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RESTRICTED LATENT CLASS MODELS FOR NOMINAL RESPONSE DATA:
IDENTIFIABILITY AND ESTIMATION
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Restricted latent class models (RLCMs) provide an important framework for diagnosing and clas-
sifying respondents on a collection of multivariate binary responses. Recent research made significant
advances in theory for establishing identifiability conditions for RLCMs with binary and polytomous
response data. Multiclass data, which are unordered nominal response data, are also widely collected in
the social sciences and psychometrics via forced-choice inventories and multiple choice tests. We establish
new identifiability conditions for parameters of RLCMs for multiclass data and discuss the implications
for substantive applications. The new identifiability conditions are applicable to a wealth of RLCMs for
polytomous and nominal response data.We propose a Bayesian framework for inferring model parameters,
assess parameter recovery in a Monte Carlo simulation study, and present an application of the model to a
real dataset.

Keywords: restricted latent classmodels, nominal responsedata, cognitive diagnosismodel, identifiability,
Bayesian.

1. Introduction

Mixture models for multivariate, unordered categorical data, which are also referred to as
nominal data, are widely used as a data reduction technique to uncover a partition of latent
classes. Nominal response data arises naturally in a diverse collection of fields and associated
latent class models have been applied to uncover the structure underlying positional dependence
of nucleotides (Dunson & Xing, 2009) , surveys responses for political elections (DeYoreo et
al., 2017) , anuran abundance using calling survey data (Royle & Link, 2005) , as well as for
multiple imputation of educational (Si & Reiter, 2013) and social science (Murray & Reiter,
2016; Vermunt et al., 2008) surveys. In short, nominal mixture models serve an important role
across the physical and social sciences.

Recent psychometric research introduced a class of restricted latent class models (RLCMs)
that use a more parsimonious formulation for describing the structure underlying multivariate
nominal data (e.g., see Chen & Zhou, 2017, Fang et al., 2019, Templin et al., 2008) than the tra-
ditional framework, which we refer to as unrestricted latent class models (ULCMs). For instance,
a popular application of nominal RLCMs is to understand how latent classes relate to target and
distractor responses on multiple choice tests (e.g., see Bradshaw & Templin, 2014, De La Torre,
2009, DiBello et al., 2015, Ku et al., 2016, Shear & Roussos, 2017, Yigit et al., 2019). In order
to distinguish RLCMs and ULCMs we let � denote the emission parameters that govern the
likelihood that latent classes select different options on J variables with M unordered options for
each variable. If C denotes the number of latent classes, the classic ULCM framework includes
J×M×C parameters to relate latent classmembership to observed responses. In contrast, RLCMs
impose structure on the elements of � by constraining some elements to be equal. Accordingly,
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RLCMs include fewer parameters than ULCMs. Furthermore, as we demonstrate below, RLCMs
generally offer a more interpretable framework for understanding the latent structure (i.e., the
relationship between the latent classes and observed variables). In fact, the pattern of equal and
unequal elements in the RLCM � parameter provides researchers with a guide for interpreting
the impact of latent class membership on response probabilities.

Although prior research developed several general models for nominal RLCMs, there are at
least two limitations with existing research that limits widespread applicability of these methods
for statistical research in education and the social sciences. First, existing methods are primarily
confirmatory in nature given that researchers must prespecify the manner by which latent classes
relate to observed response probabilities. Specifically, let � be the RLCM parameter with J ×
(M −1)×C binary elements that indicate which elements of� are equal (we formally define the
�matrix belowwith examples). Currently deployed nominal RLCMsmust specify every element
of�, which may be challenging for some research applications. Whereas researchers may be able
to correctly articulate the latent structure in � for some applications (e.g., target and distractor
responses on some multiple choice tests), the general unavailability of substantive theory would
limit widespread application of nominal RLCMs. Second, numerous studies developed RLCMs
for multivariate nominal data, yet there has been limited research on conditions that are needed
to ensure model parameters are identified. It is important to note that several studies discussed
identifiability for ULCMs (e.g., see Allman et al., 2009); however, current results are not specific
for RLCMs given that Allman et al. (2009) consider an unrestricted parameter space whereas the
parameter space for our RLCM is restricted by the structure of �. Consequently, the parameter
space falls into a measure zero set with respect to the whole parameter space of ULCMs as
discussed in Allman et al. (2009), so identifiability conditions mentioned above for ULCMs
cannot be directly applied to our RLCMs. Furthermore, our paper contributes to literature on the
identifiability RLCMs. An extensive collection of literatures have delved into local identifiability
issues, which aim to ensure the model parameters are identifiable in a neighborhood of the true
parameters. McHugh (1956) proposed sufficient conditions to determine the local identifiability
condition for latent class model with binary response. Goodman (1974) extended the conditions
for latent class models with polytomous response. Huang and Bandeen-Roche (2004) proposed
local identifiability conditions for latent class models with covariates. For global identifiability
issue, there are numerous papers proposing strict and generic identifiability conditions for binary
response data (Chen et al., 2015, 2020; Xu, 2017; Xu & Shang, 2018) and strict identifiability
conditions for polytomous response data (Culpepper, 2019; Fang et al., 2019) . Additionally, Gu
andDunson (2021) establish strict andgeneric identifiability conditions for amulticlass,multilayer
latent structure model. Gu and Dunson (2021) could be viewed as a more general model than the
onewe consider as it admits amultilayered, hierarchical structure for attributes.One strength of our
paper relative to Gu and Dunson (2021) is that our identifiability conditions provide practitioners
with clear guidance for designing nominal response assessments (e.g., forced-choice inventories).
Furthermore, our identifiability conditions also provide generic conditions that are applicable to
polytomous RLCMs.

Accordingly, the goal of our study is to address the aforementioned shortcomings in the liter-
ature. That is, we propose a fully exploratory framework for inferring nominal RLCM parameters
and present new theory regarding model identification. The identifiability of model parameters
is critical for statistical inference and we also provide researchers with guidance for designing
multivariate nominal response studies.

It is also important to distinguish the models we explore in this study in comparison to poly-
tomous latent class models. Specifically, researchers advanced RLCMs for polytomous data for
both confirmatory (e.g., see Ma & de la Torre, 2016; 2019) and exploratory methods (Culpepper,
2019; Culpepper & Balamuta, 2021; Jimenez et al., 2023) . There are also several studies (Bacci
et al., 2014; Bartolucci, 2007; Gnaldi et al., 2020) described latent class models within an item
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response theory (IRT) framework with at least three link functions (i.e., graded response, partial
credit, and continuation ratio). These prior studiesmade important contributions and demonstrated
how to use link functions for modeling ordered, polytomous response data with latent class mod-
els. In contrast, an important innovation of our study is that we deploy the multinomial logistic
link function, which is suitable for unordered, nominal responses.

The remainder of this paper includes six sections. The first section provides a general intro-
duction to ULCMs and RLCMs for nominal data and the second section presents new theoretical
results concerning the identifiability of RLCMs (please see Appendix for related proofs). The
third section outlines a Bayesian formulation for inferring the RLCM parameter posterior distri-
bution. The fourth section reports Monte Carlo results concerning the accuracy of the developed
algorithm and the fifth section reports results from an application. The final section discusses the
implications of this study and provides concluding remarks.

2. Overview of Mixture Models for Nominal Responses

We consider the setting where multivariate, nominal response data are available such
that Y j (for j = 1, . . . , J ) is a random categorical (or nominal) response with a realization
y j ∈ {

0, . . . , Mj − 1
}
where Mj ≥ 2 denotes the number of unordered response options. We

denote the random J -vector by Y = (Y1, . . . ,YJ )
� and the observed vector of responses as

y = (y1, . . . , yJ )�. The support for Y is defined as y ∈ ×J
j=1

{
0, . . . , Mj − 1

}
, which implies

there are
∏J

j=1 Mj possible observed response patterns. The purpose of this section is discuss
the role of mixture models in understanding the multivariate, nominal response patterns. The first
subsection reviews existing unstructured latent class models (ULCMs) for nominal, unordered
response data. ULCMs offer a powerful framework for uncovering substantivelymeaningful latent
classes. However, the results from ULCMs data analyses may not always be easily interpretable
as researchers must decipher the meaning of latent classes by comparing many latent class param-
eters. Accordingly, the second subsection introduces a new general restricted latent class model
(RLCM) framework, which has the benefit of directly uncovering the latent structure by providing
researchers with a � parameter for more easily interpreting the class labels.

