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INVESTIGATING THE COMPUTABLE FRIEDMAN–STANLEY JUMP

URI ANDREWS AND LUCA SAN MAURO

Abstract. The Friedman–Stanley jump, extensively studied by descriptive set theorists, is a fundamental
tool for gauging the complexity of Borel isomorphism relations. This paper focuses on a natural computable
analog of this jump operator for equivalence relations on �, written �, recently introduced by Clemens,
Coskey, and Krakoff. We offer a thorough analysis of the computable Friedman–Stanley jump and its
connections with the hierarchy of countable equivalence relations under the computable reducibility ≤c .
In particular, we show that this jump gives benchmark equivalence relations going up the hyperarithmetic
hierarchy and we unveil the complicated highness hierarchy that arises from �.

§1. Introduction. The classification of analytic equivalence relations up to Borel
reducibility, written ≤B , is a prominent area of research in contemporary descriptive
set theory and it serves as a general framework for assessing the complexity of iso-
morphism relations on classes of countable structures K. Such a study is intertwined
with that of the orbit equivalence relations induced by the action of countable groups,
as there is a full duality between isomorphism relations on countable models of
L�1�-formulas and S∞-equivalence relations (i.e., orbit equivalence relations
induced by a continuous action of the infinite permutation group).

Say that a class K of countable structures is on top for ≤B , if every S∞-equivalence
relation reduces to the isomorphism relation on K, written ∼=K. If so, ∼=K is analytic
but not Borel. It turns out that several familiar classes of structures are on top,
including: undirected graphs, trees, linear orders, nilpotent groups, fields of any
fixed characteristic [20]; Boolean algebras [12]; and torsion-free abelian groups [28,
29]. This may be regarded as strong evidence that these classes are simply too rich
to be simplified in terms of a reasonable system of invariants.

Clearly, many other classes of mathematical interest are not on top: e.g., the Borel
complexity of torsion-free abelian groups of finite rank n strictly increases as n
grows [33]. A fundamental yardstick for gauging the complexity of isomorphism
relations for classes not on top is given by the Friedman–Stanley jump operator,
which dates back to the very beginning of the theory of Borel equivalence relations.

Definition 1.1 (Friedman and Stanley [20]). For E an equivalence relation on
a standard Borel space X, the Friedman–Stanley jump E+ of E is the equivalence
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relation on X� given by

f E+ g ↔ [ran(f)]E = [ran(g)]E.

Friedman and Stanley [20] showed that this jump operator is proper: that is,
E+ >B E for any Borel equivalence relation E with more than one equivalence
class. It immediately follows that the Borel hierarchy is unbounded. The Friedman–
Stanley tower is then obtained by starting with the identity on X and then iterating
the Friedman–Stanley jump transfinitely, along the countable ordinals. Friedman
and Stanley [20] proved that this tower forms a cofinal family of Borel isomorphism
relations.

Parallel to the theory of Borel reductions on equivalence relations, computability
theorists have studied a computability theoretic way of characterizing some
countable equivalence relations as more complex than others.

Definition 1.2. For equivalence relations E and R on the natural numbers,

• E is computably reducible to R, writtenE ≤c R, if there is a computable function
f so that

x E y ↔ f(x) R f(y).

• An equivalence relation E is universal with respect to a complexity class C, if
every member of C computably reduces to E.

Computable reducibility was first introduced by Ershov [16] and has seen a recent
resurgence of interest with special attention paid to local structures of equivalence
relations of a given complexity class such as the c.e. equivalence relations (ceers)
[1, 2, 4–10] and how they naturally arise from algebra [15, 19, 22, 25, 27], or other
levels of the arithmetical/Ershov hierarchy [11, 23, 26].

For a long time, the study of Borel and computable reducibility were conducted
independently, despite the clear analogy between the two notions. Yet, there is
rapidly emerging a theory of computable reductions which blends ideas from both
computability theory and descriptive set theory [13, 14, 17, 21]. In particular,
computable reductions are well-suited for assessing the complexity of isomorphism
relations on classes of computable structures, as one can encode the atomic diagram
of a computable structure by a single natural number. In [18], the authors prove
that, for several classes K, the isomorphism relation on the computable members
of K is a universal Σ1

1 equivalence relation: examples include both classes which are
also on top for ≤B and classes that are not (e.g., torsion abelian groups). Moreover,
since being on top for ≤c coincides with being universal Σ1

1, every hyperarithmetic
equivalence relation (on �) is computably reducible to, e.g., the isomorphism of
computable graphs, while there are Borel equivalence relations which are not Borel
reducible to the isomorphism of countable graphs [24].

Less is known about the complexity of classes that are not on top for ≤c . To
deepen the natural connection between the Borel and the computable setting, the
following computable analog of the Friedman–Stanley jump has been introduced
(a finitary analog of this jump appeared in [21]):
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Definition 1.3 (Clemens, Coskey, and Krakoff [13]). For E an equivalence
relation on �, E� is given by x E� y if and only if [Wx ]E = [Wy ]E , where Wi
is the ith c.e. set.

Clemens, Coskey, and Krakoff [13] showed that E� > E holds for any hyper-
arithmetic (HYP) equivalence relation. They also asked several carefully chosen
questions (presented in Section 1.2) regarding features of the jump operator �.
In this paper, we answer several of these questions. By doing so, we advance
understanding of both the computable Friedman–Stanley jump and the global
hierarchy of countable equivalence relations explored in [3]. We will prove, in
particular, that the computable Friedman–Stanley tower is a cofinal family of
HYP equivalence relations (Corollary 6.13). This result provides natural benchmark
equivalence relations, which may pave the way to a future classification of all sorts
of isomorphism relations on computable structures, in analogy with the successful
line of research pursued by descriptive set theorists. Interestingly, such benchmark
relations lie at the Π levels of the hyperarithmetical hierarchy, while it is known
that there is no universal Π0

a equivalence relation for a ≥ 2 [23]. Finally, our
investigation of the computable Friedman–Stanley jump will unveil a complicated
highness hierarchy (see Sections 2 and 3) that give natural subclasses of the ceers.

Throughout the rest of this paper, the “jump” of an equivalence relation will
always refer to the computable Friedman–Stanley jump operator �.

1.1. Preliminaries. We assume that the reader is familiar with the fundamental
notions and techniques of computability theory.

All our equivalence relations have domain the set � of the natural numbers.
Equivalence relations are infinite if they have infinitely many equivalence classes;
otherwise, they are finite. For a c.e. set A, the equivalence relation EA is given by
x EA y if and only ifx = y orx, y ∈ A. A ceer of the formEA is called 1-dimensional.

The equality relation on � is denoted by Id. Note that Id� is equivalent to =ce ,
where x =ce y if and only ifWx =Wy . Following [3, 7], we say that:

• E is light if Id ≤c E.
• E is dark if E is infinite and not light.
• E is dark minimal if it is dark and all equivalence relations <c E are finite.

The next lemma will be used a few times.

Lemma 1.4 [3, Lemma 1.13], [7, Lemma 3.4]. Let R be a dark minimal equivalence
relation. If We intersects infinitely many R-classes, then We must intersect every
R-class.

Let R be an infinite ceer with the property that whenever We intersects infinitely
many R-classes, thenWe intersects every R-class. Then R is a dark minimal equivalence
relation.

For two equivalence relations E,R,

• the uniform join E ⊕R is the equivalence relation defined by x E ⊕R y if and
only if x = 2k, y = 2l and k E l or x = 2k + 1, y = 2l + 1 and k R l ;

• the cross product E ×R is the equivalence relation defined by

〈x, y〉(E ×R)〈u,w〉 ⇔ (x E u ∧ y R w).

https://doi.org/10.1017/jsl.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.30
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For a countable sequence (Ei)i∈� , ⊕iEi is given by 〈x, y〉 ⊕iEi 〈v,w〉 if and only
if x = v and y Ex w.

The following definition gives a convenient notation for working with �.

Definition 1.5. For setsX,Y and an equivalence relation E, we writeX ⊆E Y to
mean [X ]E ⊆ [Y ]E . Similarly, we writeX =E Y to mean [X ]E = [Y ]E andX �E Y
to mean [X ]E � [Y ]E .

For any set X and equivalence relation E, we writeX/E for the set of E-equivalence
classes of members of X.

In answering [13, Question 1] and the discussion around it, we mention the
following standard definitions from computability theory:

Definition 1.6. A c.e. set A is hyperhypersimple if there is no infinite c.e. set
{i0, i1, ...} so that the setsWij are disjoint, eachWij is finite, and eachWij intersects
� \ A.

A co-infinite c.e. set B is maximal if whenever Y ⊇ B is c.e., either Y \ B is finite
or � \ Y is finite.

A c.e. set C is quasimaximal if it is the intersection of finitely many maximal sets.

1.2. Questions of Clemens, Coskey, and Krakoff. For every ceer E, we haveE� ≤c
Id� [13, Proposition 4.1]. This motivates the following definition:

Definition 1.7. A ceer E is high for the jump if Id� ≤c E�.

We note that this is the notion of highness for ceers using this jump operator.
Note that any light ceer satisfies Id� ≤c E�, so every light ceer is high for the jump.

Clemens, Coskey, and Krakoff [13, Question 1] ask for a characterization of the
c.e. sets A so thatEA is high for the jump. In Section 2, we give the following solution:

Theorem 2.8. For a c.e. set A, E�
A ≡ Id� if and only if A is not hyperhypersimple.

Thus, the property of being high for the jump is Σ0
4-complete.

This line of inquiry led us to wonder what the picture looks like for the double-
jump. That is, which sets A have the property that Id�� ≤c E��

A , i.e., EA is high2

for the computable FS-jump. And we also ask whether there are any ceers E so that
Id�� �≤c E��. Similarly, we want to know whether every ceer is highn for some
n ∈ �. We use the following notation, where n̂ is used to avoid conflicting with
notation for infinite iterates of the jump given below in Definition 1.9.

