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ON THE DARBOUX PROBLEM OF NEUTRAL TYPE

DARIUSZ BUGAJEWSKI AND MIROSLAWA ZIMA

The aim of this paper is to prove uniqueness theorems for the Darboux problem
of neutral type in the space L°° and L .

1. INTRODUCTION

Let I = [0,a], a > 0. Denote by L°°(l2) the space of Lebesgue measurable and
essentially bounded functions z : I2 —* R, with the norm

INloo = e s s

Furthermore, let L1 (J2) denote the space of Lebesgue measurable functions z : I2 —> K
such that J \z[x,y)\ dxdy < +oo, with the norm

i = / \z(x,y)\dxdy.

J*

In this paper we consider the following Darboux problem of neutral type

**» = f {x,y,z{h{x,y)),zxy(H(x,y))), (x,y) £ J2,

(1) z(aS>0)=0, xel,

z(Q,y) = 0, ye I.

In Section 2 we show that under suitable assumptions on the functions f,h and
H, the problem (1) has a unique solution in the space Z°°(72). To prove this we
apply the fixed point theorem from the paper [7]. In Section 3 we apply the classical
Banach contraction principle to obtain an analogous result for the problem (1) in the
space Ll (/2) . Similar problems (with or without translation of arguments) have been
considered for example, in the papers [2, 3, 9] and in the monograph [1].

In what follows we shall need two propositions from the papers [7] and [8].
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452 D. Bugajewski and M. Zima [2]

Let {X, \\-\\ , ^ , m ) be a Banach space with a binary relation -< and a mapping
m : X —» X. Suppose that:

(i) the relation -< is transitive,
(ii) the norm ||-|| is monotonic, that is, if 6 -< w -< v, then ||w>|| ^ ||v||,

(iii) 0 -< m(w) and ||m(u>)|| = ||io|| for all w e X.

PROPOSITION 1 . [7] In the Banach space considered above, let the operators
A : X —> X, A : X -+ X be given with the following properties:

(iv) A is a linear bounded operator with spectral radius r(A) less than 1,
(v) if 0 -< w -< v, then Aw -< Av,

(vi) m(Aw — Av) -< Am(w — v) for all w,v 6 X.

Then the equation Ax = x has a unique solution in X.

Assume further that:

(vii) the relation -< is reflexive,
(viii) if w -< v, then w + u -< v + u for w,v,u £ X .

PROPOSITION 2 . [8] Let (X, \\-\\ , -<) denote a Banach space with a binary re-
lation -< satisfying conditions (i), (ii), (vii) and (viii). In this space, let the Hnear and
bounded operators A : X —* X, B : X —* X be given. Assume that the following
conditions are satisfied:

(ix) if 0 -<w, then 6 -< Aw and 0 -< Bw,

(x) there exists an element WQ € X, 9 -< WQ such that r(A + B) =

Urn \\{A + B)nw0\\
lln and BA>Bkw0 -< A>Bk+1w0 for j = 1,2, . . . ,

Jfc = 0 , 1 , . . . .

Then the inequality

holds.

2. T H E DARBOUX PROBLEM IN THE SPACE L°°(I2).

Let w,v G L°°(l2). We shall say that w -< v if and only if w(x,y) ^ v(x,y)
almost everywhere on I2. Moreover, let m(w)(x,y) = \w(x,y)\ for (x,y) El2. It is
clear that the conditions (i)-(iii) and (vii)-(viii) are satisfied in this case.

Assume that:

1° h : I2 —> I2 is a continuous function and h(x,y) ^ {x,y) for every pair

(x,y) £ P, where h(x,y) = (fei(z,j/),/i2(x,j/)) and (xi .yi) ^ (^2,3/2) means that

xi < x2 and 1/1 < y2;

2° u C R2 is an open set such that / 2 C u and H : u —» R2 is a diffeomorphism

"into" with the property H(l2) C I2, and h(H(x,y)) ^ h{x,y) for {x,y) e I2;
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3° (x,y,u,v) —» f(x,y,u,v) is a real function defined on the product I2 x R2,
Lebesgue measurable with respect to (x,y) for all (u,v) £ R2 and satisfying the Lips-
chitz condition

\f(x,y,Ui,V!) - f{x,y,u2,v2)\ s$ Lx \ux - u2\ + L2 |i>i - v2\

for (x,j/ ,ui,Vi), (x,y,u2,v2) £ I2 X R2, where Lx > 0 and 0 < i 2 < 1;

4° | / ( z ,y , 0,0)| is an essentially bounded function on I2 .