2.1. Unstructured Latent Class Models (ULCMs)

The goal of this section is to review the traditional ULCM framework. Let c ∈ {0, . . . ,C −
1} index the C underlying latent classes. In the case of nominal data, the unstructured model
includes a Mj -vector of category response probabilities for each class and item denoted by θ jc =
(θ jc0, . . . , θ jc,Mj−1)

� so that the probability of observing a response ofm on item j for members
of class c is θ jcm = P(Y j = m|c). We define � j = (θ j0, . . . , θ j,C−1) as the Mj × C matrix of
response probabilities by response option and latent class. The goal of ULCMs is to describe the∏J

j=1 Mj possible response patterns. ULCMs consider the case where latent classes differ in their
chances of responding according to a given response pattern. The probability vector that governs
the chance members of class c respond according to one of the

∏J
j=1 Mj possible response

patterns isPc = ⊗J
j=1 θ jc where ⊗ denotes a Kronecker product. Let π = (π0, . . . , πC−1)

� be
a C-vector of structural probabilities such that πc denotes the chance of membership in class c
and note that the model implied response pattern probability vector is P = ∑C−1

c=0 πcPc.

2.2. Restricted Latent Class Models (RLCMs)

This subsection introduces a RLCM for nominal data which offers a more interpretable
solution by imposing restrictions on the ULCM θ jc parameters. In particular, the RLCM adapts
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the ULCM to describe the
∏J

j=1 Mj response patterns by reparameterizing both the latent space

and parameters. First, the RLCM defines the latent classes using a 2K binary attribute vector
α = (α1, . . . , αK )� ∈ {0, 1}K . Therefore, the connection between the number of classes in the
ULCM and the RLCM is C = 2K . An advantage of using the binary attribute profile is that
researchers can interpret αk = 1 as denoting possession or mastery of attribute k and αk = 0
otherwise. The relationship between theULCMandRLCM is also apparentwhen using a bijection
between the binary attribute profile α and the integers c ∈ {0, . . . , 2K − 1} by defining class
c = α�v ∈ {0, . . . , 2K − 1} with v = (2K−1, 2K−2, . . . , 1)�.

Second, the RLCM reparameterizes the elements of θ jc using the following multinomial
logit-link function

θ jcm = exp
(
a�
c β jm

)

∑Mj−1
m′=0 exp

(
a�
c β jm′

) (1)

where ac is a design vector for the attribute profile for class c and β jm is a P-vector of coefficients
for item j and option m (i.e., P depends on the order of the model, P = 2K if we include main
and all interaction-effect terms for latent class). Note that the restriction β j0 = 0 is deployed for
all j to identify the model. Furthermore, the restriction on β j0 implies that y j = 0 is the reference
response so that β jm for m > 0 quantifies the impact of the attributes on response values of
y j = m versus y j = 0 on item j . Let the Mj × 2K matrix of coefficients for item j be denoted
as B j = (β j0, . . . ,β j,Mj−1)

�.
An important implication of reparameterizing θ jcm with a multinomial logit-link is that the

transformed β jm parameters provide a more coherent interpretation regarding the process by
which the underlying attributes relate to observed responses. For instance, we define the 2K -
vector ac as including main- and interaction-effect terms for latent class α�v = c. Consequently,
the elements of β jm indicate the manner by which the attributes translate into preferences for
response option m relative to response option zero.

We next present an example to further illustrate the link between ULCMs and RLCMs and
the interpretation of the ac and β jm parameters.

Example 1. Suppose K = 3 and Mj = 3, so y j ∈ {0, 1, 2}. In this case, the matrix of ULCM
parameters is,

� j =
⎡

⎣
θ j00 θ j10 θ j20 θ j30 θ j40 θ j50 θ j60 θ j70
θ j01 θ j11 θ j21 θ j31 θ j41 θ j51 θ j61 θ j71
θ j02 θ j12 θ j22 θ j32 θ j42 θ j52 θ j62 θ j72

⎤

⎦ (2)

where we note that θ jc0 = 1 − ∑Mj
m=1 θ jcm for all c ∈ {0, 1, . . . , 7}. In this setting, the ULCM

includes 2×8 = 16 parameters for each item.Moreover, in order to understand themeaning of the
latent classes researchers would need to interpret differences in the 16 · J total class probabilities,
which may be challenging for even a modest number of items J . The RLCM attempts to address
this problem by reparameterizing both the latent classes and item parameters. In the case with
K = 3, we define the arbitrary design vector a as:

a� = (1, α1, α2, α3, α1α2, α1α3, α2α3, α1α2α3) (3)

so that a includes all main-effect and interaction terms among the attributes and we use ac to refer
to the design vector for attribute profile α�v = c. The matrix of reparameterized parameters β j
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for relating α to Y j is

B j =
⎡

⎣
β j00 β j10 β j20 β j30 β j40 β j50 β j60 β j70
β j01 β j11 β j21 β j31 β j41 β j51 β j61 β j71
β j02 β j12 β j22 β j32 β j42 β j52 β j62 β j72

⎤

⎦ . (4)

Note we can view a�
c β jm as the latent response propensity for members of class c to pick optionm

vs. option 0. Therefore, the definition of a implies that β j0m is an intercept term that corresponds
with the latent propensity for the latent class with α = 0 to select option m vs. 0. Furthermore,
the main-effects for α1, α2, and α3 for distinguishing response m from 0 are β j1m , β j2m , and
β j3m , respectively. Furthermore, the two-way interaction terms are α1α2, α1α3, and α2α3 with
effects β j4m , β j5m , and β j6m , respectively, and the three-way interaction effect is β j7m . In general
positive coefficients suggest preference for optionm to option 0 and the interactive effects provide
researchers with insight regarding the extent to which preferences are determined by a complex
interplay of the attributes.

The aforementioned example demonstrates the ability of the RLCM to provide researchers with
a more clear interpretation of the latent structure (i.e., the relationship between attributes and
observed responses). Still, each β j includes many parameters to estimate and interpret. A further
refinement we advance to support coherent inferences about the latent structure is to incorporate
variable selection methods into the RLCM to infer which of the elements of β j are active (i.e.,
different from zero) versus inactive (i.e., equal to or near zero). In fact, the pattern of active vs.
inactive elements of β j indicates the underlying structure and describes the process by which
attributes relate to the observed response Y j . Accordingly, we introduce a Mj ×2K binary matrix
� j in order to indicate which elements of β j are active. Specifically, δ j pm = 1 to denote that
β j pm is active (i.e., nonzero) and δ j pm = 0 if β j pm = 0 (i.e., inactive). Note that we generally
always include the intercept and fix δ j0m = 1 for all m ∈ {1, . . . , Mj − 1}.

We next revisit Example 1 to highlight the role of � j in interpreting the latent structure.

Example 2. Reconsider the case with Mj = 3 and K = 3. In this case, � j is generally written
as

� j =
⎡

⎣
δ j00 δ j10 δ j20 δ j30 δ j40 δ j50 δ j60 δ j70
δ j01 δ j11 δ j21 δ j31 δ j41 δ j51 δ j61 δ j71
δ j02 δ j12 δ j22 δ j32 δ j42 δ j52 δ j62 δ j72

⎤

⎦ . (5)

Note that δ j p0 = 0 for all p = 0, . . . , 2K − 1 to identify the model parameters and that terms for
the intercepts are generally specified as active so δ j01 = δ j02 = 1.

Remark 1. If � j = 1 for all j = 1, . . . , J , which implies that all coefficients in B are active, the
latent classes have distinct response probabilities, and the RLCM is equivalent to a ULCM in this
case. For additional discussion see Example 1 of Chen et al. (2020) for an exposition involving
the binary response RLCM.

Note that the pattern of 1’s and 0’s in� j convey different types of relationships and structures.
The structure of an item is referred to as simple structure for attribute k if the response probabilities
only differ by levels of αk .

Definition 1. The structure of � j , which is a slice of � for item j , is referred to as simple
structure for attribute k if it satisfies the following structure:
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� j =

⎡

⎢⎢⎢
⎣

0 0 · · · 0 0 0 · · · 0
1 0 · · · 0 δ jk1 0 · · · 0
...

...
...

...
...

...

1 0 · · · 0 δ jk,Mj−1 0 · · · 0

⎤

⎥⎥⎥
⎦

Mj×P

, (6)

and
∑Mj−1

m=1 δ jkm ≥ 1 where P generally equals 2K .

Remark 2. Note that for convenience of notation that our identifiability proof below supposes
that item j is simple structure for attribute j .