Definition 1.8. For n ∈ � and E an equivalence relation, we let E�n̂ be the nth
iterate of the jump over E.

We answer these questions in Section 3.

Theorems 3.1, 3.6, 3.7. For every co-infinite c.e. set A, Id�� ≤c E��
A . Yet there

are infinite ceers E so that Id�� �≤c E��.
In fact, if E is a lowm dark minimal ceer for any m, then Id�k̂ �≤c E�k̂ for every k.

Yet there are dark minimal ceers E so that Id�� ≤c E��.

Next, every infinite ceer E has the property that Id ≤c E� [13, Theorem 4.2], but
there are infinite Δ0

4 equivalence relations E so that Id �≤c E� [13, Theorem 4.4].
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Clemens, Coskey, and Krakoff ask [13, Question 6] what is the least complexity of
an infinite equivalence relation E so that Id �≤c E�. In Section 4, we answer this
with the following theorems:

Theorem 4.1. If E ∈ Π0
2 is infinite, then Id ≤c E�.

Theorem 4.4. There exists an infinite Σ0
2 equivalence relation E so that Id �≤c E�.

Clemens, Coskey, and Krakoff [13] also examine the transfinite jump hierarchy,
which they defined as follows:

Definition 1.9. For a ∈ O and E an equivalence relation, E�a is defined by
induction as follows:

If a = 1 (the notation for 0), then E�a = E.
If a = 2b then E�a = (E�b)�.
If a = 3 · 5e , then E�a = ⊕iE�ϕe (i)

Clemens, Coskey, and Krakoff show [13, Theorem 3.1] that no jump fixed-point
can be hyperarithmetic (HYP). In fact, they show that if E is a jump fixed point
and X is a HYP set, then X ≤m E [13, Theorem 3.2]. They ask if notations matter
in the definition of the jump [13, Question 2]. They also ask whether every HYP
equivalence relation E reduces to Id�a for somea ∈ O [13, Question 3]. In particular,
this would imply that every jump fixed point must be an upper bound under
computable reduction (not just m-reduction) for all HYP equivalence relations.
We answer both in the affirmative in Sections 5 and 6.

Theorem 5.4. For any notation b for �2 there exists another notation a for �2 so
that Id�a �≤c Id�b .

There are two notations a, b for �2 so that Id�a and Id�b are incomparable.

On the other hand, if |a| = |b|, then Id�a and Id�b are somewhat related as
follows:

Theorem 5.8. For every computable ordinal α, there is an equivalence relation E
which is Π0

2·α+1 so that whenever a ∈ O is a notation for α, we have Id�a ≤c E.

Theorem 6.13. Every HYP equivalence relation reduces to Id�a for some a ∈ O.

Corollary 6.15. If E is a fixed point of the jump, i.e., E ≡ E� then E is an upper
bound for every HYP equivalence relation.

§2. Ceers which are high for the jump. In this section, we examine which ceers E
are high for jump, i.e., Id� ≤c E�. We begin by introducing a combinatorial notion
which will capture the notion of a ceer being high for the jump.

Definition 2.1. A ceer E is singly high for the jump if there is a uniformly c.e.
sequence (Vi)i∈� so that,Vi �⊆E

⋃
j �=i Vj for every i ∈ �. That is, there is an x ∈ Vi

so that [x]E ∩ Vj = ∅ for every j �= i .

This definition naturally captures a ceer being high for the jump in a way given
by a map from � into c.e. sets.
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Lemma 2.2. Fix a ceer E. Then, E is singly high for the jump if and only if there
exists a function f so that the map g which sends i to an index for

⋃
j∈Wi Wf(j) gives

a reduction of Id� to E�.

Proof. Suppose first that E is singly high for the jump. We letWf(j) = Vj . Since
for each a ∈ �, Va contains an element whose E-class is not intersected by any Vj
with j �= a, the set of E-classes in the image

⋃
j∈Wi Wf(j) of a c.e. setWi determines

whether a ∈Wi . Thus, this gives a reduction of Id� to E�.
Next, suppose that there is a function f as given. If every element ofWf(j) were

to be E-equivalent to a member ofWf(k) for some k �= j, then the g-image of� and

� \ {j} would be the same, so g would not be a reduction of Id� to E�. Thus the
family Vj =Wf(j) shows that E is singly high for the jump. �

More surprisingly, we show that any ceer which is high for the jump is singly high
for the jump. Before this, let us establish a useful lemma that constrains the behavior
of any reduction from Id� to some E�.

Lemma 2.3. Let h : Id� ≤c E�, for a ceer E. The following hold:

(1) IfWi ⊆Wj , thenWh(i) ⊆E Wh(j).
(2) IfWi is infinite, thenWh(i) =E

⋃
Wa⊂finWi

Wh(a).

Proof. (1): Suppose towards a contradiction that x ∈ [Wh(i)]E \ [Wh(j)]E . Then,
we use an index e we control by the recursion theorem and we letWe =Wi unless we
see x ∈ [Wh(e)]E , in which case we makeWe =Wj . This will yield a contradiction
in either case. If we never see x ∈ [Wh(e)]E , then We =Wi , so we must have
x /∈ [Wh(i)]E , which is a contradiction. If we do see x ∈ [Wh(e)]E , then we make
We =Wj , so x ∈ [Wh(j)]E , also a contradiction.

(2): We already have
⋃
Wa⊂finWi

Wh(a) ⊆E Wh(i) by the first item. Suppose that
y ∈ [Wh(i)]E . Then, we use an index e we control by the recursion theorem and
we begin enumerating Wh(i) into We until we see y ∈ [Wh(e)]E . At this point,
we stop enumerating any new elements into We . We thus get a finite set We and
y ∈ [Wh(e)]E . �

Theorem 2.4. A ceer is high for the jump if and only if it is singly high for the jump.

Proof. If E is singly high for the jump, then it is high for the jump by Lemma 2.2.
Let E be a ceer which is high for the jump and fix h to be a reduction of Id�

to E�. We will construct a sequence (Vi)i∈� of c.e. sets witnessing that E is singly
high for the jump.

We define a function from c.e. sets F to c.e. sets W (F ) by taking an index e
we control by the recursion theorem and enumerating F into We . Then we let
W (F ) =Wh(e). At a given stage s, we letW (F )s =Wh(e),s . We observe that for any
index i of F, we haveW (F ) =Wh(i). Moreover, by Lemma 2.3, we may assume that
for every s we haveW (F )s ⊆W (G)s for any finite sets F ⊆ G .

We fix a sequence of equivalence relations Es which limit to E and we assume
that at most one pair of classes collapses at any given stage s. Our construction is
designed to meet the following requirements:

Pi : (∃x ∈ Vi )(x is not E-equivalent to any y ∈ Vj , for j �= i). �
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2.1. Strategy. Intuitively, the strategy to satisfy Pi acts as follows: We choose a
number ai and begin with a set Bi = ∅. We want to exploit the fact thatW (Bi) �E
W (Bi ∪ {ai}). So, we choose a number z which we believe is in W (Bi ∪ {ai}) \
[W (Bi)]E and we put this z into Vi . If we see z become E-equivalent to a member
of set Vj with j > i , then this is because some set Bj ∪ {aj} which does not contain
ai has z ∈ [W (Bj ∪ {aj})]E . We now give up on z and update our parameter Bi to
contain Bj ∪ {aj} and try to use the fact thatW (Bi) �E W (Bi ∪ {ai}) for this new
larger set Bi , and we choose a new number z. If this happens infinitely often, and
each choice of z ends up in

⋃
j>i [Vj ]E , then we will have built a setBi not containing

ai so thatW (Bi) =W (Bi ∪ {ai}) contradicting the fact that h is a reduction of Id�

to E�.
If we see z go into

⋃
j<i [Vj ]E , it is possible that this E-class is the only one

distinguishing between [W (Bi)]E and [W (Bi ∪ {ai})]E . So, we put ai into Bi and
choose a new parameter ai . Now this class is already inW (Bi), and since

⋃
j<i Vj

will be finite, we will have to do this only finitely often, so the above strategy will
eventually find us a z ∈ Vi \

⋃
j �=i [Vj ]E .

2.2. Construction. The strategy for the Pi requirement will have parameters ai ,
Bi , and zi . These should be understood as follows: Bi is a finite set which does
not contain ai . We want to use the fact that W (Bi) �=W (Bi ∪ {ai}) to find an
E-class which “represents” ai . The parameter zi defines an element which is in
Vi \ [

⋃
j �=i Vj ]E at the current stage. To refer to the value of a parameter at the end

of stage s, we give it a superscript s.
The strategy for Pi requires attention at stage s + 1 if its parameter zi is undefined

or is contained in [
⋃
j �=i Vj,s ]Es or if it has been injured since it last acted. At any

given stage, the highest priority strategy which requires attention acts. All lower-
priority strategies are injured. For bookkeeping reasons, if a strategy is injured, it
keeps its parameters but just knows that it is injured. The strategy acts as follows
when acting at stage s + 1:

2.2.1. Step (I). If the strategy has been injured since it last acted or if it has
never acted before, then it chooses new parameters as follows: If it currently has
parameters asi and Bsi defined, then it lets the parameter Bi have value Bsi ∪ {asi }.
Otherwise, it lets the parameter Bi have value ∅. It also chooses a new parameter ai
to be a fresh number which has never before been considered.

2.2.2. Step (II) If zi is currently defined we run the module TryTheNumber(zi).
Otherwise, we run the PickANumber module.

We now describe the module TryTheNumber(c):
(1) If c��Es w for every w ∈

⋃
j �=i Vj,s , then we let zs+1

i = c and enumerate c
into Vi .

(2) If c Es w for somew ∈ Vj,s with j < i , then we letD = Bi ∪ {ai} and we pick
a new number b. We then reset the parameters Bi = D and ai = b. We then
call the PickANumber module with these new parameters.

