implies \bigcup Ann_U rad $R^{n} = U$. Next we show that the U-topology and the radical topology on R agree: For every $u \in U$ we obtain $u \in \text{Ann}_{U}$ rad R^{n} for some n, hence rad $R^{n} \subseteq \text{Ann}_{U} u$ and the radical topology is finer than the U-topology. Conversely, for each n, $R/\text{rad } R^{n}$ is semi-primary and rad $R/\text{rad } R_{R}^{2}$ is of finite length, hence $R/\text{rad } R^{n}$ is right-Artinian (7, Lemma 11). This implies that $R/\text{rad } R^{n}$ is open in this topology. Since the duality guarantees the U-completeness of R, we obtain the radical completeness of R. Then by Lemma 5, R is right-Noetherian, and therefore ${}_{S}U$ is Artinian.

From the proof of Lemma 6 we know that rad $S^n U_n = 0$, and since we have already proved that $U = \bigcup U_n$, we obtain $\bigcup \operatorname{Ann}_U \operatorname{rad} S^n = U$ and by the duality, $\cap \operatorname{rad} S^n = 0$. All the remaining statements except for $\operatorname{Ann}_U \operatorname{rad} R^n =$ $\operatorname{Ann}_U \operatorname{rad} S^n$ follow now from symmetry, and this equality from Lemma 6.

Remark. Theorem 7 yields a new result even in the commutative case: A commutative ring with \cap rad $\mathbb{R}^n = 0$ which has duality is Noetherian.

THEOREM 8. Let $\langle R, U_R, S \rangle$ be standard; suppose that $\bigcap_{n=0}^{\infty} \operatorname{rad} R^n = 0$ and that

- (1) R is complete in the radical topology,
- (2) U_R is Artinian, and
- (3) rad $R/\mathrm{rad} R_R^2$ is of finite length.

Then R has duality.

Proof. By (9, Theorem 1.1) and since U_R is Artinian, we have

 $\operatorname{Ann}_{S}\operatorname{Ann}_{U}L = L$

for all left ideals L of S, and from (9, Lemma 3.1) we obtain $\operatorname{Ann}_{U} \operatorname{Ann}_{S} W = W$ for all submodules W of U_{R} . Hence the lattices of submodules of ${}_{S}S$ and U_{R} are anti-isomorphic, and S is left-Noetherian.

The finite length of J/J_R^2 , $J = \operatorname{rad} R$, implies that the semi-primary ring R/J^{n+1} is right-Artinian; hence J^n/J_R^{n+1} is of finite length for all n. From Lemma 5, J_R^n is finitely generated; hence uJ^n is finitely generated for any $u \in U$; consequently, by Nakayama's lemma, uJ^n contains uJ^{n+1} properly if $uJ^n \neq 0$. Therefore the descending sequence $uR \supseteq uJ \supseteq uJ^2 \supseteq \ldots$ terminates with $uJ^n = 0$ for some n, whence $u \in U_n = \operatorname{Ann}_U J^n$ and $\bigcup U_n = U$. As in the proof of Theorem 7, we see that the radical topology and the completely meet-irreducible topology agree; consequently, U_R satisfies the second commutator relation.

 $U_n = \operatorname{Ann}_U J^n$ is the minimal cogenerator over R/J^n ; for it is essential over Soc U_R (= U_1) hence contains all simple modules, and it is (R/J^n) -injective: An (R/J^n) -map from a right ideal I/J^n of R/J^n into U_n can be extended to an R-map from R/J^n to U, but such a map is always into U_n and hence an (R/J^n) -map. The endomorphism ring of $U_{n, R/J^n}$ is $S/\operatorname{Ann}_S U_n = S/\operatorname{rad} S^n$ (by Lemma 6); it is left-Noetherian and semi-primary, hence left-Artinian. Since the left ideals of $S/\operatorname{rad} S^n$ correspond to the submodules of $U_{n,R}$, this module is of finite length. Observing finally that R/J^n is right-Artinian (since it is semi-primary and since J/J_R^2 is of finite length), we see that R/J^n has duality with $S/\operatorname{rad} S^n$ induced by U_n ; and consequently, ${}_SU_n$ has finite length and is $(S/\operatorname{rad} S^n)$ -injective.