Example 3. Consider M1 = M2 = 3, P = 2K and J = 2 and note that examples of � matrices
that satisfy simple structure according to Definition 1 are:

�1 =
⎡

⎣
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0

⎤

⎦ , (7)

�2 =
⎡

⎣
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0

⎤

⎦ . (8)

Items 1 and 2 suppose the item is simple structure such that the probability of selecting the
responses only relates to standing on α1 in �1 and α2 for �2. �1 indicates that only the main-
effect for α1 differentiates between response option 1 vs. 0 and 2 vs. 0. In contrast, for item 2,
�2 represents the case where the main-effect for α2 is only active for differentiating between
response option 2 vs. 0. The associated B1 and B2 matrices for the structure parameters �1 and
�2 are:

B1 =
⎡

⎣
0 0 0 0 0 0 0 0

β101 β111 0 0 0 0 0 0
β102 β112 0 0 0 0 0 0

⎤

⎦ , (9)

B2 =
⎡

⎣
0 0 0 0 0 0 0 0

β201 0 0 0 0 0 0 0
β202 0 β222 0 0 0 0 0

⎤

⎦ . (10)

Let � j (B j ) denote the latent class response probabilities associated with the RLCM B j

matrix. The presence of structure in B j and � j implies that elements of � j (B j ) are restricted
to be equal.

Example 4. The rows of �1 in Eq.7 imply that certain latent classes have a common probability
of selecting response 1 vs 0 and 2 vs. 0. That is, latent classes that do not possess the first attribute
such that α = (0, α2, α3) have common response probabilities for selecting options 0, 1, and 2
of θ100, θ101, and θ102, respectively, whereas classes with the first attribute with α = (1, α2, α3)

have common response probabilities of θ140, θ141, and θ142. The �1(B1) in this case is

�1(B1) =
⎡

⎣
θ100 θ100 θ100 θ100 θ140 θ140 θ140 θ140
θ101 θ101 θ101 θ101 θ141 θ141 θ141 θ141
θ102 θ102 θ102 θ102 θ142 θ142 θ142 θ142

⎤

⎦ , (11)
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where the columns of �1(B1) are organized according to the binary-integer bijection and

θ10 = (θ100, θ101, θ102)
� = 1

∑2
m=0 exp(β10m)

(1, exp(β101), exp(β102)) , (12)

θ14 = (θ140, θ141, θ142)
� = 1

∑2
m=0 exp(β10m + β11m)

(1, exp(β101 + β111), exp(β102 + β112)) .

(13)

In contrast, the rows of �2 in Eq.8 imply a different collection of elements are constrained equal
in �2(B2). Latent classes that do not possess the second attribute such that α = (α1, 0, α3) have
common response probabilities for selecting options 0, 1, and 2 of θ200, θ201, and θ202, respec-
tively, whereas classes with the second attribute with α = (α1, 1, α3) have common response
probabilities of θ220, θ221, and θ222. The �2(B2) in this case is

�2(B2) =
⎡

⎣
θ200 θ200 θ220 θ220 θ200 θ200 θ220 θ220
θ201 θ201 θ221 θ221 θ201 θ201 θ221 θ221
θ202 θ202 θ222 θ222 θ202 θ202 θ222 θ222

⎤

⎦ , (14)

where the columns of �2(B2) are organized according to the binary-integer bijection and

θ20 = (θ200, θ201, θ202)
� = 1

∑2
m=0 exp(β20m)

(1, exp(β201), exp(β202)) , (15)

θ22 = (θ220, θ221, θ222)
� = (1, exp(β201), exp(β202 + β222))

1 + exp(β201) + exp(β202 + β222)
. (16)

Remark 3. Note that � j can also denote different structures where multiple attributes relate to
response variables. For instance, � j might specify the inclusion of interaction terms so that
response probabilities are shaped by a more complex relationship of the attributes. Furthermore,
we can also draw a connection between the ULCM and RLCM where � j = (0, 1�

Mj−1)
�1�

P
corresponds with the ULCM setting with distinct elements in � j (B j ).

3. Identifiability Issue

3.1. Model Identifiability

As introduced in the previous section, the probability distribution of latent classes is given
by π = (πc)

� ∈ [0, 1]2K with
∑

πc = 1. Coefficients array B = (B1, . . . , B J ) is a three-
dimensional array, where B j is the j-th slice of B with size Mj × P . Then, we denote the
parameter space of (π , B) by

�(π , B) = {(π , B) : π ∈ �(π), B ∈ �(B)}, (17)

where�(π) = {π ∈ [0, 1]2K : ∑c πc = 1}, and�(B) represents the parameter space of the coef-

ficients array B, which could be the whole real space RJ×P×∑
j M j , or a subset of RJ×P×∑

j M j

if constrained by the �.
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Definition 2. (Strict Identifiability) The parameters (π , B) ∈ �(π , B) are identifiable if

P(Y = y | π , B) = P(Y = y | π̄ , B̄) ⇐⇒ (π , B) ∼ (π̄ , B̄),

where (π̄ , B̄) is another value from the parameter space �(π , B) and “∼” means two parameter
values are equivalent up to label switching of attributes.

3.2. Generic Identifiability

Generic identifiability, which is a weaker notion of identifiability than Definition 2, was
first introduced in Allman et al. (2009). Generic identifiability allows the existence of some
exceptional values of parameters for which strict identifiability does not hold, as long as all non-
identifiable parameters form a Lebesgue measure zero set within the parameter space. Given that
non-identifiable parameters exist in a set of measure zero, one is unlikely to face identifiability
problems in performing inference. Thus, generic identifiability is generally sufficient for data
analysis purposes.

However, the generic identifiability condition shown inAllman et al. (2009) cannot be applied
in this paper. Under the setting of Allman et al. (2009), the parameter space �(B) is the whole
real space R

J×P×∑
j M j , whereas the parameter space �(B) in our RLCM is restricted by the

structure of �. The dimension of �(B) might vary with different � arrays, i.e., the parameter
space of B restricted by � might be a measure zero subspace of another parameter space of B
restricted by �̃. So, it is important to discuss the generic identifiability issue within a parameter
space with a fixed �.

Therefore, in order to discuss generic identifiability for our RLCM, we need to define the
parameter space �(B) by taking into account the sparsity structure due to the � array. Similar to
Definition 17, we denote the model parameter space with a given � by

��(π , B) = {(π , B) : π ∈ �(π), B ∈ ��(B)}. (18)

Coefficients in ��(B) are active when corresponding elements in � are equal to 1, so the param-
eter space ��(B) would be R

|�|, where | � | is the total sum of entries of �. For generic
identifiability, it suffices to consider the parameter space ��(π , B) with a given sparsity struc-
ture �.

Let S� denote the set of non-identifiable parameters from �(π , B):

S� = {(π , B) : P(Y = y | π , B) = P(Y = y | π̄ , B̄),

(π , B) 
∼ (π̄ ,B̄), (π , B) ∈ ��(π , B), (π̄ , B̄) ∈ ��̄(π , B)}. (19)

Remark 4. The non-identifiable parameters (π , B) ∈ S� could be due to some other parameters
(π̄ , B̄) with a different sparsity structure �̄.

If the non-identifiable parameter set S� is of measure zero within parameter space��(π , B),
then we say ��(π , B) is a generically identifiable parameter space.

Definition 3. (Generic Identifiability) The parameter space��(π , B) is generically identifiable,
if the Lebesgue measure of S� with respect to parameter space ��(π , B) is zero.
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3.3. Identifiability Conditions

In this section, we propose strict and generic identifiability conditions for our RLCM. We
start with introducing the form of � as follows.

The sparse 3-dimensional array � takes the form

� =
⎛

⎝
�1

�2

�′

⎞

⎠

after a permutation of items, where �1 and �2 contain K slices of � and �′ contains the rest of
J − 2K slices. We use �i

j to denote the j-th slice of �i for item j .

Theorem 1. (Strict Identifiability) The parameter space �(π , B) is strictly identifiable if the
following two conditions are satisfied:

(A1) For j = 1, . . . , K,�1
j and�2

j satisfy simple structure shown inDefinition 1 andRemark
2;

(A2) For any two classes of subjects, there exists at least one item in �′ such that they have
different positive response probabilities for some response option.

Remark 5. The � j shown in Example 3 satisfies the structure in A1.

Theorem 2. (Generic Identifiability) The parameter space ��(π , B) is generically identifiable
if the following two conditions are satisfied:

(B1) For j = 1, . . . , K, �1
j and �2

j satisfy the following structure:

� j =

⎡

⎢⎢⎢
⎣

0 0 · · · 0 0 0 · · · 0
∗ ∗ · · · ∗ δ j j1 ∗ · · · ∗
...

...
...

...
...