(3) If c Es w for some w ∈ Vj with j > i , then we let D = Bi ∪ {aj} ∪ Bj . We
resetBi to be D and we call the PickANumbermodule with the new parameters
(note that ai has not changed).
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We now describe the PickANumber module:

Find the first t > s so that [W (Bi ∪ {ai})t ]Es �= [W (Bi)t ]Es and let c be
the least element of W (Bi ∪ {ai})t \ [W (Bi)t ]Es . We then call the module
TryTheNumber(c).

2.3. Verification. Note that we only ever enumerate a number into Vi if it is
already inW (Bi ∪ {ai}) and we only ever grow the set Bi ∪ {ai} (either by putting
ai into Bi in case the strategy is injured or in case 2 of the TryTheNumber module,
or by keeping ai the same and growing Bi in case 3 of the TryTheNumber module),
so we always have Vi,s ⊆W (Bsi ∪ {asi })

s
.

Lemma 2.5. If the strategy Pi begins the PickANumber module, it eventually
terminates in case (1).

Proof. It suffices to see that the strategy cannot take outcome (2) or (3) of the
TryTheNumbermodule infinitely many times. Every time it takes outcome (2) or (3),
we have a new element w ∈

⋃
j �=i Vj,s so that w ∈ [W (Bi)]Es . Note that c was in

W (Bi ∪ {ai})t \ [W (Bi)t ]Es before the change of parameters, but c ∈ [W (Bi)t ]Es
after the change of parameters. Since c Es w, we also see w has entered the set
[W (Bi)t ]Es . Note that since we only ever grow Bi , once something is seen to be in
W (Bi), it remains there. Since

⋃
j �=i Vj,s is finite at a given stage of the construction,

this process must eventually stop. �
Lemma 2.6. At every stage s, if i < j and ai is defined, then ai /∈ Bj ∪ {aj}.

Proof. This is by induction on stages. When ai is chosen, it is chosen new so this
holds at that stage. Similarly, aj is chosen new so ai �= aj . At later stages, elements
can enter Bj by either adding aj to Bj in outcome (2) of the TryTheNumber module
or by adding {ak} ∪ Bk for some k > j intoBj . But ai /∈ {ak} ∪ Bk by the inductive
hypothesis. �

Lemma 2.7. Every strategy eventually settles with a parameter zi /∈ [
⋃
j �=i Vj ]E .

Thus, every Vi is finite and contains an element which is not E-equivalent to a member
of any other Vj .

Proof. We proceed by induction. We may assume that every strategyPj for j < i
has found such parameters zi by stage s. Since these parameters never change after
stage s, those strategies never act after stage s and the Pi -strategy is never injured
after stage s. The Pi -strategy can then only take outcome (2) of the TryTheNumber
module finitely often as there are only finitely many members of Vj for j < i .

Let t > s be a stage late enough that the Pi -strategy never takes outcome (2)
of the TryTheNumber module after stage t. Then the parameter ai at stage t is
permanent. Further, note that ai never enters Bi after stage t. This cannot happen
via outcome (2), since outcome (2) never happens after stage t and ai never enters
Bi via outcome (3) by Lemma 2.6.

Considering the limiting value of Bi , since ai /∈ Bi , we see that [W (Bi)]E �

[W (Bi ∪ {ai})]E . Let c be the least element of W (Bi ∪ {ai}) \ [W (Bi)]E and let
u > t be a stage large enough that [W (Bui )u]Eu ∩ [0, c] = [W (Bi)]E ∩ [0, c] and
[W (Bui ∪ {aui })u]Eu ∩ [0, c] = [W (Bi ∪ {ai})]E ∩ [0, c]. Then when we next run the
PickANumber module after stage u, we pick this value of c and we cannot take
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outcome (2) of TryTheNumber(c) because u > t and we cannot take outcome (3) as
this would put c into [W (Bi)]E . Thus we must take outcome 1 so c ∈ Vi .

Now we argue that c /∈ [
⋃
j �=i Vj ]E . Suppose towards a contradiction that c E w

for w ∈ Vj with j �= i . Then the Pi strategy requires attention and since every
higher priority strategy has settled, it gets to act. It then runs the TryTheNumber(c)
module and must take outcome (2) or (3) depending on whether j < i or j > i . This
cannot take outcome (2) as u > t. If it takes outcome (3), then we see c ∈ [W (Bi)]E
contradicting the choice of c. �

This concludes the proof that the property of being high for the jump coincides
with the property of being singly high for the jump. �

We now shift the focus to the case of 1-dimensional ceers. Indeed, it is natural to
ask for which c.e. sets A is EA high for the jump [13, Question 1]. Clemens, Coskey,
and Krakoff proved the following: on the one hand, if A is not hyperhypersimple
then EA is high for the jump [13, Theorem 4.8]. In particular, there are dark ceers
which are high for the jump: AnyEA for A simple but not hyperhypersimple. On the
other hand, if A is quasimaximal, then EA is not high for the jump [13, Theorem
4.17]. This is not a characterization, as there are sets which are hyperhypersimple yet
are not quasimaximal [30]. Recall Definition 1.6 for these terms. The next theorem
settles the problem.

Theorem 2.8. For a c.e. set A, E�
A ≡ Id� if and only if A is not hyperhypersimple.

Thus, the property of being high for the jump is Σ0
4-complete.

Proof. If A is nonhyperhypersimple, then EA is high for the jump by [13,
Theorem 4.8].

Suppose EA is high for the jump. Then EA is singly high for the jump. Let
V = (Vi)i∈� witness this. We may assume that every Vi has an element zi which
is not in

⋃
j �=i Vj and zi /∈ A. This is because all of A constitutes a single class in

EA, so omitting one set from the sequence of Vi suffices to guarantee this. We may
also assume that at every stage at most one number is enumerated into at most one
set Vi .

We now define the sets Xi defined as follows: z ∈ Xi if

(1) z ∈ Vi and Vi is the first set in V which z enters.
(2) (∃s > z∀w < z)(w ∈ Vi,s → w ∈ As ∪

⋃
j �=i Vj,s).

The first condition implies that X = (Xi)i∈� is a uniformly c.e. array of disjoint
sets. Since every Vi contains a member which is not contained in A ∪

⋃
j �=i Vj , the

second condition ensures that each Xi is finite. Finally, for each Vi , let z be the
least member of Vi \ (A ∪

⋃
j �=i Vj). Then z ∈ Xi . Thus X witnesses that A is not

hyperhypersimple.
Next we consider the index set of being high for the jump. It is easy to calculate

that being high for the jump is a Σ0
4 problem. To conclude, it is sufficient to recall that

the index set of nonhyperhypersimple c.e. sets is Σ0
4-complete (see [34, 35], where the

result is announced, and [32, Theorem XII 4.13] where it is proved). �
We finish our discussion of which ceers are high for the jump by focusing on a

special class of ceers which will also be considered in the next section: dark minimal
ceers, i.e., dark ceers E so that R <c E implies that R is finite. Dark minimal ceers
are of special interest for the theory of ceers. For example, we code graphs onto the
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dark minimal ceers to show that the theory of the partial order of ceers is as rich as
possible, being computably isomorphic with first-order arithmetic [6].

Proposition 2.9. No dark minimal ceer is high for the jump.

Proof. Towards a contradiction, suppose that there exists h : Id� ≤c E�, for a
dark minimal ceer E. Lemma 2.3(2) guarantees that, if Wi is infinite, then Wh(i)
must intersect infinitely many E-classes, as otherwise there would be finite c.e. sets
Wa ⊂Wb ⊂Wi so that [Wh(a)]E = [Wh(b)]E , a contradiction. So, letWe0 andWe1
be the evens and the odds, respectively. Since E is dark minimal, by Lemma 1.4, we
obtain that [Wh(e0)]E = [Wh(e1)]E = �, a contradiction. �

§3. The higher jump hierarchy of ceers. We now turn our attention to higher
jumps applied to ceers. We first consider the 1-dimensional case where, contrary to
the picture for the single jump, every co-infinite c.e. set A has the property that EA
has the highest possible double-jump. Of course, we focus on the co-infinite c.e. sets
because, if A is co-finite, then EA has only finitely many classes.

Theorem 3.1. If A is a co-infinite c.e. set, then Id�� ≤c E��
A .

Proof. We describe an algorithm h for reducing Id�� toE��
A . LetF : � → � be

so F (n) is the nth element of � \ A. Note that F is Δ0
2, so we fix also Fs a uniformly

computable sequence of functions limiting to F.
We arrange it so that for any index e, h(e) is an index for a uniformly c.e. family

consisting of �, all finite sets, and � \ {F (k)} for each k so that Wk =Wi for
some i ∈We . We observe that this is a reduction from Id�� into E��: If e, e′ are
indices for the same family of c.e. sets, then h(e) and h(e′) are indices for the same
family of c.e. sets. If h(e) and h(e′) are so they describe the same family of c.e.
sets up to EA-equivalence, then since each F (k) is a singleton class in EA, they
must be the same family of c.e. sets. In particular,Wj =Wi for some i ∈We if and
only if � \ F (j) =Wm for some m ∈Wh(e) if and only if � \ F (j) =Wm for some
m ∈Wh(e′) if and only ifWj =Wi for some i ∈We′ .

Given an index e, we must uniformly produce the uniform family which is to be
its image under h. Begin with a uniform enumeration of � and all finite sets. We
add to this a sequence of sets Vmi,k . If i enters We , then make V 0

i,k active. If V ji,k is

active for some j and Fs+1(k) �= Fs(k), then we deactivate V ji,k , make V ji,k = � and

we activate V j+1
i,k . If V ji,k is active at stage s and both s and the length of agreement

betweenWi andWk at stage s are ≥ �, then we enumerate [0, �] \ {Fs(k)} into V ji,k .
It is straightforward to check that this gives a uniform enumeration of the

described family. �
Next we see that, unlike the 1-dimensional case, there are ceers which are not

highn for the computable Friedman–Stanley jump for any n. That is, Id�n̂ �≤c E�n̂.
We do this by considering the low dark minimal ceers. Dark minimal ceers have
been used heavily in the literature, and we now note that there are dark minimal
ceers which are also low.1

1We emphasize that we are using lowness in the sense of the Turing jump on sets, not any of the
equivalence relation jumps from Definition 1.3.
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Lemma 3.2. There are low dark minimal ceers.