Now consider any S-map f of a left ideal L of S into U. ${}_{s}L$ is finitely generated and $U = \bigcup U_n$, hence $f(L) \subseteq U_m$ for some m. Therefore L/Ker f is of finite length, and this implies that $\operatorname{Ann}_U \operatorname{Ker} f/\operatorname{Ann}_U L$ is of finite length (by lattice anti-isomorphism). It follows that $\operatorname{Ann}_U \operatorname{Ker} f \subseteq \operatorname{Ann}_U L + U_n$ for some n, and again by anti-isomorphism, $\operatorname{Ker} f \supseteq L \cap \operatorname{Ann}_s U_n = L \cap \operatorname{rad} S^n$. Therefore f induces an S-map f: $(L + \operatorname{rad} S^n)/\operatorname{rad} S^n \cong L/(L \cap \operatorname{rad} S^n) \to U$ which is actually into $\operatorname{Ann}_U \operatorname{rad} S^n = U_n$ and an $(S/\operatorname{rad} S^n)$ -map. Consequently, f extends to $S/\operatorname{rad} S^n$:

 $f(s) = \overline{f}(s + \operatorname{rad} S^n) = (s + \operatorname{rad} S^n)u = su$ for some $u \in U_n \subseteq U$;

and ${}_{s}U$ is injective, and we obtain duality.

Remark. One may ask if conditions (1), (2), and (3) of the theorem are independent. Taking as R the localization of the integers at a prime p and

 $U = Z_{p^{\infty}}$ we obtain an example satisfying all assumptions of the theorem except for (1). Taking for R any right-Artinian ring without duality, we see that all assumptions other than (2) are fulfilled. However, for commutative R, (2) is implied by the other conditions; for (1) and (3) yield rad R finitely generated by Lemma 5, which implies that R is Noetherian (6, 31.7) and has duality (4).

We do not know if (3) may be derived from the other assumptions; however, we prove the following result.

LEMMA 9. The following statements are equivalent:

(1) U_R Artinian implies rad $R/rad R_R^2$ of finite length, for any semi-perfect ring R;

(2) U_R of finite length implies R right-Artinian, for every semi-primary ring R with rad $R^2 = 0$;

(3) U_R of finite length implies the existence of a duality, for every ring R;

(4) Vector space dimension $[\operatorname{Hom}_T(X, T):D] < \infty$ implies $[X:T] < \infty$, for every bimodule ${}_DX_T$ over division rings D and T.

Remark. Statement (4) obviously follows from (7, p. 385, conjecture (P)) which may be phrased as: $[X:T] = \aleph$ implies $[\text{Hom}_T(X, T):D] > \aleph$ for every bimodule ${}_{D}X_{T}$ over division rings D and T.

Proof of Lemma 9. (2) is a special case of (1) since rad $R/rad R_R^2$ of finite length implies R right-Artinian for every semi-primary ring R.

If (2) holds and U_R is of finite length, then R is semi-primary (8, Theorem 4). The minimal cogenerator for $R/\text{rad } R^2$ is $U_2 = \text{Ann}_U \text{ rad } R^2$ which is of finite length, hence $R/\text{rad } R^2$ is right Artinian by (2); consequently, rad $R/\text{rad } R_R^2$ is of finite length and R is right-Artinian. Then duality exists.

Consider a bimodule $_{D}X_{T}$ over division rings such that $[\operatorname{Hom}_{T}(X, T):D] < \infty$, and define

$$R = \begin{pmatrix} D & X \\ 0 & T \end{pmatrix}.$$

Then the minimal cogenerator U_R is of finite length since

 $\operatorname{Hom}(J/J_{R^{2}}, R/J_{R})_{R} = \operatorname{Hom}_{T}(X, T)_{D} \quad (\operatorname{rad} R = J \ (7, \operatorname{Theorem} 1)).$

Therefore (3) yields duality, thus R is right-Artinian, and consequently $[X:T] < \infty$.