...

∗ ∗ · · · ∗ δ j j,Mj−1 ∗ · · · ∗

⎤

⎥⎥⎥
⎦

Mj×P

, (20)

and
∑Mj−1

m=1 δ j jm ≥ 1, where ∗ can be either 0 or 1, P generally equals 2K .
(B2) �′ satisfies the condition that for every k = 1, . . . , K there exists a j > 2K, such that

∑Mj−1
m=1 δ jkm ≥ 1.

Remark 6. Condition (B2) requires that there is a least one item in the last J − 2K items where
attribute k loads onto the main-effect for at least one response option.

4. Bayesian Formulation for the Nominal RLCM

Following the same setting in previous sections, consider a RLCM with N subjects, J items
with Mj ( j = 1, . . . , J ) unordered response options for each item j , and K skills. We use
subscript i = 1, . . . , N to index subjects, j = 1, . . . , J to index items, m = 0, . . . , Mj − 1 to
index options of each item, and c = 0, . . . , 2K − 1 to index latent classes. Let αi denote the
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attribute profile of subject i , and Yi j denote the response of subject i to item j . The likelihood of
observing a sample of N responses to J items is

p (Y = y | B,π) =
N∏

i=1

∑

αc∈{0,1}K
πc

J∏

j=1

Mj−1∏

m=0

⎛

⎝ exp
(
a�
i β jm

)

∑Mj−1
m′=0 exp

(
a�
i β jm′

)

⎞

⎠

1(yi j=m)

. (21)

The posterior distribution of all parameters for the nominal RLCM is given by

p(α, B,�, γ, σ 2
β ,π | y) ∝ p( y|α, B)p(α|π)p(π)p(B|�, σ 2

β )p(σ 2
β )p(�|γ )p(γ ). (22)

Then, we formulate the RLCM Bayesian model as follows.
We outline our Bayesian model and priors. Specifically, we use a categorical likelihood

conditioned upon attributes and item parameters,

Yi j |α�v = c, B j ∼ categorical
(
θ jc(B j )

)
. (23)

We also use a categorical prior for attributes conditioned upon the latent class probabilities,

αi |π ∼ categorical(π) (24)

and a conjugate Dirichlet prior for the latent class probabilities, π ∼ Dirichlet(d0) where d0 is a
fixed constant vector.

We use a stochastic search variable selection priors for the ( j, p,m) elements of B and �:

β j pm | δ j pm, σ 2
β ∼

{
N (0, σ 2

β ) δ j pm = 1
N (0, σ 2

β /D) δ j pm = 0
, (25)

δ j pm | γ ∼ Bernoulli(γ ), (26)

where B = (B1, . . . , B J )
� satisfies the generic identifiable condition shown in Theorem 2, and

the intercept is always set active with δ j0m = 1. Furthermore, D is a large fixed constant (e.g., we
consider D = 100, 1000) that is used reduce the variance for the spike distribution for the case
with δ j pm = 0. The priors for the hyper-parameters for the coefficients and activeness parameters
are:

σ 2
β ∼ IGamma(ασ , βσ ), (27)

γ ∼ Beta(a, b). (28)

Here (ασ , βσ , D, a, b, d0) are hyper-parameters.
Model parameters of the nominal RLCM are inferred through applying the Polya-gamma

data augmentation approach for multinomial logistic regression (Holmes & Held, 2006; Polson
et al., 2013) along with the stochastic search variable selection algorithm (George &McCulloch,
1993) to infer the latent structure. Then, the Gibbs sampling algorithm is implemented from the
posterior distribution of model parameters, which is given in Appendix 7. Full sampling algorithm
is represented in Algorithm 1. In order to address issues with respect to poor starting values we
use a combination of k-means clustering and factor analysis to specify starting values (see the
description in Appendix 7).
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Algorithm 1

1: Initialize with an identifiable �(0) array, coefficients array B(0), attribute profiles α(0), attribute categor-

ical probabilities π (0), and hyper-parameters σ
2(0)
β and ω(0).

2: for t in 1 : T do
3: for i in 1 : N do
4: Update α

(t)
i to class c sequentially with weight proportional to (nc(i) +1)p( yi | α�

i v = c, B(t−1)).
5: end for
6: Update π (t) | α(t) ∼ Dirichlet (n + d0), where n = (n0, . . . , n2K−1) = (

∑N
i=1 I(α

(t)�
i v =

1), . . . ,
∑N

i=1 I(α
(t)�
i v = 2K − 1)).

7: for all j in 1 : J , m in 1 : Mj − 1 do
8: for c in 0 : 2K − 1 do
9: Update w jcm |A, β

(t−1)
jm , B(t)

j,1:m−1, B
(t−1)
j,m+1:Mj−1 ∼ PG(nc, η jcm) (details about nc and η jcm

are given in Appendix 7).
10: end for
11: for p in 0 : P − 1 do
12: Update δ

(t)
j pm | β

(t−1)
j pm , γ (t−1) ∼ Bernoulli

(
γ̃ j pm

)
for p > 0 and set δ(t)

j pm = 1 for p = 0 (γ̃ j pm
can be found in Equation B9).

13: Update β
(t)
jmp|Y1:n, j , δ

(t)
jmp, A, β

(t)
j,m,0:p−1, β

(t−1)
j,m,p+1:P−1, B

(t)
j,1:m−1, B

(t−1)
j,m+1:Mj−1, ω jm ∼

N (μ jmp, σ
2
jmp) (derivation of the full distribution of β jmp is given in Appendix 7).

14: end for
15: end for

16: Update σ
2(t)
β | B(t),�(t) ∼ IGamma(α∗

σ , β∗
σ ), where α∗

σ = ασ + 1

2

∑J
j=1 P(Mj − 1), β∗

σ =
βσ + 1

2

∑J
j=1

∑P−1
p=0

∑Mj−1
m=1 β

2(t)
j pm(D(1 − δ

(t)
j pm) + δ

(t)
j pm).

17: Updateγ (t)|�(t) ∼ Beta
(
a + ∑J

j=1
∑P−1

p=1
∑Mj−1

m=1 δ
(t)
j pm , b + ∑J

j=1
∑P−1

p=1
∑Mj−1

m=1 (1 − δ
(t)
j pm)

)
.

18: end for

5. Monte Carlo Simulation Study

5.1. Settings

In this section, we report results from a Monte Carlo experiment to evaluate the performance
of Algorithm 1. We conducted the simulation study under different number of attributes (i.e.,
K = 2 and 3), correlations among the attributes (i.e., ρ = 0 and 0.25), and sample size (i.e.,
N = 1000, 2000, 5000 and 10000).

For the ρ = 0 case, the attribute profile α = (α1, . . . , αK )� is generated uniformly from all
possible 2K cases, so the latent class membership probabilities are π = (1/2K , . . . , 1/2K )�. For
the ρ > 0 case, the dependence among attribute profiles is introduced using the method of Chiu et
al. (2009). Suppose Z = (Z1, . . . , ZK )� follows a multivariate normal distribution N (0,	)with
unit variance and correlation ρ, where 	 = (1− ρ)IK + ρ1K 1�

K and 1K is a column vector of 1
with length K . Then, the attribute profile α is given by αk = I(Zk ≥ �−1( k

K+1 )), k = 1, . . . , K ,
where� is the cumulative distribution function of the standard normal distribution. In this case, the
data generating values for π are computed from integrals of the multivariate normal distribution
(Chen et al., 2015; Culpepper & Balamuta, 2021) .

We assume that there are J = 18 items, and Mj = 4 unordered options for each item j . For
reparameterized latent class variable α shown in Eq.3, we only include two-way interaction terms
among the attributes. Our model does not explicitly contain Q matrices, therefore, we recover
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the Q matrices, implied by �m for each option m = 1, 2, 3, using the method shown in Chen et
al. (2020). Then, the true � and true Q matrices for each option are shown as follows (columns
in � follow the same order as the design vector shown in Eq.3):

• � cube with K = 2

�m=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, �m=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, �m=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0
1 0 1 0
1 0 1 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 1 0 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(29)

• � cube with K = 3

�m=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,�m=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,�m=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(30)

• Q matrices with K = 2

Qm=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
1 0
0 1
1 0
1 0
1 0
0 1
1 0
0 1
0 1
0 1
1 0
0 1
1 0
1 0
0 1
1 0
0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1
0 1
1 0
1 0
0 1
1 0
0 1
1 0
0 1
0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(31)
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• Q matrices with K = 3

Qm=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
1 0 0
0 0 1
1 0 0
0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0
1 0 0
0 1 0
0 1 0
1 0 0
0 0 1
0 1 0
0 0 1
1 0 0
0 0 1
0 0 1
1 0 0
0 1 0
1 0 0
0 0 1
0 0 1
1 0 0
0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(32)

Given �, we generate coefficients in B according to their prior distribution shown in Eq.25
using σ 2

β = 1. For hyper-parameters presented in the previous section, we have ασ = βσ = a =
b = 1, d0 = 12K , and D = 100. We use a Markov chain of length 20,000 with a 10,000 burn-in
period for K = 2, and a chain length of 30,000 with a 20,000 burn-in period for K = 3.