Proof sketch. The construction of a dark minimal ceer E has requirements of
two types, which suffice by Lemma 1.4:

Re,n: IfWe is intersects infinitely many E-classes, then it intersects [n]E .
Im: E has ≥ m classes.

To these, we can add the lowness requirement:
Le : If for infinitely many stages s we have ϕEse (e) ↓, then ϕEe (e) converges.

L-requirements only place restraint on some finite collection of E-classes preventing
collapse. This fits in the finite injury construction of a dark minimal ceer, as given in
[7, Theorem 3.3] (i.e., to a lower-priority requirement, this restraint is no different
than the restraints placed by higher-priority I-requirements). �

Recall that all dark minimal ceers E have the property that if We intersects
infinitely many E-classes, thenWe must intersect every E-class. The following few
lemmas use this property to bound the complexity of the jumps of dark minimal
ceers.

Lemma 3.3. If E is a dark minimal ceer, then for each k ∈ �, the set of i so that
Wi/E has size ≥ k is a Δ0

2(E) set.
Further, the set of triples (i, j, k) so that |Wi/E| = k andWi =E Wj is Δ0

2(E).
In particular, if E is a low dark minimal ceer then these sets are both Δ0

2.

Proof. The quotient Wi/E has size at least k if and only if ∃x1 ... xk ∈
Wi(

∧
k �=j xk�E xj). This is Σ0

1(E).
To check if (i, j, k) is so that |Wi/E| = k and Wi =E Wj , we can in a Δ0

2(E)
way check that |Wi/E| = k and |Wj/E| = k by the above. Then, if this is the case,
we can in an E-computable way find elements x1 ... xk ∈Wi so that

∧
xi�E xj and

y1 ... yk ∈Wj so that
∧
yi�E yj . Then we need only check in an E-computable way

that
∧
i≤k xi E y�(i) for some permutation �. �

Lemma 3.4. If E is a dark minimal ceer, then E�� is Δ0
4(E).

In particular, if E is a low dark minimal ceer then E�� is Δ0
4.

Proof. Let Vi ,Vj be two uniformly c.e. families of c.e. sets (given by appropriate
indices, i.e., Vi = {Wm : m ∈Wi}). Then Wi ⊂E� Wj if and only if the following
hold:

(∀S ∈ Vi)(∀k ∈ �)
[
|S/E| = k → (∃F ∈ Vj) (F =E S)

]
. (1)

(∃S ∈ Vi)(∀k ∈ �)
[
|S/E| > k → (∃S ∈ Vj)(∀k ∈ �)(|S/E| > k)

]
. (2)

The conditions |S/E| = k and F =E S in (1) are Δ0
2(E) by Lemma 3.3. Thus, the

condition (1) is Π0
3(E). Similarly, using Lemma 3.3, (2) is Δ0

4(E). Thus,Wi =E� Wj ,
or i E�� j is a Δ0

4(E) condition. �

Corollary 3.5. If E is a dark minimal ceer, then for any k > 2, the equivalence
relation E�k̂ is Π0

2k–1(E). In particular, if E is a low2k–2 dark minimal ceer then E�k̂

is Π0
2k–1.
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Proof. This is by induction with base case k = 3: E��� is Π0
2 over E��, which

is Δ0
4(E), so is Π0

5(E). Then E�(̂k+1) = (E�k̂)� is Π0
2 over E�k̂ which is Π0

2k–1(E)

by induction, so E�(̂k+1) is Π0
2(k+1)–1(E). �

Below, in Corollary 6.7, we will show that Id�n̂ is not Π0
2n–1. It follows from this

that if E is a low2k–2 dark minimal ceer and k > 2, then Id�k̂ �≤c E�k̂ . Since being
lowm implies being lowm+1, thus shows that E cannot be highn for any n. Thus we
will have the following theorem.

Theorem 3.6. If E is a lowm dark minimal ceer for anym ∈ �, then E is not highn
for the computable Friedman–Stanley jump for any n ∈ �.

We now see that the assumption of lowness is necessary here, since there are dark
minimal ceers so that Id�� ≤c E��.

Theorem 3.7. There is a dark minimal ceer E so that Id�� ≤c E��.

Proof. We begin with a description of how we will give the reduction witnessing
Id�� ≤c E��. Along with the ceer E, we will construct uniformly in each j, k,
x̄ ∈ �, a finite sequence of c.e. sets Unj,k,x̄ for n ≤ N (j, k, x̄) satisfying the following
Informal Requirement:

IRj,k,x̄ : For every n < N (j, k, x̄), Unj,k,x̄ = �. Regarding UN (j,k,x̄)
j,k,x̄ :

– If x̄ is a 2k-tuple which is E-distinct andWj =Wk , then

UN (j,k,x̄)
j,k,x̄ = [x̄]E.

– Otherwise, |UN (j,k,x̄)
j,k,x̄ /E| is odd or UN (j,k,x̄)

j,k,x̄ = �.

From the success of these requirements, we give a reduction of Id�� to E��.
Given a uniformly c.e. family Vi = {Wj : j ∈Wi}, we map this to a family Fi which
contains each set Unj,k,x̄ for each j ∈Wi , k ∈ � and x̄ ∈ �2k , and n ≤ N (j, k, x̄).
We also include an enumeration of � and sets Xx̄ for every x̄ of odd size where Xx̄
enumerates [x̄]E unless we see that x̄ is not E-distinct, in which case Xx̄ enumerates
�. It is easy to check that the sets enumerated asXx̄ are exactly� and every E-closed
set Y so that |Y/E| is odd. Further, if Wk is represented in Vi , then there is some
j ∈Wi so thatWj =Wk . In this case, UN (j,k,x̄)

j,k,x̄ for various x̄ will enumerate every
E-closed set Y so that |Y/E| has size 2k. So, this gives the necessary reduction to
witness that Id�� ≤c E��. �

3.1. Formal construction. We now verify that we can construct a dark minimal
ceer E along with the uniform sequence of setsUnj,k,x̄ satisfying the IR-requirements.

We have the full set of requirements for m, n, o, j, k ∈ � and x̄ ∈ �2k.

Im : E has at least m equivalence classes.
Pn,o : IfWn intersects infinitely many E-classes, thenWn intersects [o]E .

Qj,k,x̄ : Enumerate a c.e. set U so that:
– If x̄ is not E-distinct, then U = �.
– If x̄ is E-distinct andWj =Wk , then U = [x̄]E .
– If x̄ is E-distinct andWj �=Wk , then |U/E| is odd.
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We note that whenever a Qj,k,x̄-requirement is reinitialized, we will let the
constructed set be � and have the strategy begin constructing a new set U. This
explains the finite sequence of sets Unj,k,x̄ described in IRj,k,x̄ and N (j, k, x̄) will be
the number of times this strategy is reinitialized. So the success of the strategy which
satisfies Qj,k,x̄ , after finitely many reinitializations gives us success of IRj,k,x̄ . Thus,
we need only give a finite injury construction satisfying each of these requirements,
then we know that E is a dark minimal ceer and Id�� ≤c E��.

We enumerate the strategies in order type �. Whenever a P-strategy causes
collapse, all lower-priority strategies are reinitialized.

The strategies for I and P-requirements are familiar from the usual construction
of a dark minimal ceer in [7, Theorem 3.3]: I-requirements simply choose a new
tuple and place restraint.

Pn,o-strategies seek to find an element ofWn which is not (currently) E-equivalent
to any restrained number. Then it E-collapses this number with o.

Qj,k,x̄ strategies act as follows: If it ever sees some xi E xj , then it just stops and
makes U = �, and the requirement is satisfied. Nonetheless, the strategy restrains
the tuple x̄. We begin by enumerating [x̄]E into U. We use the Π0

2 approximation
to the statementWj =Wk . That is, at every stage, we have a computable guess as
to whether or notWj =Wk . If we infinitely often guess thatWj =Wk , then they
are equal. When our guess switches from saying Wj =Wk to saying that they are
not equal, we take a new number y, and we add y to U. Further, we place restraint
on the number y so that lower priority requirements will not collapse y with any
element of x̄. If we later guess thatWj =Wk , then we collapse y with x0. We then
undefine the parameter y and unrestrain it (it is restrained automatically anyway by
our restraint on x0).

The construction is put together via standard finite injury machinery. At every
stage s, the first s strategies get to act in order.

3.2. Verification.

Lemma 3.8. At every moment of the construction, the set of parameters of y for
various Q-requirements and the set of restrained elements for I-requirements are all
E-distinct.

At every moment of the construction, if Qi,j,x̄ is higher priority than Qi′,j′,x̄′ , then
the latter’s parameter y′(if defined) is not E-equivalent to any x ∈ x̄.

Proof. These statements are preserved by the choice of parameters, since they
are chosen new. Collapse occurs only via action from P or Q-requirements. In the
former case, Pn,o collapses some member z ofWn to o. This z was not equivalent to
any element restrained by a higher-priority requirement, and since all lower-priority
requirements are reinitialized, we have added no restrained number to the class
of o. Next we consider collapse caused by a Qj,k,x̄-strategy. Since Qj,k,x̄ previously
restrained y, the inductive hypothesis shows that no other parameter y′ for a
Q′-requirement or an element restrained by an I-requirement was equivalent to y.
Since after the collapse of y with x0, this y is no longer the parameter for Qj,k,x̄ , we
have added no such element to the class of x0. Thus the first statement is proved.

It remains to see that a collapse caused by a Qi0,k0,x̄0 -strategy does not cause
a violation of the second statement. By the first statement, no two y-parameters
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could have been equivalent. So, the only way this could have caused the violation is
if x0

0 Es y
′ and y0 Es x0. But by inductive hypothesis, the former implies Qi0,k0,x̄0

is lower priority than Qi′,j′,x̄′ and the latter implies Qi,j,x̄ is priority than Qi0,j0,x̄0 .
Thus we would haveQi,j,x̄ being lower priority thanQi′,j′,x̄′ , so this is not a violation
of the second statement after all. �

Lemma 3.9. Every strategy succeeds.