By a solution of the problem (1), defined on the set I2, we understand a func-
tion z : I2 —* R such that z(x,y) is an absolutely continuous (shortly: AC) func-
tion with respect to x and y, zx is an AC-function with respect to y for al-
most all x € / , zy is an AC-function with respect to x for almost all y 6 / ,
zxy(x,y) = f(x,y,z(h(x,y)),zxy(H(x,y))) almost everywhere on I2, z(x,0) = 0 for
x E I and z(Q,y) = 0 for y G / .

THEOREM 1 . Under the assumptions 1° — 4° the problem (1) has a unique soiu-
tion defined on I2 .

PROOF: It is easy to verify that the problem (1) is equivalent to the following
functional-integral equation

(x,y)=f(x,y, f w{t,s) dtds,w(H{x,y))\ {x,y)el2,

( M ) )

(2)

where D(x,y) = {(t,s) £ I2 : 0 ̂ t ^ x, 0 ̂  s ^y}.

Indeed, let z : I2 —» R be a solution of the problem (1) and put zxy(x,y) = w(x,y),
(x,y) 6 I2 . By the definition of a solution of (1) we have

J w(t,a)dtds= J J ziv{i,n)didr,
0 0

0 [ 0

= J \^{h1{x,y),r,)-—z{Q,71)\dn

o

= / -=-z(hi(x,y), ri)dr]
J vy
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= z(h1(x,y),h2{x,y)) - z(/ii(x,y),O)

= z(h1(x,y),h2(x,y)) = z(h(x,y)).

This means that w : I2 —> R is a solution of the equation (2). On the other hand, let
x y

w : I2 -> R be a solution of (2) in the space L°°(l2) . Put z(x,y) = J jW(Z,TJ) d£dr].

By the Tolstov theorem [6], we have
o o

x y
d2 f t

Zxy(z,y) = -Q^Q- / / wtf,ri)d£dT} = w(x,y) for almost all (x,y) £ I2.

o o

Thus zxy(H(x,y)) = w(H(x,y)) for almost all (x,y) £ I2 and in consequence z : I2 —•
R is a solution of (1).

Consider the following operator:

F(w)(x,y)=f(x,y, J w{t,s) dtds,w(H(x,y))\

D(Kx,y))

where w&L°°{I2), (x,y) £ I2.
Since the function (x,y) —> J w(t,s)dtds is continuous on I2 and the

D(h(x,y))

function (x,y) —» u;(.ff(a;,2/)) is Lebesgue integrable on / 2 , the function (z,i/) —>

f\xiVi J w(t,s)dtds,w(H(x,y))j is Lebesgue measurable on I2. Moreover, in

view of 3° we have

\F(w)(x,y)\ ^ L: I w(t,s)dtdi

D(.h(x,y))

L2\w(H(x,y))\ + \f(x,y,0,0)\

for w £ L°°(I2) and (x,y) E I2. Hence, by the above inequality and 4°, F(L°°(l2)) C
2/°°(/2) . Again in view of 3°, for w,v E L°°(l2) , (x,y) E I2 we get

\F(w)(x,y) - F(v)(x,y)\

= f(x,y, f w(t,s)dtds,w(H(x,y))\

-f(x,y, j v{t,a)dtda,v(H(x,y))\
^>Wx,y))

hL2\w(H{x,y))-v(H(x,y))\.

D(h(.x,y))

https://doi.org/10.1017/S0004972700021869 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021869


[5] Darboux problem 455

Thus

(3) \F(w)(x,y) - F(v)(x,y)\ ^ (A1 + A2)(\w - v\)(x,y),

where ^(uKx.y) = Lx J u(t,s)dtds, A2{u)(x,y) = L2u(H{x,y)), u £ L°°(l2).

We shall show now that the operators A\ + A2 and F satisfy the assumptions of
Proposition 1. Obviously, the operator A\ + A^ is linear and [A\ + A2)(L°°(l2)) C
L°°(I2). Furthermore

+ ^4.2)xt»||oo = ess sup

D(h(x,y))

I w{t,s)dtds + L2w(H(x,y))

(*.»))

L\ ess sup / \w(t,s)\dtds + L2 ess sup \w(H(x,y))\
T2 J fl

which means that Ai + A2 is a bounded operator. Moreover, Ai + A2 is an increasing
operator. Indeed, if w,v £ i°°(72) and 6 -< w -< v, then for almost all (x,y) £ I2 we
have

{AT. + A2){w){x,y) = Li f w(t,s)dtds + L2w(H(x,y))
(x,y))

f v(t,s)dtds + L2v(H(x,y)) = {A1+A2)(v){x,y).