5.2. Results

We repeated the simulation study 100 times for each setting. For model performance, we use
several metrics to evaluate parameter recovery. Specifically, we report the average element-wise
accuracy rate (EAR) for Q by comparing the estimated Q̂ and the true Q matrix, where Q̂ is
recovered by aggregating B̂ samples after burn-in period (Chen et al., 2020) . Note that we
transform B to � for every sampled value using Eq.1 and compute the point estimate �̂ as the
mean of all sampled � arrays after the burn-in period. We compute the mean absolute deviation
(MAD) to assess the accuracy of the estimated latent class response probabilities �̂, and report
the proportion of attribute profiles that are correctly estimated.

It is important to mention how we address the label-switching problem for the RLCM and
ULCM. Similar to latent class models, the exploratory RLCM is identified up to label-switching.
However, the RLCM has fewer permutations than the ULCM. For instance, the ULCM as (2K )!
possible arrangements whereas the RLCM has K ! × 2K arrangements (i.e., there are K ! ways to
permute the order of attributes and 2K ways of permuting the attribute levels). Note that for each
replication we draw values from the posterior and then compare posterior means of our parameters
(e.g., the θ ’s or β’s) with all K ! × 2K arrangements with the data generating model parameters in
order to evaluate parameter recovery. We select the permutations for the ULCM and RLCM that
minimizes the difference between the estimates and data generating value. It is important to note
that we do not find evidence of label-switching within chain.

Simulation results in Table 1 show a good recovery for model parameters. It suggests that for
fixed K , as the sample size gets larger, the MAD of �̂ and π become smaller and the EARs of
Q̂ matrices become larger. The EARs of Q̂ matrices are higher for smaller K , which is expected
given that the number of unknown model parameters that must be estimated increases with larger
K . The simulation results also provide evidence that a positive correlation among attributes,
represented by ρ > 0, results in slightly larger MADs for � in some instances, and this impact
is more systematic for K = 3. Although ρ = 0.25 slightly decreases recovery of �, π , and Q,
the results in Table 1 show attribute classification accuracy improves by a few percentage points.
Overall, the classification accuracy is at acceptable levels and generally exceeds 70% for most
scenarios.
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We also conduct Monte Carlo experiment for denser� and Q compared with those shown in
Eqs. 29 − 32, true �, Q matrices and simulation results are given in Appendix 7. Table 6 shows
similar model parameter recovery compared with the results shown in Table 1.

5.3. Unstructured Latent Class Models (ULCMs)

We want to compare our model performance with ULCMs, which assume that there’s no
latent structure between latent attribute classes and observed response variables. Following the
same setting as we represented for the nominal RLCM, the likelihood of observing a sample of
N independent responses to J items is

p(Y = y|α,�) =
J∏

j=1

2K−1∏

c=0

Mj−1∏

m=0

θ
n jcm
jc , (33)

where n jcm = ∑n
i=1 = I(yi j = m)I(α�

i v = c). Then, the posterior distribution of all parameters
for the nominal ULCM is given by

p(α,�,π | y) ∝ p( y|α,�)p(�)p(α|π)p(π). (34)

Below is the Bayesian framework for our nominal ULCM. Given attribute profile α and
class-response probability matrix �, response data follow a categorical distribution

Yi j |α�
i v = c, θ jc ∼ Categorical(θ jc). (35)

We use a Dirichlet prior for the class-response probability vectors

θ jc ∼ Dirichlet(dMj ), (36)

and a categorical prior for attributes conditioned upon the latent class probabilities,

αi |π ∼ Categorical(π) (37)

with a conjugate Dirichlet prior for the latent class probabilities π ∼ Dirichlet(d0), where dM

and d0 are constant vectors.
We applied Gibbs sampling algorithm to estimate model parameters via their posterior dis-

tributions.

• θ jc | y1:n,α1:n ∼ Dirichlet(n jc + dMj )

p(θ jc | y1:n,α1:n) ∝ p( yI j | α I , θ jc)p(θ jc)

∝
Mj∏

m=0

θ
n jcm
jcm ·

Mj∏

m=0

θ1−1
jcm , (38)

where n jc = (n jc0, . . . , n jc,Mj−1)
� and I = {

i : α�
i v = c

}
.
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• π |α ∼ Dirichlet (n + d0)

p(π | α1:n) ∝ p(α1:n | π)p(π) ∼ Dirichlet(n + d0), (39)

where π ∼ Dirichlet(d0) and n = (n0, · · · , n2K−1)
� represents the frequencies of each

attribute pattern α�
i v = c, c = 0, . . . , 2K − 1.

• αi | α(i), y1:n We update α while integrating π out

p(α1, . . . ,αN ) =
∫

p(α1, . . . ,αN | π)p(π)dπ

= 1

B(d0)

∫
⎛

⎝
2K−1∏

c=0

π
nc+d0,c−1
c

⎞

⎠ dπ

= B(n + d0)
B(d0)

. (40)

Then, the full conditional distribution for αi is

p(α�
i v = c | α(i)) = p(α1, . . . ,αN )

p(α1, . . . ,αi−1,αi+1, . . . ,αN )

= nc(i) + 1

n − 1 + 2K
, (41)

where nc(i) represents the number of individuals other than i that have attribute profile αc.
The full conditional distribution of αi given y1:n and α(i) is

p(α�
i v = c | α(i), y1:n) ∝ p(α�

i v = c | α(i))p( yi | α�
i v = c,�)

∝ (nc(i) + 1)p( yi | α�
i v = c,�), (42)

we update αi sequentially with weight proportional to (nc(i) + 1)p( yi | α�
i v = c,�).

The full Gibbs sampling steps of all parameters are shown in Algorithm 2.
In order to compare the model performance of the ULCM with the RLCM, we generate

response data from the RLCM model, and then use both Algorithm 1 and 2 to estimate model
parameters in twomodels.We use same simulation settings as in our RLCM. For hyper-parameters
in ULCM, we use dMj = 1Mj for j = 1, . . . , J . Simulation results are shown in Table 1 and
provide evidence the RLCM has better parameter recovery. Table 2 reports additional details
regarding MADs for � at the item level for the RLCM and ULCM. The results show that the
aggregate findings in Table 1 are consistent with item-level performance such that the RLCM has
smaller MADs than the ULCM.

Results shown in Tables 1 and 2 indicate that for response data generated via RLCM, Algo-
rithm 1 performs uniformly better than Algorithm 2, which implies that if there is structure in
the latent relationship between attributes and observed variables, our RLCM can achieve better
recovery for model parameters compared with the ULCM.
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Table 1.
Summary of simulation performance for RLCM and ULCM.

ρ K N RLCM ULCM

MAD EAR Accuracy MAD Accuracy

�̂ π̂ Q̂ α̂ �̂ π̂ α̂

0 2 1000 0.0207 0.0229 0.8660 0.7740 0.0641 0.1107 0.6217
2 2000 0.0129 0.0140 0.9354 0.7870 0.0369 0.0631 0.7267
2 5000 0.0116 0.0088 0.9638 0.7919 0.0161 0.0242 0.7688
2 10000 0.0052 0.0065 0.9949 0.7938 0.0089 0.0122 0.7869
3 1000 0.0231 0.0175 0.9060 0.6565 0.1256 0.1225 0.3992
3 2000 0.0214 0.0136 0.9117 0.6677 0.0868 0.0790 0.4948
3 5000 0.0150 0.0086 0.9262 0.6815 0.0499 0.0441 0.5914
3 10000 0.0136 0.0064 0.9266 0.6881 0.0313 0.0266 0.6274

0.25 2 1000 0.0203 0.0231 0.8411 0.8030 0.0683 0.0556 0.7554
2 2000 0.0137 0.0151 0.9192 0.8168 0.0577 0.0418 0.7814
2 5000 0.0080 0.0079 0.9777 0.8183 0.0238 0.0200 0.8027
2 10000 0.0056 0.0056 0.9931 0.8208 0.0125 0.0112 0.8144
3 1000 0.0349 0.0381 0.8620 0.6580 0.1379 0.0756 0.5819
3 2000 0.0286 0.0290 0.8674 0.6935 0.1101 0.0424 0.6583
3 5000 0.0225 0.0223 0.8787 0.7208 0.0756 0.0190 0.7125
3 10000 0.0200 0.0208 0.8810 0.7300 0.0648 0.0128 0.7173

MAD = mean absolute deviation; EAR = element-wise accuracy rate; Accuracy = proportion of attribute
profiles that are correctly estimated

Table 2.
Summary of mean absolute deviations (MADs) of RLCM and ULCM item response probabilities by item for two selected
conditions.