Proof. Since only P-requirements reinitialized lower priority requirements, and
each can act at most once, every requirement is reinitialized only finitely often.

We first see that every Im-strategy succeeds. Take a stage after which the strategy
is not reinitialized and consider the tuple restrained by the strategy. By the previous
Lemma, each of its restrained elements are E-distinct, so the strategy succeeds.

Next, consider a Pn,o-strategy. Let s be a stage large enough that the strategy
is not reinitialized after stage s. Let ā be the full tuple of elements restrained by
higher-priority I-strategies (which has settled by stage s). Let Qiq ,jq ,x̄q for q < K be
the collection of higher-priority Q-strategies. Suppose thatWn/E is infinite, and let
t > s be a stage after whichWn contains at least |ā ∪

⋃
q<K x̄q | +K + 1E-distinct

elements. At any such stage, at most KEt-classes are restrained as parameters y by
higher priority Q-strategies, so there must be an unrestrained member ofWn,t which
the strategy will collapse with o and thus be permanently satisfied.

Finally, we consider a Qi,j,x̄-strategy. We consider the three cases: If x̄ is not E-
distinct, then this is seen at some point and we set U = �. If x̄ is E-distinct and
Wj =Wk , then infinitely often, we add some n to U, but then we collapse this n in
with x0. So, U = [x̄]E . IfWj �=Wk , then let s be the least stage so that the strategy
is not reinitialized after stage s and the approximation saysWj �=Wk for all t > s .
Let y be the parameter chosen at stage s. Then we need only see that y /∈ [x̄]E .
We consider what strategy might cause this collapse. It cannot be a higher priority
P-requirement, since the strategy is not reinitialized after stage s. It cannot be lower
priority Pn,o-requirements since both x̄ and y are restrained by Qi,j,x̄ , so neither
can be Et-equivalent to the chosen element z ∈Wn. It cannot be a Q-requirement,
since the lower-priority strategy’s parameter y cannot be equivalent to either the
higher-priority strategy’s y or x, by the previous lemma. �

This concludes the proof of Theorem 3.7. �
We have showed that there are properly high2 dark minimal ceers. We ask the next

natural question:

Question 1. For each n > 2, does there exist a dark minimal ceer which is properly
highn for the computable Friedman–Stanley jump?

§4. Dark jumps. In the remaining three sections, we move out from the realm of
ceers and consider equivalence relations of higher complexity. In particular, we now
ask how complex an infinite equivalence relation E must be for its jump to be dark.
Clemens, Coskey, and Krakoff [13, Theorems 4.2 and 4.4] show that E� is light for
every infinite ceer E and there are infinite Δ0

4 equivalence relations E so that E� is
dark. Here we prove that Σ0

2 is the lowest arithmetical complexity of an equivalence
relation E such that E� is dark (thus answering [13, Question 6]).

First, we show that the jump of every infinite Π0
2 equivalence relation is light.
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Theorem 4.1. If E ∈ Π0
2 is infinite, then Id ≤c E�.

Proof. We let Es be computable approximations to E so that xEy if and only if
there are infinitely many stages s so that x Es y. We construct a uniform sequence
of c.e. setsWij , for j ∈ �, so thatWij �E Wij+1 , for each j ∈ �.

We letWi0 = {0}. We defineWij+1 as follows:

x ∈Wij+1 if and only if (∀y < x)(∃s ≥ x)(∃z ∈Wij )(y Es z).

Lemma 4.2. If [0, x) ⊆E Wij , then x ∈Wij+1 .

Proof. For each y < x, there is a z ∈Wij so that y E z. Thus for infinitely many
s we have y Es z, witnessing x ∈Wij+1 . �

Lemma 4.3. EachWij is a finite initial segment of �.

Proof. We prove this by induction. This is true for j = 0.
Fix an element y /∈ [Wij ]E . This exists becauseWij is finite and E has infinitely

many classes. Then let s be a stage large enough thatWij =Wij,s and every z ∈Wij
and t > s we have y��Et z. Then no x > s can ever enterWij+1 . �

It follows that Wij �E Wij+1 for each j. To see this, note that Wij ⊆Wij+1 by
Lemma 4.3 and the definition of Wij+1 . Then consider the least x /∈ [Wij ]E which
exists since E is infinite andWij is finite. Then [0, x) ⊆E Wij , so x ∈Wij+1 \ [Wij ]E
by Lemma 4.2. Thus j �→ ij is a reduction of Id to E�. �

On the other hand, there are Σ0
2 sets whose jumps are dark.

Theorem 4.4. There exists an infinite Σ0
2 equivalence relation E so that Id �≤c E�.

Proof. We construct E as a c.e. set via a finite injury argument over 0′. We have
requirements:

Ri : IfWi is infinite, then it contains two elements which are E�-equivalent.
Qj : There are x1, ... xj which are E-inequivalent.

If ϕ were a reduction of Id to E�, then the image of ϕ would be a c.e. set no
two elements of which are E� equivalent. Thus, the R-requirements ensure that
there is no reduction from Id to E�, while the Q-requirements ensure that E is
infinite. We place these requirements in order-type �. A Q-requirement acts by
placing a restraint. At every stage s, we allow the first s requirements to act in turn.
In fact, R-requirements may act at infinitely many stages and cause infinitely many
E-collapses.

The strategy for an Rn-requirement is as follows: Let x̄ be the tuple of elements
restrained by higher-priority Q-requirements. Using 0′, we seek a set I of 3 · 2|x̄| + 1
numbers inWn. If there are not this many, thenWn is not infinite and the requirement
is satisfied. From these numbers, we use 0′ to find four that agree on the (current)
classes of x̄. That is, for each of these 3 · 2|x̄| + 1 indices j ∈Wn and x ∈ x̄, we use 0′

to ask if any member (there will be only finitely many) of [x]Es is inWj . Then by the
pigeon-hole principle, there are four that give the same answer for every x ∈ x̄. Fix
these indices: j, k, l, m. If there are two indices i, i ′ ∈ {j, k, l, m} so thatWi andWi′
are contained in [x̄]Es , then 0′ sees this and the requirement will be automatically
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satisfied, so no further action is taken. So, we may suppose Wj,Wk,Wl are each
not contained in [x̄]Es . Note that the family {Wj,Wk,Wl} must contain two finite
sets or two infinite sets. We begin with working with the pair j, k and, until proven
otherwise, we guess thatWj andWk are both infinite.

Then, we perform the following Collapse(j, k) module:
At each stage s greater than every x ∈ x̄, we ask 0′ if there is a y ≥ s which is in
Wj and we ask if there is a y ≥ s which is inWk . We distinguish two cases.
(1) If the answer is no to either, then we stop this module and we call the

FoundFiniteSet module instead.
(2) Assuming case (1) didn’t happen, we now act to ensure that every z < s

is either in both or neither of [Wj ]Es and [Wk ]Es . We act successively for
each z ∈ (max(x̄), s). If z is not least in its Es -equivalence class, then we
have already ensured this when previously considering a number y < s
which is Es -equivalent to z, so we do nothing. Otherwise, we ask 0′ if
z ∈ [Wj ]Es and if z ∈ [Wk ]Es .
(a) If it is in neither or both, we do no action.
(b) If it is in one and not the other, then we find the least n > s in the

other set and we E-collapse the interval [z, n].
We now describe the FoundFiniteSet module:
(1) If this is the first time we call this procedure, say having found that Wj is

finite, then we simply return to the Collapse(k, l) module (we just assume
Wk andWl are infinite until we see otherwise).

(2) If this is the second time we call this procedure, say having found that Wj
andWk are finite, then we simply collapse [max(x̄) + 1,max(Wj,Wk)] to a
single E-class.

Note that since every collapse involves an interval, the classes of E are intervals
as well.

A Qj strategy acts as follows: Let x̄ be the tuple restrained by Qj–1 (or x̄ = ∅ if
j = 0). Wait to find a stage s and a number y < s so that y is the greatest element
of [max(x̄ + 1)]Es and [y]Es = [y]Es–1 . Once such a y is found, the strategy places a
restraint on the tuple x̄y.

The strategies are interwoven in priority order: R0 < Q0 < R1 < Q1 < ··· .
Whenever an R-strategy runs a FoundFiniteSet module, all lower priority
strategies are reinitialized. This is the only source of injury. At each stage s, we
allow the requirements to act in order until one of them ends the stage. A Qj-
strategy which is still waiting to find a y or which acts by declaring its restraint x̄y
ends the stage, and a Rn-strategy which runs a FoundFiniteSet module ends the
stage.

Lemma 4.5. Suppose that a Qk strategy restrains a tuple x̄y at stage s, and t > s .
Then either the strategy has been reinitialized between stages s and t or x̄y are the
largest members of the first |x̄y|Et-equivalence classes. In particular, [z]Es = [z]Et for
every z ∈ x̄y.

Proof. The result holds by induction for every xi ∈ x̄. Namely, x̄ is restrained
by the strategy Qj–1 at a stage r < s . By inductive hypothesis applying the claim to
the Qj–1-strategy, xi is the greatest number in the i + 1th Et-class as needed. We
must consider the E-class of y. Since y Es max(x̄) + 1, we need only show that as
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long as the Qk has not been reinitialized, no number > y ever becomes equivalent
to y.

Since [y]Es–1 = [y]Es , each higher priority R-strategy (without loss of generality,
suppose it is running the Collapse(j, k) module) has considered the class [y]Es
on its previous pass and found that it intersected either both or neither of Wj
andWk . Thus, at any future stage t > s where [y]Et = [y]Es , as long as the strategy
remains in the Collapse(j, k) module, this strategy will never have a need to collapse
any element with y. If the strategy takes the FoundFiniteSet module, then the
Qk-strategy is reinitialized and the desired result holds. Thus, no higher priority
strategy can ever cause the E-class of y to grow.