Now assume (4) and consider a semi-perfect ring R with Artinian minimal cogenerator U_R . As in the proof of Theorem 8, we see that the minimal cogenerator over R/J^2 is $U_2 = \operatorname{Ann}_U J^2$ and has finite length; hence

$$\operatorname{Hom}(J/J_{R/J}^2, R/J_{R/J})_{R/J}$$

has finite length. R/J is semi-simple, hence a direct sum of simple Artinian rings $K_1 \oplus \ldots \oplus K_s$, and the bimodule $_{R/J}J/J^2_{R/J}$ decomposes into

$$\sum \bigoplus_{i,j=1}^{s} \kappa_{i} X_{ij,K_{j}}$$

and Hom $(J/J_{R/J}^2, R/J_{R/J})_{R/J}$ into $\sum \bigoplus_{i,j} \text{Hom}(X_{ij,K_j}, K_{j,K_j})_{K_i}$, hence all these summands have finite length. Now $K_i = D_n$ and $K_j = T_m$ are full matrix rings over division rings D and T, and the finite length of Hom $(X_{T_m}, T_{m,T_m})_{D_m}$ implies the same for

$$\operatorname{Hom}(X \otimes_{T_m} T_T^m, T_m \otimes_{T_m} T_T^m) \otimes_{D_n} D_D^n \\\cong \operatorname{Hom}(\operatorname{Hom}(_{D_n} D^n, _{D_n} X \otimes_{T_m} T^m)_T, T_T^m)_D \\\cong \oplus_1^m \operatorname{Hom}(Y_T, T_T)_D$$

with the bimodule ${}_{D}Y_{T} = \operatorname{Hom}({}_{D_{n}}D^{n}, {}_{D_{n}}X \otimes_{T_{m}}T^{m})$ (where D^{n} is the D_{n} -D-bimodule $\oplus_{1}{}^{n}D$). Consequently, (4) yields $[Y:T] < \infty$ which implies that $[X \otimes_{T_{m}}T^{m}:T] < \infty$ and that $X_{T_{m}}$ is of finite length; and we have the finite length of $J/J_{R/J}^{2}$.

5. Ring extensions. If a ring R has duality with a ring S induced by U, and if I is any two-sided ideal of R, it is rather immediate that $\operatorname{Ann}_U I$ induces a duality between R/I and $S/\operatorname{Ann}_S \operatorname{Ann}_U I$. Conversely, we discuss the simplest type of ring extensions, namely a split extension of R by a bimodule $_RX_R$ with $X^2 = 0$. The elements of such an extension R + X are pairs (r, x) with multiplication given by (r, x)(r', x') = (rr', rx' + xr').

THEOREM 10. If U induces a duality between R and S, then the minimal cogenerator of R + X is $Hom_R(X, U) + U$, with multiplication given by (f, u)(r', x') = (fr', fx' + ur'), and its endomorphism ring is

 $S + \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(X, U), U).$

We have a duality between these rings if and only if both X_R and $\operatorname{Hom}_R(X, U)_R$ are U-reflexive.

Proof. X is a nilpotent ideal in R + X = T hence in the radical, and rad $(R + X) = \operatorname{rad} R + X$. Consequently, R and R + X have the same simple modules, and the injective module $\operatorname{Hom}_{\mathbb{R}}(T, U)_T$ contains

 $\operatorname{Hom}_{R}(T, \operatorname{Soc} U)_{T} \supseteq \operatorname{Hom}_{T}(T, \operatorname{Soc} U)_{T} \cong \operatorname{Soc} U_{T}$

hence also contains all simple T-modules. Then it is the minimal cogenerator over T since it is essential over $\operatorname{Hom}_T(T, \operatorname{Soc} U)_T$: For any non-zero map $f \in \operatorname{Hom}_R(T, U)$, either $f(0, x_0) \neq 0$ for some $x_0 \in X$, then $f(0, x_0r_0) \neq 0$, $f(0, x_0r_0) \in \operatorname{Soc} U$ since U_R is essential over its socle, and $f \cdot (0, x_0r_0)$ is non-zero and in $\operatorname{Hom}_T(T, \operatorname{Soc} U)$; or f(0, x) = 0 for all x, then $f(1, 0) \neq 0$ and $f(r_1, 0) \neq 0$, $f(r_1, 0) \in \operatorname{Soc} U$; therefore $f \cdot (r_1, 0)$ is non-zero and in $\operatorname{Hom}_T(T, \operatorname{Soc} U)$. Now

$$\operatorname{Hom}_{R}(T, U) \cong \operatorname{Hom}_{R}(X \oplus R, U) \cong \operatorname{Hom}_{R}(X, U) \oplus U$$