J N = 2000, ρ = 0.25 N = 5000, ρ = 0

RLCM ULCM RLCM ULCM

1 0.0079 0.1126 0.0023 0.0397
2 0.0150 0.0844 0.0045 0.0281
3 0.0060 0.0866 0.0029 0.0302
4 0.0087 0.0780 0.0026 0.0250
5 0.0068 0.1075 0.0040 0.0369
6 0.0213 0.0833 0.0081 0.0372
7 0.0222 0.0993 0.0044 0.0320
8 0.0363 0.1422 0.0078 0.0506
9 0.0152 0.1385 0.0030 0.0503
10 0.0352 0.1268 0.0062 0.0430
11 0.0153 0.1220 0.0042 0.0453
12 0.0138 0.0971 0.0051 0.0357
13 0.0130 0.1222 0.0046 0.0459
14 0.0197 0.0886 0.0054 0.0325
15 0.0192 0.0906 0.0077 0.0348
16 0.0108 0.1074 0.0044 0.0363
17 0.0100 0.1046 0.0050 0.0385
18 0.0090 0.0872 0.0028 0.0334
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Algorithm 2

1: Initialize attribute profiles α(0), attribute categorical probabilities π (0), and class-response probability
matrix �(0).

2: for t in 1 : T do
3: for i in 1 : N do
4: Update α

(t)
i to class c sequentially with weight proportional to (nc(i) +1)p( yi | α�

i v = c, �(t−1)).
5: end for
6: Update π (t) | α(t) ∼ Dirichlet (n + d0), where n = (n0, . . . , n2K−1) = (

∑N
i=1 I(α

(t)�
i v =

1), . . . ,
∑N

i=1 I(α
(t)�
i v = 2K − 1)).

7: for all j in 1 : J , c in 0 : 2K − 1 do
8: Update θ

(t)
jc | y1:n, α(t)

1:n ∼ Dirichlet(n jc + dMj ).
9: end for
10: end for

6. Applications

6.1. Wagner Preference Inventory

In this section, we applyAlgorithm1 to the dataset in theWagner Preference Inventory (WAPI
II) (Wagner & Wells, 1985) . This data set contains nominal responses to J = 12 items, each of
which contains M = 4 choices. All 13, 502 participants completed the 12 questions, so we have
N = 13, 502. Table 3 presents the twelve items along with the marginal probability of selecting
each response option. The twelve items were originally designed to distinguish preferences along
the notion of activities that vary in Left vs. Right brain and logical vs. creative. The proposed
two-by-two design included (a) Left, logical; (b) left, verbal; (c) right, manipulative/spatial; and
(d) right, creative. A separate measure for left and right preference can be obtained by adding (a)
and (b) and (c) and (d), respectively. In order to be consistent with (Wagner & Wells, 1985) ,
we let K = 2 to represent the left-right brain dominance dichotomy. We ran five Markov chains
with K = 2 for convergence diagnostics of the Markov chain.

Figure1 shows the plot of maximum proportional scale reduction factor (PSRF) (Brooks &
Gelman, 1998) for checking the convergence of Markov chain with multivariate parameters. The
approximate convergence is achieved after 5, 000 iterations since the maximum PSRF remains
below 1.1 after that. So we ran 100 Markov chains of length 20, 000 (with 10, 000 as burn-in)
estimate the parameters and the results are shown in Table 4.

Table 4 implies that participants with attribute profiles αi = (0, 1)�, (1, 1)�, (0, 0)� and
(1, 0)� prefer option a, b, c and d, respectively. For instance, the choices for item 1 were “a.
major in logic”, “b. write a letter”, “c. fix things at home”, and “d. major in art”. The estimates
for � in Table 4 indicate that members of class 01 were most likely to choose option “a” with an
estimated response probability of 0.725. In contrast, members of class 00 had a 0.643 chance of
selecting option “c” and respondents in the 10 class chose “d” with a probability equal to 0.693.

We also estimated the latent class probabilities of attribute profiles. Specifically, the propor-
tions of each attribute profile pattern in an increasing order of the bijection α�

c v are shown in
Table 5. The latent classes are nearly equal in size with the most respondents of 0.290 classified
with the 11 profile (i.e., Wagner’s left-verbal group) and the 00 class having 0.204 proportion of
respondents (i.e., Wagner’s right-manipulative/spatial).

Also, results shown in Table 4 can be used to evaluate the intended choice design for the
items. Most items differentiated among one or two of the underlying latent classes. However,
some options did not differentiate the latent classes as intended, such as item 2, 7 and 10. For
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Table 3.
Wagner preference inventory items, anchors, and response frequencies.

Item Anchors % Item Anchors %

1. a. Major in logic 37 7. a. Be in charge of computer programming 17
b. Write a letter 15 b. Study word origins and meaning 41
c. Fix things at home 23 c. Putter in the yard 15
d. Major in art 25 d. Invent a new gadget 27

2. a. Be a movie critic 27 8. a. Analyze production cost 22
b. Learn new words 29 b. Describe a new product in words 28
c. Improve your skills in a game 32 c. Sell a new product on the market 23
d. Create a new toy 12 d. Draw a picture of a new product 27

3. a. Improve your strategy in a game 29 9. a. Explain the logic of a theory 43
b. Remember people’s names 15 b. Be a copy writer for ads 5
c. Engage in sports 19 c. Work with wood and clay 18
d. Play an instrument by ear 37 d. Invent a story 34

4. a. Review a book 27 10. a. Be a comparison shopper 20
b. Write for a magazine 27 b. Read about famous men and women 37
c. Build new shelves at home 21 c. Run a traffic control tower 14
d. Draw a landscape or seascape 25 d. Mold with clay and putty 29

5. a. Analyze market trends 23 11. a. Analyze your budget 23
b. Remember people’s names 33 b. Study literature 25
c. Do carpentry work 21 c. Visualize and re-arrange furniture 25
d. Imagine a new play 23 d. Be an artist 27

6. a. Analyze management practices 27 12. a. Plan a trip and make a budget 37
b. Locate words in a dictionary 15 b. Write a novel 30
c. Put jigsaw puzzles together 31 c. Build a house or shack 18
d. Paint in oil 27 d. Make crafts your hobby 15

a = left/logical; b = left/verbal; c = right/manipulative-spatial; d = right/creative
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Figure 1.
The maximum PSRF for Wagner Preference Inventory data.

item 2, Wagner originally specified option a as left-logical function and option d as right/creative
function. However, according to probabilities represented in Table 4, people with attribute profile
αi = (0, 1)� did not strongly prefer option a, and people with attribute profile αi = (1, 0)� did
not strongly prefer option d. The choice design for item 2 should be reconsidered.
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Table 4.
Estimated �̂ for Wagner Preference Inventory data.

J a. Left/Logical b. Left/Verbal
Attribute profile patterns Attribute profile patterns

00 01 10 11 00 01 10 11

1 0.214 0.725 0.149 0.327 0.063 0.056 0.083 0.337
2 0.170 0.197 0.287 0.397 0.223 0.260 0.268 0.381
3 0.227 0.491 0.195 0.233 0.170 0.113 0.106 0.197
4 0.095 0.376 0.126 0.399 0.078 0.245 0.220 0.475
5 0.140 0.611 0.060 0.089 0.121 0.156 0.407 0.568
6 0.199 0.613 0.047 0.185 0.125 0.125 0.067 0.265
7 0.129 0.335 0.118 0.092 0.209 0.332 0.416 0.626
8 0.204 0.513 0.041 0.094 0.242 0.166 0.157 0.523
9 0.350 0.805 0.229 0.314 0.041 0.040 0.028 0.102
10 0.220 0.280 0.105 0.185 0.245 0.382 0.244 0.543
11 0.246 0.561 0.020 0.086 0.092 0.206 0.104 0.527
12 0.347 0.617 0.202 0.303 0.024 0.170 0.347 0.586

c. Right/Manipulative-Spatial d. Right/Creative

1 0.643 0.174 0.075 0.122 0.080 0.045 0.693 0.214
2 0.424 0.465 0.258 0.176 0.183 0.078 0.187 0.046
3 0.298 0.206 0.131 0.142 0.305 0.190 0.568 0.428
4 0.614 0.223 0.076 0.039 0.213 0.156 0.578 0.087
5 0.594 0.103 0.182 0.057 0.145 0.130 0.351 0.286
6 0.489 0.224 0.240 0.312 0.187 0.038 0.646 0.238
7 0.325 0.068 0.144 0.093 0.337 0.265 0.322 0.189
8 0.262 0.274 0.152 0.233 0.292 0.047 0.650 0.150
9 0.456 0.023 0.283 0.037 0.153 0.132 0.460 0.547
10 0.191 0.257 0.043 0.080 0.344 0.081 0.608 0.192
11 0.519 0.164 0.146 0.207 0.143 0.069 0.730 0.180
12 0.441 0.156 0.149 0.041 0.188 0.057 0.302 0.070

Note: The estimated probabilities in �̂ are averaged over 100 repetitions.