Consider the collapses caused by lower-priority R-strategies at a stage t > s and
suppose that we have [y]Et = [y]Es . The strategy collapses finite intervals of numbers
[z, n] which are greater than the largest element in the restrained tuple. Since y is the
largest number in its Et-equivalence class, no number in this finite interval can be
equivalent to y, so this collapse does not add any elements to y’s E-class. �

Lemma 4.6. Each strategy is satisfied.

Proof. Each strategy may injure lower priority requirements at most twice (each
time it runs the FoundFiniteSet module), so every strategy is reinitialized only
finitely often.

Suppose towards a contradiction that the first strategy that fails is a Rn-strategy.
Fix x̄ to be the numbers restrained by higher-priority Q-strategies. Then Rn begins
by choosing indices j, k, l . Note that for any x ∈ x̄, we have [x]Es ∩Wj = ∅ ↔
[x]Es ∩Wk = ∅ ↔ [x]Es ∩Wl = ∅ where s is the stage when j, k, l were chosen after
the last time the Rn-strategy is reinitialized. But by the previous claim, [x]Es = [x]E ,
so

[x]E ∩Wj = ∅ ⇔ [x]E ∩Wk = ∅ ⇔ [x]E ∩Wl = ∅.

So, on these classes, the three sets agree.
First suppose that both of Wj and Wk are infinite. We now check that the

Collapse(j, k) module ensures that Wj =E Wk . Fix z > max(x̄) (i.e., a class
distinct from the ones considered above) and suppose that z ∈ [Wj ]E . Then at some
stage s > z we have z ∈ [Wj ]Es . Then at this stage, we ensure that z ∈ [Wk]Es . This
covers every class by the previous claim, so j E� k satisfying the Rn requirement.

Similarly, if exactly one ofWj orWk is finite (without loss of generality, assume it
isWj), andWl is infinite then the Collapse(k, l) module ensures thatWk =E Wl . If
two of the sets, sayWj andWk are finite, then the FoundFiniteSet module ensures
thatWj =E Wk since they must both intersect the class of max(x̄) + 1 (since they
were chosen to not be contained in [x̄]Es = [x̄]E) and no larger class. Thus, the
strategy succeeds after all.

Next, suppose towards a contradiction that Qj is the first strategy that fails.
From the above lemma, we need only show that the wait to find a y as needed
must end. At each stage t, let yt = max([max(x̄) + 1]Et ). This would work for our
choice of y unless [max(x̄) + 1]Et �= [max(x̄) + 1]Et–1 . This can only happen due
to the action of a higher priority R-requirement, since Qj ends the stage since it
is waiting to find its y. We can suppose, without loss of generality, that the higher
priority strategy is in a Collapse(j, k) module, since the Collapse(k, l) module is
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symmetric and it can run the FoundFiniteSet module at most twice. Then growing
the E-class of max(x̄) + 1 must be because max(x̄) + 1 was seen to be in exactly
one of [Wj ]Et–1 or [Wk]Et–1 . But this can happen only once in the Collapse(j, k)
module, since after stage t it is in both. Thus, after finitely many stages, we must
have [max(x̄) + 1]Et = [max(x̄) + 1]Et–1 and Qj can choose its element y. �

This concludes the proof of Theorem 4.4. �

§5. Jumps depend on notations. We now consider the transfinite jump hierarchy.
Clemens, Coskey, and Krakoff [13, Question 2] ask whether the degree of E�a

depends on the notation a ∈ O or only the ordinal |a|. We show that it does indeed
depend on the notation, but we give a bound on how much it can depend on the
notation.

Notation. To avoid having towers of exponentials to represent successor ordinals,
we introduce the function P(x) = 2x and we write P(k)(x) for the kth iterate of the
function P on x. Note that if n is a notation for the ordinal α, then P(k)(n) is a notation
for the ordinal α + k.

The following observation follows directly from the definitions.

Observation 5.1. For any notations a <O b, there is a computable function fa,b
so that fa,b witnesses E�a ≤c E�b for any equivalence relation E. Further, fa,b can
be uniformly found from the notations a and b.

Proof. This is seen by induction on the notation b with base case b = a. In this
case, the reduction is the identity. There is a uniform reduction f from E to E� for
any E via the map sending x to an index for the c.e. set {x} as in [13, Proposition
2.2(a)]. Using this, when b = 2c , we can take a reduction g which reduces E�a to
E�c for any E and compose with f to get a reduction to E�b . This is uniform from
the reduction g.

Similarly, if b = 3 · 5e with a <O b, then there is some k so that a <O ϕe(k).
Then by inductive hypothesis, we have a reduction g of E�a to E�ϕe (k). But the
kth column of E�b is exactly E�ϕe (k), so composing g with the function x �→ 〈k, x〉
gives the uniform reduction toE�b . Finally, note that k, and thus the reduction, can
be found uniformly from a, b. �

The following lemma will be used to manage possible reductions into E�a where
|a| is a limit ordinal.

Lemma 5.2. For any equivalence relation E, the classes of E� are computably
inseparable.

Proof. Suppose towards a contradiction that [i ]E� and [j]E� are separated
by the computable set A. That is, [i ]E� ⊆ A and [j]E� ∩ A = ∅. By the recursion
theorem, we can take an index e so thatWe =Wi if e /∈ A andWe =Wj if e ∈ A.
In either case, this gives a contradiction. �

We first consider ordinals < �2, and show that the notation does not matter in
this case.

Lemma 5.3. Let α be an ordinal < �2 and a, b ∈ O have |a| = |b| = α. Then for
any E, we have E�a ≡ E�b .
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Proof. The proof is by induction on α. We note that if the result is shown for
α, then E�a ≤c E�b for any notation a for α and b with |b| > α. To see this, take
the notation c with c <O b and |c| = α. Then E�a ≡ E�c ≤c E�b . We call this the
“reduction form” of the inductive hypothesis.

The lemma clearly holds for all finite α. The set of α for which this is true is
also clearly closed under successor. It suffices to show the result for limit ordinals
α < �2.

Let a = 3 · 5i and b = 3 · 5j be notations for� · n. Let c be least so that |ϕi(c)| ≥
� · (n – 1) and d be least be so that |ϕj(d ))| ≥ |ϕi(c)|. For every k > c, ϕi(k) =
P(z)(ϕi(c)) for some z. Similarly, for every k > d , ϕj(k) = P(z)(ϕj(d )) for some z.

We build a reduction of E�a to E�b as follows: We send the first c columns of
E�a to the columns d through d + c – 1 of E�b . This can be done by the reduction
form of the inductive hypothesis since the first c columns ofE+a are allE+g for some
g with |g| < � · (n – 1) and the images are of the form E�h where |h| ≥ � · (n – 1).

Next, we send the cth column ofE�a to the (d + c)th column ofE�b which again
we can do by the reduction form of the inductive hypothesis. To figure out how to
send the c + 1th column, we find the number k so that ϕi(c + 1) = P(k)(ϕi(c)).
Then we find the first unused column e in E�b so that ϕj(e) = P(l)(d ) with l > k.
We can then use the reduction from E�c to E�d to uniformly find a reduction from

EP
(k)(c) to EP

(l)(d ). Repeating as such, we uniformly send every column of E+a into
E+b giving the needed reduction. �

Next we see that notation does matter at �2.

Theorem 5.4. For any notation b for �2 there exists another notation a for �2 so
that Id�a �≤c Id�b .

There are two notations a, b for �2 so that Id�a and Id�b are incomparable.

Proof. Let b = 3 · 5j be a given notation for �2.
We take a = 3 · 5e for an index e which we control by the recursion theorem.

For each x, we let ϕe(x) = P(3 · 5ix ) for an infinite sequence of indices ix which we
control by the recursion theorem. Until we determine otherwise, we define, stage by
stage that ϕi0(0) = 1, ϕix (s + 1) = P(ϕix (s)), and ϕix+1(0) = P(3 · 5ix ).

We perform the following actions for the sake of diagonalization. To ensure that
ϕk is not a reduction of Id�a to Id�b , we wait for ϕk(〈k, 0〉) to converge, say to
〈m, n〉. Since |P(3 · 5ik )| is a successor ordinal, Lemma 5.2 shows that the classes

of Id�P(3·5ik ) are computably inseparable. Thus we know that if ϕk is a reduction,
then it must send the entire kth column into the mth column of Id�b . But the
mth column of Id�b is equivalent to Id+ϕj (m). So, at the stage s when we see that
ϕk(〈k, 0〉) ↓= 〈m, n〉, we make ϕik (s + 1) = ϕik (s) +O ϕj(m) +O 1. This ensures
that |P(3 · 5ix )| > |ϕj(m)|.

For each column, we will only perform this operation once (for all t > s , we set
ϕik (t + 1) = P(ϕik (t))). Thus, if 3 · 5ix is a notation for some limit ordinal less than
�2, then 3 · 5ix+1 is also a notation for a limit ordinal less than �2. Thus, this is true
for all x by induction and thus a is a notation for �2.

Suppose towards a contradiction that ϕk is a reduction of Id�a to Id�b . Then

on the kth column, ϕk gives a reduction of Id�P(3·5ik ) to Id�ϕj (k). Let c be so
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c <O P(3 · 5ix ) and |c| = |ϕj(k)|. Then Id�c ≡ Id�ϕj (k) by Lemma 5.3. But then

(Id�c)� ≤c Id�P(3·5ix ) ≤c Id�ϕj (k) ≡ Id�c . But then Id�cm-bounds every HYP set
[13, Theorem 3.2], but this is a contradiction since Id�c is itself HYP.

Using the symmetric strategy to ensure Id�a �≥c Id�b , and interleaving the
requirements, we can construct a and b so that Id�a and Id�b are incomparable. �

We next see that for any computable ordinal α, the equivalence relations Id�a for
a with |a| = α form a reasonably well bounded collection of equivalence relations.
We will need the following observation:

Observation 5.5. There is a computable function x �→ 2 ·O x which sends a
notation a for α to a notation for 2 · α. Further, x <O 2 ·O x for every x ∈ O.