D{h(x,y))

Notice that in view of (3) the condition (vi) of Proposition 1 is satisfied. It remains
to prove that r(Ai + A2) < 1. First we shall show that the operators Ai, A2 and
A\ + A2 satisfy the assumptions of Proposition 2. For 9 -< w we have 6 -< A\w
and 0 -< A2w. Let K denote a cone of nonnegative functions in X°°(J2), that is,
K = {w £ i°°(/2) : w(x,y) ^ 0 almost everywhere on I2} and let wo(x,y) — 1
almost everywhere on I2 . It is easy to verify that the cone K is normal and WQ £ intK.
Hence r{Ax + A2) = lim ||(Ai + ̂ 2)wo||^n (for example, see [4, 5]). For j = 1,2,... ,
k = 0 ,1 , . . . , we have

A2A{A^(w0){x,y)

= L{Lk
2
+x J J ••• J 1 dxjdyj...dx1dy1
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and

AiAk
2

+1(w0)(x,y)

= L{Lk+1 J J ••• j 1 dxjdyj...dx1dy1.
( M ) ) ((

Hence, in view of 2° ,

A2A{Akw0 -< A[Ak+1w0

for j — 1,2,... , k = 0,1,... . Therefore, by Proposition 2, the inequality r(A\ + A2) ^
r(Ai) + r(A2) holds. Finally, an easy computation shows that ||>lil'u>o||00 ^
(Z?a2n)/(n!)2 while H^^olU = £?• Thus r(i4i) = 0 and r(A2) = L2. Since
Z2 < 1, this gives r(Ai + A2) < 1. It follows from Proposition 1 that the equation (2)
has exactly one solution in £°°(/2) . This completes the proof of Theorem 1. D

3. THE DARBOUX PROBLEM IN THE SPACE L1^2)

Assume now that
5° h : I2 —» I2 is a continuous function;
6° U,V C K2 are any open sets such that I2 C U, I2 C V and H : U -> V is a

diffeomorphism with the property 3(l2) = I2 ;
7° (x,y,u,v) —* f(x,y,u,v) is a real function defined on the product /2 x R2

which is Lebesgue measurable in (x,y) for every (u,v) G K2 and satisfies the Lipschitz
condition

\f(x,V,vi,Vi)- f{x,y,u2,v2)\ ^ i ! \m -u2\ + L2 |»i -W2I

for («,J/,WI,T;I), (X,3/,U2,W2) G / 2
 X M2, where Li,L2 > 0, Zia2 + L2M < 1, M =

I min |jff'(z,y)| I and \H'(x,y)\ denotes the absolute value of the Jacobian of the
\(z,9)€/2 /

mapping H;
8° there exists a function TTIQ : I2 —» R+ which is integrable in the Lebesgue sense

and such that

\f{x,y,0,0)\ ^ mo{x,y) for (x,y) G I2.

In the situation described above, we define a solution of (1) on I2 analogously as in the
previous section.

Now we can prove the following
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THEOREM 2 . Under the above assumptions the problem (1) has a unique solution
defined on I2.

PROOF: The same arguments as in the proof of Theorem 1 show that (1) and (2)
are equivalent. Define the operator

F(w)(x,y) =fl x,y, / w(t,s) dtds,w(H(x,y)) J,

where w £ L1 (J2) , (x, y) £ I2 .
Since

\F(w)(x,y)\ ^ L, / w{t, s) dtdt
D(h(x,y))

L2\w(H(x,y))\ + \f(x,y,0,0)\,

Further, we have

\F{w){x,y) - F(v){x,y)\ ^ ^ J \w{t,s) - v(t,s)\dtds

+ L2\w(H(x,y))-v(H(x,y))\, w^eL1^2), {x,y)£l2.

Thus

\\F(w)-F(v)\\1

• L2 f \w(H(x,y)) - v{H{x,y))\ dxdy

- v^ +L2J \w{H(x,y)) - v{H{x,y))\ \H'(x,y)\ * dxdy

^ (Lia
2 + L2M) \\w - v\\x.

In view of Banach contraction principle the mapping F has a unique fixed point. Hence
the proof of Theorem 2 is completed. D

4. REMARKS

It is clear that in the of proof Theorem 2 one can apply Proposition 1 (under addi-
tional assumption on the functions h and H). Consider the following linear operator

A{w)(x,y) = L1 J w{t,a)dtds + L2w{H{x,y)),

I* D(h{x,y))

w
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weL1^2), (x,y)el2.

One can easy verify that if h and H satisfy 1° and 2° in addition then

Lia
2 +L2M, II^HJ ^L1a

i/4 + LiL2a
2(M + l) + LlM.

Further, it is well known that in an arbitrary Banach space

r(A) ^ *s/\\An\\ for every n € N.

Hence, if for example, M ^ 1 then

and the assumption r(A) < 1 is better than L\a2 + L2M < 1. But we can not find

an estimate of the spectral radius of the operator A in terms of some constants and,

therefore, we choose the Banach theorem to prove Theorem 2.
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