Table 5.
Estimated distribution of attributes in Wagner Preference Inventory data.

c αc π̂ Wagner Latent Class Interpretation

0 00 0.204 Right-manipulative/spatial
1 01 0.266 Left-logical
2 10 0.240 Right-creative
3 11 0.290 Left-verbal

7. Discussion

This paper focuses on the identifiability conditions of RLCMs.We proposed strict and generic
identifiability conditions based on the unique condition of tensor decomposition shown in Kruskal
theorem for the uniqueness of three-way arrays (Kruskal, 1976, 1977) . The established identifi-
ability conditions are applicable to a wealth of models for binary (e.g., Chen et al., 2015; 2020, de
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la Torre, 2011), polytomous (e.g., Chen & de la Torre, 2013, Culpepper, 2019, Culpepper & Bal-
amuta, 2021), and nominal response data. Accordingly, the new identifiability results can guide
researchers on the design of diagnostic interventions. Then, we developed a Bayesian formulation
for the RLCMs where the generic identifiability conditions are taken into consideration. For our
simulation study, we apply the Polya-gamma data augmentation for updating coefficients, and
compared our algorithm results with ULCMs. Simulation results show that our algorithm can
efficiently estimate model parameters, especially when the number of attribute profiles are small.
Given latent structures, our model has better performance compared with ULRMs.

In this paper, we assume that the number of attribute profiles, K , is fixed and pre-specified.
However, the prior knowledge for K may not be available in practice. Further study may consider
K as an unknown parameter that needs to be estimated (e.g., see Chen et al., 2021). Unknown K
implies that the dimension of attribute profiles, category response probability array and coefficients
array become unavailable, which can be quite challenging for future research.
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Appendix A Proof of Theorems

Preliminary Results

We start the proof with introducing some notation.

Definition 4. For a matrix M, the Kruskal rank of M is the largest number I such that every set
of I columns in M are linearly independent.

Remark 7. Compared with the rank of a matrix M , we have rankK (M) ≤ rank(M). If M has
full column rank, then the equality holds.

Consider a tripartition of the set J = {1, 2, . . . , J } into three disjoint, non-empty subsets J1 =
{1, 2, . . . , K }, J2 = {K +1, . . . , 2K } and J3 = {2K +1, . . . , J }. Then, the marginal distribution
of response Y can be represented as a three-way array T decomposing Y into three parts:

T ( yJ1 , yJ2 , yJ3 ) = P(YJ1 = yJ1,YJ2 = yJ2 ,YJ3 = yJ3 | π , B)

=
∑

α

παP(YJ1 = yJ1,YJ2 = yJ2 ,YJ3 = yJ3 | B,α)

=
∑

α

παP(YJ1 = yJ1 | B,α)P(YJ2 = yJ2 | B,α)P(YJ3 = yJ3 | B,α).

(A1)
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Let T1, T2, T3 represent distributions of YJ1 , YJ2 , YJ3 given values of attribute profile α. Then,
the identifiability is equivalent to the uniqueness of the decomposition of the following tensor
(Kruskal, 1977)

T =
∑

α

παT1,α ⊗ T2,α ⊗ T3,α =
∑

α

T̃1,α ⊗ T2,α ⊗ T3,α, (A2)

where T1,α , T2,α , T3,α are the α-th column of T1, T2, T3, and T̃1,α = παT1,α .
We apply the following theorem shown in Kruskal (1977) for our proof.

Theorem 3. (Kruskal, 1977) If

rankK (T̃1) + rankK (T2) + rankK (T3) ≥ 2 · 2K + 2, (A3)

then the tensor decomposition of T is unique up to simultaneous permutation and rescaling of
the columns.

We have rankK (T̃1) = rankK (T1) since π has positive entries. Moreover, T1, T2 and T3 are
all stochastic matrices with column sum 1, so the decomposition of the tensor T is unique up to
permutations of columns if (A3) in Theorem 3 is satisfied, which implies model identifiability.
If items have M response levels, we will be able to construct T1, T2 and T3 such that T1, T2 are
MK × 2K , and T3 is MJ−2K × 2K . So for the first set of K items, the probability matrix T1 is

T1 =
⎡

⎣
K⊗

j=1

θ j0, . . . ,

K⊗

j=1

θ j,2K−1

⎤

⎦ .

We multiply T1 by a collapsing matrix A that makes A
2K×MK

T1
MK×2K

a square matrix of size

2K × 2K .

Definition 5. Matrix A j , with size 2 × M , is a collapsing matrix for item j . For the response
probability vector θ jc, A jθ jc only gives probabilities of selecting a given response level or not in
class c.

Following is an example of matrix A j .

Example 5. Consider Mj = 3 and we are collapsing on option 1. Let

A j =
[
1 0 1
0 1 0

]
,

and the response probability vector θ jc = (θ jc,0, θ jc,1, θ jc,2) for item j in class c. Then, we have

A jθ jc =
[
1 0 1
0 1 0

]⎡

⎣
1 − θ jc,1 − θ jc,2

θ jc,1
θ jc,2

⎤

⎦ =
[
1 − θ jc,1

θ jc,1

]
.
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Let A = ⊗K
j=1 A j , where A j is defined in Definition 5. Compared with T1, AT1 is a collapsed

version of T1 which only contains probabilities of selecting a given response level or not by latent
class membership. So we can write AT1 as

AT1 =
K⊗

j=1

A j

⎡

⎣
K⊗

j=1

θ j0, . . . ,

K⊗

j=1

θ j,2K−1

⎤

⎦ (A4)

=
⎡

⎣
K⊗

j=1

A j

K⊗

j=1

θ j0, . . . ,

K⊗

j=1

A j

K⊗

j=1

θ j,2K−1

⎤

⎦ (A5)

=
⎡

⎣
K⊗

j=1

(A jθ j0), . . . ,

K⊗

j=1

(A jθ j,2K−1)

⎤

⎦ . (A6)

Proposition 1. If �1 follows a simple structure shown in Definition 1 and Remark 2, then we
have

AT1 =
K⊗

j=1

( p j0, p j1) (A7)

where p j0 = A jθ j0 and p j1 = A jθ j,e�j v .

Proof. Simple structure implies that we can then write AT1 as a block matrix:

AT1 =
⎛

⎝ p10 ⊗
⎛

⎝
⊗

j>1

A jθ j0

⎞

⎠ , . . . , p10 ⊗
⎛

⎝
⊗

j>1

A jθ j,2K−1−1

⎞

⎠ ,

p11 ⊗
⎛

⎝
⊗

j>1

A jθ j,2K−1

⎞

⎠ , . . . , p11 ⊗
⎛

⎝
⊗

j>1

A jθ j,2K−1

⎞

⎠

⎞

⎠

= (
p10 ⊗ T (1)0, p11 ⊗ T (1)1

)
. (A8)

We next show that simple structure of item 1 implies that,

⊗

j>1

A j� j0 =
⊗

j>1

A j� j,2K−1 , . . . ,
⊗

j>1

A j� j,2K−1−1 =
⊗

j>1

A j� j,2K−1.

Notice that items j > 1 are unrelated to attribute one. Let α(1) = (α2, . . . , αK )� denote the
response pattern on attributes two through K . Simple structure of item 1 implies that classes with
α = (0,α(1))

� and α = (1,α(1))
� will have identical response probabilities on items j > 1.