Proof. This is done via transfinite recursion and the recursion theorem. We
define 2 ·O P(a) to be P(2)(2 ·O a) and we define 2 ·O (3 · 5e) as 3 · 5i where ϕi(x) =
2 ·O ϕe(x). �

Theorem 5.6. For any computable ordinal a, Id�a ≤c=Σ0
2·Oa

where =Σ0
c

is the

equivalence relation of equality of Σ0
c sets (given by a notation c ∈ O).

Further, this is uniform in the notation a.

Proof. We prove this by induction on the notation a. For the base of the
induction, let a = 1, i.e., the notation for the ordinal 0. Then Id�a = Id and
Σ0

2·Oa = Σ0
0. We can send n to an index for the Σ0

0 set {n}.

Next suppose that a = P(b). Then we assume Id�b reduces to =Σ0
2·Ob

sets. Then

Id�a reduces to (=Σ0
2·Ob

)�. Thus it suffices to show the following claim:

Claim 5.7. For any c ∈ O, (=Σ0
c
)� ≤c=Σ0

P(2)(c)

.

Proof. Let (Sm)m∈� be a natural indexing of all Σ0
c sets. Let F be a function which

sends i to a Σ0
P(2)(c)

-index for the set {m : ∃k (Sm = Sk ∧ k ∈Wi)}, and observe that

F is a reduction. �

Finally, suppose that a = 3 · 5i . Then by the assumed uniformity for all ordinal
notations<O a, we have uniform reductions of each Id�ϕi (k) to =Σ0

2·Oϕi (k)
. Since we

can uniformly turn Σ0
2·Oϕi (k)-indices for a set into a Σ0

2·Oa-index for the same set, we

see that each Id�ϕi (k) reduces to =Σ0
2·Oa

. By coding on distinct columns, i.e., using

the fact that =Σ0
2·Oa

×Id ≤c=Σ0
2·Oa

, we see that Id�a ≤c=Σ0
2·Oa

. And again this is

uniform. �

Theorem 5.8. For every computable ordinal α, there is an equivalence relation E
which is Π0

2·α+1 so that whenever a ∈ O is a notation for α, we have Id�a ≤c E.

Proof. By Spector’s uniqueness theorem [31, Theorem 4.5], if |a| = |b|, then
H (a) ≡ H (b). Further, this is uniform. Thus for any b with |b| = |a|, we can
uniformly turn a Σ0

2·Ob-index for a set into a Σ0
2·Oa-index for the same set. Thus
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fixing any chosen notation e for α, for any notation a for α, Id�a ≤c=Σ0
2·Oe

and

=Σ0
2·Oe

∈ Π0
2α+1. �

Observation 5.9. When α = �2, there is no single notation b ∈ O so |b| = α and
Id�b ≡=Σ0

2·Oα
. This follows immediately from the first statement of Theorem 5.4.

§6. Every HYP equivalence relation reduces to some Id�a . Friedman and Stanley
[20] proved that the collection of transfinite jumps of the identity relation on reals
form a cofinal family in the Borel hierarchy of all Borel isomorphism relations. In
this final section, we offer an effective analogue of this result. Namely, we will prove
that any HYP equivalence relation is bounded by some Id�a .

As for many other places of this paper, our starting point is [13]. We give a
definition of a strong way to reduce a set A ⊆ � to an equivalence relation E. This
is similar to and inspired by [13, Definition 3.4]; whereas they aren’t concerned with
the image h(x) if x /∈ A (so long as it is E-contained in the image of the reduction
for an x ∈ A), we demand only two possible images depending on whether or not
x ∈ A.

Observe that the cross product E × Id (as defined in the preliminaries) is
equivalent to a uniform join of E with itself countably many times.

Definition 6.1. A set A strong subset reduces to E� if there is a computable
function h and a pair i, j so that Wi ⊆E Wj , h(x) E� j for every x ∈ A, and
h(x) E� i for every x /∈ A.

This form of reduction is strong enough to give us a way to transfer set reductions
to Id�a into equivalence relation reductions to Id�a . In the following lemma and
throughout this section, we focus on equivalence relations E so that E × Id ≤c E.
This is a reasonable assumption since we are trying to build reductions into
equivalence relations of the form Id�a and all such equivalence relations satisfy
E × Id ≤c E [13, Corollary 2.9].

Lemma 6.2. Suppose that R is an equivalence relation and let A := {〈x, y〉 :
x R y}. Suppose that either A or the complement of A strong subset reduces to E�.
Suppose further that E × Id ≤c E. Then R ≤c E�.

Proof. Let (h, i, j) witness that A or its complement strong subset reduces toE�.
For each x ∈ �, let (hx, ix, jx) witness that A or its complement strong subset

reduces to the xth column of (E × Id)�. That is, Whx (a) = {〈x, y〉 | y ∈Wh(a)},
Wix = {〈x, y〉 | y ∈Wi}, andWjx = {〈x, y〉 | y ∈Wj}.

For each x ∈ �, let ex be a c.e. index for the set
⋃
y∈� Why (〈x,y〉). EachWhy (〈x,y〉)

is contained in the yth column and either has the same E × Id-closure as Wiy or
Wjy . We now check that x �→ ex is a reduction of R to (E × Id)�.

If a R b, then {y | y R a} = {y | y R b}. Similarly, {y | y�R a}. = {y | y�R b}.
So, for every y,Why (〈a,y〉) has the sameE × Id-closure asWhy (〈b,y〉), so ea (E × Id)�

eb . If a�R b thenWha (〈a,a〉) has the same E × Id-closure asWja (orWia if it is the
complement of A which strong subset reduces to E�), butWha (〈b,a〉) has the same
E × Id-closure as Wia (or Wja if it is the complement of A which strong subset
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reduces to E�) showing that ea�����(E × Id)� eb . Thus x �→ ex is a reduction of R to
(E × Id)�, which is equivalent to E�. �

We note the similarity between the above and the fact that every Σ0
1 equivalence

relation E reduces to Id�. That is proved by sending x to [x]E . This is essentially
what we do here, but instead of putting y into the set when y is equivalent to x, we
putWjy into the set if y is equivalent to x.

Below, it will be convenient to reduce into E × Id instead of E. The following
lemma shows how to return to E.

Lemma 6.3. Let R ≤c E. Suppose that A strong subset reduces to R�, then A
strong subset reduces to E�. Similarly, suppose that A strong subset reduces to R��

then A strong subset reduces to E��.

Proof. Let g be a reduction of R to E. Take (h, i, j) witnessing that A strong
subset reduces toR�. Then we define f(n) = en so thatWen = {g(x) | x ∈Wh(n)}.
Let Wa = {g(x) | x ∈Wi} and Wb = {g(x) : x ∈Wj}. Then (f, a, b) strong
subset reduces A to E�.

Since we assumed that R ≤c E, we also have R� ≤c E�, so the second case
follows from the first. �

In what follows, we will focus on the collection of sets which strong subset reduces
to an equivalence relation Id�a , since we now know that, by Lemma 6.2, we can
transfer strong subset reductions to equivalence relation reductions. The following
easy fact will serve as the base of our induction.

Lemma 6.4. Every Σ0
1 set strong subset reduces to Id�.

Proof. Fix S a c.e. set. Let i be a c.e. index for the empty set and j be a c.e. index
for �. Let h(x) be an index for an enumeration which either gives ∅ or � depending
on whether or not we see x ∈ S. �

Next we give an induction which covers every arithmetical equivalence relation.

Lemma 6.5. Suppose that A strong subset reduces to E�. Further suppose that for
every n and p, the set {q | A(〈n, p, q〉)} is an initial subset of �. Finally, suppose that
E × Id ≤c E. Then B(n) := ∃p∀qA(n, p, q) strong subset reduces E��.

Proof. Fix (h, i, j) witnessing A strong subset reduces to E�. This shows
A strong subset reduces to every column of (E × Id)�. That is, we have a
uniformly computable sequence of functions hx and indices ix and jx as above
so that Wix ,Wjx ⊆ �[x], Wix �E×Id Wjx and hx(y) (E × Id)� ix if y /∈ A and
hx(y) (E × Id)� jx if y ∈ A.

For each n, we letWen be a collection containing:
(1) For every y ∈ �, a c.e. index for the set

⋃
x<y Wjs ∪

⋃
x≥y Wix .

(2) For every p ∈ �, a c.e. index for the set
⋃
x∈� Whx (〈n,p,x〉).

Since for every pair n, p, the set of x so that hx(〈n, p, x〉) E� jx is an initial
segment of �, the sets in the (2) are either already enumerated in (1) or are exactly
equal to

⋃
x∈� Wjx .

Finally, take the map g : n �→ en, let a be a c.e. index for just the sets in (1), and
let b be a c.e. index for the sets in (1) along with the set

⋃
x∈� Wjx . Then (g, a, b)
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strong subset reduces B to (E × Id)��. Thus, Lemma 6.3 shows that B strong subset
reduces to E��. �

Theorem 6.6. For every n ∈ �, every Σ0
2n–1 and Π0

2n–1 equivalence relation reduces
to Id�n̂.

Proof. We first show that for every n ∈ �, every Σ0
2n–1 set strong subset reduces

to Id�n̂. We use Lemma 6.4 as the base of this induction.
Let X be a Σ0

2n+1 set. Write X (n) = ∃p∀qA(〈n, p, q〉). Rewrite this definition
as: X (n) = ∃p∀q(∀m < qA(〈n, p,m〉)). We observe that ∀m < qA(〈n, p,m〉) is a

Σ0
2n–1 set. Thus, it strong subset reduces to Id�̂n–1 by inductive hypothesis and,

by Lemma 6.5, X strong subset reduces to Id�n̂. Note that the hypotheses that

Id�̂n–1 × Id ≤c Id�̂n–1 holds by [13, Corollary 2.9].
Finally, applying Lemma 6.2 shows that if R is a Σ0

2n–1 or Π0
2n–1 equivalence

relation, then R ≤c Id�n̂. �
Corollary 6.7. The equivalence relation Id�n̂ is not Π0

2n–1 or Σ0
2n–1.