BRUNO J. MÜLLER

as additive groups, and it is easily checked that R + X operates as indicated. Next

 $\operatorname{End}(\operatorname{Hom}_{\mathbb{R}}(T, U)_{T}) \cong \operatorname{Hom}_{\mathbb{R}}(\operatorname{Hom}_{\mathbb{R}}(T, U) \otimes_{T} T, U)$

$$\cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(R+X, U), U) \cong S + \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(X, U), U)$$

and we check that the multiplication is given by (s, h)(s', h') = (ss', sh' + hs'); hence we have a ring extension of S by the S-S-module

 $H = \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(X, U), U)$

of the same type as R + X, and it operates on $\operatorname{Hom}_{R}(X, U) + U$ by (s, h)(f, u) = (sf, su + hf).

Therefore the minimal cogenerator for S + H is $\operatorname{Hom}_{S}(H, U) + U$ and $\operatorname{Hom}_{R}(X, U) + U$ is an injective cogenerator as an (S + H) left module if and only if it coincides with this module, in other words if

 $\operatorname{Hom}_{R}(X, U) = \operatorname{Hom}_{S}(\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(X, U), U), U)$

or $\operatorname{Hom}_{R}(X, U)_{R}$ is U-reflexive. If that is the case, we may compute the second commutator of $\operatorname{Hom}_{R}(X, U) + U_{R+X}$ as the endomorphism ring of $s_{+H}\operatorname{Hom}_{S}(H, U) + U$ and we obtain

 $R + \operatorname{Hom}_{S}(\operatorname{Hom}_{S}(H, U), U) = R + \operatorname{Hom}_{S}(\operatorname{Hom}_{R}(X, U), U);$

therefore the second commutator relation holds if and only if X_R is U-reflexive.

Remark. The theorem may be used to obtain numerous examples. An interesting case arises if we further assume that R = S and take the bimodule $_{R}X_{R} = {}_{s}U_{R}$. Then U_{R} and $\operatorname{Hom}(U_{R}, U_{R})_{R} = S_{R} = R_{R}$ are reflexive; and $\operatorname{Hom}_{R}(X, U) + U = R + U = R + X$; therefore the ring R + X is an injective cogenerator on both sides, a so-called generalized quasi-Frobenius ring. Osofsky (7) has given an example of such a ring which is not quasi-Frobenius; her example is obtained in our context by choosing for R the ring of p-adic integers. An example of a non-commutative generalized quasi-Frobenius ring (there seems to be none in the literature) is obtained as follows: Take R = K[[x, y]], the power series ring in two indeterminates over a field, then it has duality with itself. Choose X = R, where the R-module structure on one side is modified by the automorphism of R that interchanges x and y; then T = R + X is non-commutative and has duality with itself. Our construction is applied again to T, to obtain a generalized quasi-Frobenius ring that is neither commutative nor Artinian.

References

- 1. G. Azumaya, A duality theory for injective modules, Amer. J. Math. 81 (1959), 249-278.
- R. E. Chandler and K. Koh, Applications of a function topology on rings with unit, Illinois J. Math. 11 (1967), 580-585.
- 3. J. Lambek, Lectures on rings and modules (Blaisdell, Waltham, Massachusetts, 1966).
- 4. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.

MORITA DUALITY

- 5. K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83-142.
- 6. M. Nagata, *Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13 (Interscience, New York, 1962).
- 7. B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373-387.
- 8. A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1959), 372-380.
- 9. Annihilators, Portugal. Math. 20 (1961), 53-65.

McMaster University, Hamilton, Ontario