Proof. It is easy to see that there are equivalence relations which are Σ0
2n–1 and not

Π0
2n–1 (consider 1-dimensional equivalence relations with a single class comprised

of a Σ0
2n–1-complete set) and similarly equivalence relations which are Π0

2n–1 and not
Σ0

2n–1. If Id�n̂ were Σ0
2n–1, then every Π0

2n–1-equivalence relations would have to be
Σ0

2n–1 by virtue of reducing to Id�n̂. Similarly we get a contradiction if Id�n̂ were
Π0

2n–1. �
We note that Theorem 6.6 is sharp on the scale of the arithmetical hierarchy since

Id�n̂ is a Π0
2n equivalence relation and thus there is a Δ0

2n equivalence relation which
does not reduce to Id�n̂ [23]. We can look closer using the Ershov hierarchy:

Theorem 6.8. There is a d-c.e. equivalence relation E so that E �≤c Id�.

Proof. We partition the odd numbers into countably many sets Se for e ∈ �. Let
z〈e,i〉 be the ith element of Se . We construct a d-c.e. equivalence relation E by stages.
We never make any pair of even numbers E-equivalent. We may make elements of
Se be E-equivalent to 4e or 4e + 2 or neither.

We satisfy the following requirements:

Re : ϕe is not a reduction of E to Id�.

The strategy for meeting the R-requirements is twofold. On the one hand, we ensure
that 4e�E 4e + 2, for all e (in fact every pair of even numbers are E-inequivalent).
This action forcesWϕe (4e) �=Wϕe (4e+2), otherwise ϕe would not be a reduction. But,
on the other hand, we use the z〈e,i〉’s to gradually copyWϕe (4e) intoWϕe (4e+2) and vice
versa. Let’s discuss in more detail the module for diagonalizing against a potential
reduction ϕe :

Let e0 = 4e and e1 = 4e + 2.
(1) If at some stage s a number w appears inWϕe (ek ), for k ∈ {0, 1}, we take the

least unused z〈e,i〉 and we let ek E z〈e,i〉.
(2) We wait to see if w appears inWϕe (z〈e,i〉). If this happens, we declare ek�E z〈e,i〉

and we let e1–k E z〈e,i〉 instead.
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Now, towards a contradiction, suppose that there is a reductionϕj from E to Id�.
Since the construction ensures that 4j�E 4j + 2, it must be the case thatWϕj (j0) �=
Wϕj (j1). Without loss of generality, let v ∈Wϕj (4j) \Wϕj (4j+2). But then, by item
(1) of the module, we have that, at some stage s, 4j is E-collapsed with some
z〈j,i〉. Observe that, after this collapse, v must enter in Wϕj (z〈j,i〉) (as otherwise,

we would have that Wϕj (z〈j,i〉) �=Wϕj (4j) but 4j E z〈j,i〉, a contradiction). When

this happens, by item (2), we make 4j�E z〈j,i〉 and we let 4j + 2 E z〈j,i〉 instead.
This action guarantees that there is a stage at which v appears in Wϕj (4j+2) (as
otherwise,Wϕj (z〈j,i〉) �=Wϕj (4j+2) but 4j + 2 E z〈j,i〉), contradicting the assumption
that v ∈Wϕj (4j) \Wϕj (4j+2).

Finally, it immediately follows from the construction that E is d-c.e., since there
is no pair of numbers on which E makes more than two mind changes. �

Theorem 6.6 gives a nice way to represent the arithmetical equivalence relations in
terms of FS-jumps, but it is not sharp at the even layers. For example, every Σ0

2 and
Π0

2 equivalence relation reduces to Id�2, but Id�2 is Π0
4 and we should expect to find

a Π0
3 equivalence relation that is universal for all Σ0

2 and Π0
2-equivalence relations.

The next lemma gives us an analogous result at the even layers of the arithmetical
hierarchy.

Lemma 6.9. Let Z be a universal Π0
1-equivalence relation (which exists by [23,

Theorem 3.3]). Then every Σ0
2n and Π0

2n equivalence relation reduces to Z�n̂.

Proof. We first observe that since Z is Π0
1-universal and Z × Id is Π0

1, we have
Z × Id ≤c Z. Thus Z�a × Id ≤c Z�a for any a ∈ O [13, Proposition 2.8].

As above, we will first show by induction that every Σ0
2n set strong subset reduces

to Z�n̂. As the base of our induction, we first show that every Σ0
2 set strong subset

reduces to Z�. To see this, we fix a Σ0
2 set A and we construct a Π0

1-equivalence
relation Y and show that A strong subset reduces toY�. This suffices by Lemma 6.3.

We fix an computable approximation (As)s∈� to A so that x ∈ A if and only if
x ∈ As for all sufficiently large s. We build a reduction by sending every x to an
index ex which we control by the recursion theorem. We enumerate the complement
of [0]Y into each Wex . At stages s when x ∈ As , we take a fresh number z and
enumerate z intoWex . If at a later stage t > s we have x /∈ At then we make z��Y 0.
In fact, we make [z]Y = {z}. If we never see such a t, we will maintain z Y 0. If
x /∈ A, then [Wex ]Y = � \ [0]Y . If x ∈ A, then [Wex ]Y = �. This shows that every
Σ0

2 set strong subset reduces to Z�.
As the step of our induction, we apply Lemma 6.5 as in the proof of Theorem 6.6

using the fact that Z�n̂ × Id ≤c Z�n̂.
Finally, Lemma 6.2 shows that every Σ0

2n or Π0
2n equivalence relation reduces

to Z�n̂. �

To move to transfinite levels in the HYP hierarchy, we show that we can handle
negations and effective unions.

Lemma 6.10. If A strong subset reduces to E� then the complement of A strong
subset reduces to E��.
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Proof. Let (h, i, j) witness that A strong subset reduces to E�. Then letWg(x)
enumerate the collection of all c.e. supersets of Wh(x). Let Wa be an index for the
collection of all c.e. supersets ofWi andWb be an index for the collection of all c.e.
supersets of Wj . Then (g, b, a) witnesses that the complement of A strong subset
reduces to E��. �

Lemma 6.11. Suppose that each member of (Ak)k∈� uniformly strong subset
reduces to E� via (hk, ik, jk). Further suppose that E × Id ≤c E. Let B(n) hold
if and only if ∃kAk(n). Then B strong subset reduces E��.

Proof. As in Lemma 6.5, for each x, let gx be the function showing that Ax
strong subset reduces to (E × Id)� using only the xth column. That is, Wgx (n) =
{〈x, y〉 | y ∈Whx (n)}.

We first show that B strong subset reduces to (E × Id)��.
For each x ∈ �, letWx

i be the set {〈x, y〉 | y ∈Wix}. Similarly forWx
j . Finally,

let Vx =Wx
i ∪

⋃
y �=x W

y
j .

Let f(n) be a c.e. index for a set which contains indices for every Vx and also
contains indices for the sets Vx ∪Wgx (n). If n /∈ B , then for every n, gx(n) is an
index forWx

i , so each set Vx ∪Wgx (n) is a copy of Vx . So, the family is exactly the
collection ofVx ’s. Ifn ∈ B , then for some n we haveWgx (n) =Wx

j , soVx ∪Wgx (n) =⋃
z∈� W

z
j .

Finally, E × Id ≤c E gives the result by Lemma 6.3. �

At this point, we can take effective unions and we can take negations. That’s all
we need to induct up the HYP hierarchy:

Lemma 6.12. Every HYP set strong subset reduces to Id�a for some a ∈ O.

Proof. We proceed by induction on notations for computable ordinals with the
base case done by Lemma 6.4.

Formally, we show that for every notation c for an ordinal α, there is some a
so that every Σ0

α set uniformly strong subset reduces to Id�a (i.e., we can find the
index of the witness (h, i, j) uniformly from an index of A as a Σ0

c set). Further our
construction will produce a computable function H going from c to the notation a.
Further, whenever c <O d , we will have H (c) <O H (d ). �

6.1. Successor step. Suppose every Σ0
α set uniformly strong subset reduces to

Id�a . Then every Π0
α set uniformly strong subset reduces to Id�P(a) by Lemma 6.10.

Let A be a Σ0
α+1 set. Then A is an effective union of Π0

α sets. Thus A strong subset

reduces to Id�P(2)(a) by Lemma 6.11, and this argument is uniform.

6.2. Limit step. Let c = 3 · 5i . Then we let a = 3 · 5e where ϕe(n) = H (ϕi(n)).
Since by the inductive hypothesis, we know that H (ϕi(n)) <O H (ϕi(n + 1)) for
every n ∈ �, we have a ∈ O.

If A is a Σ0
c set, then it is an effective union of Σ0

b sets for b <O c. Each of these

uniformly strong subset reduces to Id�P(a) by the uniformity in Observation 5.1 and

Lemma 6.3. So, the effective union strong subset reduces to Id�P(2)(a) by Lemma 6.11.
This argument is uniform, and we can let H (c) = P(2)(a).
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Theorem 6.13. Every HYP equivalence relation reduces to Id�a for some a ∈ O.

Proof. Combine the above with Lemma 6.2. �
Corollary 6.14. Every HYP equivalence relation reduces to =Σ0

a
for some a ∈ O.

The degree of this only depends on the ordinal |a|.
Proof. Combine the above with Lemma 5.8. �
Corollary 6.15. If E is a fixed point of the jump, i.e., E ≡ E� then E is an upper

bound for every HYP equivalence relation.

Proof. If E� ≤c E, then E is above Id�a for every a ∈ O by [13, Propositions
2.3 and 2.7]. So this follows immediately from Theorem 6.13. �
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