Stated differently, classes (0,α(1))v = c0 and (1,α(1))v = c0 + 2K−1 have equivalent response
probabilities on the remaining j > 1 items so that

⊗
j>1 A j� j,c0 = ⊗

j>1 A j� j,c0+2K−1 for

all c0 ∈ {0, . . . , 2K−1 −1}. Consequently, T (1)0 = T (1)1 = T (1) and properties of the Kronecker
product imply that

AT1 = (
p10 ⊗ T (1), p11 ⊗ T (1)

) = (
p10, p11

) ⊗ T (1) (A9)
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where

T (1) =
⎛

⎝
⊗

j>1

A j� j0, . . . ,
⊗

j>1

A j� j,2K−1−1

⎞

⎠ . (A10)

Item two is also simple structure and repeating the aforementioned steps on T (1) implies that

AT1 = (
p10, p11

) ⊗ (
p20, p21

) ⊗ T (1:2) (A11)

where

T (1:2) =
⎛

⎝
⊗

j>2

A j� j0, . . . ,
⊗

j>2

A j� j,2K−2−1

⎞

⎠ . (A12)

Consequently, simple structure for the remaining j ∈ {3, . . . , K } items implies that

AT1 =
K⊗

j=1

( p j0, p j1). (A13)

��
Remark 8. Note that properties of the Kronecker product and simple structure in T1 imply that
AT1 has rank 2K if p j0 and p j1 are linearly independent for all j . According to Definition 1,
there is at least one β j jm 
= 0 for m ∈ {1, . . . , Mj − 1}, which implies that p j0 
= p j1.

Proposition 2. rank(AiT i ) = 2K if and only if rank(T i ) = 2K , i = 1, 2.

Proof. By Sylvester’s rank inequality (Matsaglia & Styan, 1974) , we have

rank(Ai ) + rank(T i ) − 2K ≤ rank(AiT i ) ≤ min{rank(Ai ), rank(T i )}.

Given rank(Ai
j ) = 2, and the property of the rank of a Kronecker product, we have rank(Ai ) =

∏K
j=1 rank(A

i
j ) = 2K . Then, we get

rank(T i ) ≤ rank(AiT i ) ≤ min{2K , rank(T i )},

which implies that rank(AiT i ) = 2K if and only if rank(T i ) = 2K . ��

Proof of Theorem 1

ByProposition 2, it suffices to show that rank(A1T1) = rank(A2T2) = 2K and rankK (T3) ≥ 2,
where A1 = ⊗K

j=1 A
1
j and A2 = ⊗K

j=1 A
2
j are collapsing matrices introduced in Definition 5.

According to condition (A1) in Theorem 1, both �1 and �2 satisfy the simple structure, then
by Proposition 1 and remark 8 we have rank(A1T1) = rank(A2T2) = 2K . For T3, since each
element is nonnegative and each column sums to 1, then given condition (A2), for any two different
classes c and c′, there must exist one item j such that θ jcm 
= θ j ′m , so that rankK (T3) ≥ 2. By
Theorem 3, the model is strictly identified.
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Proof of Theorem 2

According to the tripartition of items set J, we can decompose � into �1, �2, �′ corresponding
to J1, J2, J3, respectively. Similarly, we can decompose parameter space �(B) into three parts,
��(B) = ��1 × ��2 × ��′ . Therefore, to prove Theorem 2, it suffices to show that under
conditions (B1) and (B2), rankK (T1) = rankK (T2) = 2K and rankK (T3) ≥ 2 hold almost
everywhere in ��1 , ��2 , ��′ , respectively. Then, by Theorem 3, the identifiability holds almost
everywhere in ��(B).
Based on Theorem 3 and Proposition 2, we first show that rank(AiT i ) = 2K holds almost
everywhere in ��i , i = 1, 2, given � satisfying the structure shown in Theorem 2. Let

fi (B) = det (AiT i ) : ��i → R (A14)

denote the determinant of matrix AiT i , where �i satisfies condition (B1).

Proposition 3. fi (B) is a real analytic function of B.

Proof. fi (B) is a composition function shown as below.

fi (B) = det (AiT i ) = g(θ1,0, . . . , θK ,2K−1),

where θ jc = (θ jc0, . . . , θ jc,Mj−1)
� and θ jcm = exp

(
α�
c β jm

)

∑M j−1

m′=0
exp

(
α�
c β jm′

) =
1

1 + ∑
m′ 
=m exp

(
α�
c β jm′ − α�

c β jm
) .

θ jcm is an analytic function because exponential functions are positive analytic functions, and
g(θ1,0, . . . , θK ,2K−1) is also a real analytic function of (θ1,0, . . . , θK ,2K−1) given that it is a
polynomial. Therefore, we know that fi (B) is a real analytic function of B, given the fact that
the composition of real analytic functions is a real analytic function. ��

Next we introduce the following lemma, which shows that the zero set of a real analytic function
has Lebesgue measure zero if the function is not constantly equal to zero.

Lemma 1. (Mityagin, 2020; Dang, 2015) Let f : Rd → R be a real analytic function on R
d .

If f is not identically zero, then its zero set {x ∈ R
d : f (x) = 0} has Lebesgue measure zero.

Proposition 4. If�i satisfies the structure shown in Theorem 2, then there exists some B ∈ ��i ,
such that fi (B) 
= 0, i = 1, 2.

Proof. As shown in condition B1 of Theorem 2, assume that for j = 1, . . . , K ,�1
j and�2

j satisfy
the following structure:

� j =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 · · · 0 0 0 · · · 0
1 0 · · · 0 δ j j1 = 1 0 · · · 0
1 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...

1 0 · · · 0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥
⎦

Mj×P

. (A15)
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Then, we have

p j0 =
(

1 − exp
(
β j01

)

exp
(
β j01

) + h j
,

exp
(
β j01

)

exp
(
β j01

) + h j

)�
,

p j1 =
(

1 − exp
(
β j01 + β j j1

)

exp
(
β j01 + β j j1

) + h j
,

exp
(
β j01 + β j j1

)

exp
(
β j01 + β j j1

) + h j

)�
,

where

h j =
∑

m′ 
=1

exp
(
β j0m′

)
.

As shown in Definition 1, �1
j and �2

j satisfy simple structure, and p j0 and p j1 are linearly
independent for j = 1, . . . , K due to β jk1 
= 0. Therefore, according to Proposition 1 and
Remark 8, we have rank(AiT i ) = ∏K

j=1 rank( p j0, p j1) = 2K , which implies that fi (B) 
= 0,
i = 1, 2. ��
Let Si denote the zero set of function fi (B):

Si = {B ∈ ��i : fi (B) = det (AiT i ) = 0},

then by Lemma 1 we can conclude that Si is a measure zero set with respect to ��i provided �i

satisfies condition (B1).
For condition (B2), we need to show that rankK (T3) ≥ 2 holds almost everywhere in 
�′ . Note
rankK (T3) ≥ 2 implies that for any two different attribute profiles αc, αc′ , there always exist one
j∗ > 2K , such that θ j∗cm 
= θ j∗c′m for some choice m with 0 < m < Mj∗ . Note that the αc-th
and αc′-th columns of T3 are T3,αc = ⊗

j>2K θ jαc and T3,αc′ = ⊗
j>2K θ jαc′ . Then, under

condition B2, we have θ j∗αc 
= θ j∗αc′ , which implies T3,αc 
= T3,αc′ . Therefore, T3,αc = T3,αc′
holds only when β j∗mk = 0 for some k and choice m with δ j∗mk = 1, which are of Lebesgue
measure zero within 
�′ . That proves rankK (T3) ≥ 2 almost everywhere within 
�′ .
Therefore, the inequality A3 shown in Theorem 3 holds almost everywhere in ��(B).

Appendix B Posterior Inference

The goal of this section is to describe our strategy for inferring the nominal RLCM parameters.
We first discuss the conditional likelihood and apply the Polya-gamma identity to augment the
likelihood function. An important feature to note is that we collapse the conditional likelihood,
which has the advantage of requiring fewer draws of Polya-gamma augmented variables. Then,
we show the derivation of full conditional distributions for a Gibbs sampling algorithm.

Conditional Likelihood and Polya Gamma Data Augmentation

Let i = 1, . . . , n index individuals so that yi j denotes the observed response for individual i to
item j and yi = (yi1, . . . , yi J )� is a J -vector of responses for individual i . Let B denote all of
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the item parameters. The conditional distribution of a sample of n responses is,

p( y1:n|α1:n, B) =
n∏

i=1

p( yi |αi , B) =
n∏

i=1

J∏

j=1

Mj−1∏

m=0

⎛

⎝ exp
(
a�
i β jm

)

∑Mj−1
m′=0 exp

(
a�
i β jm′

)

⎞

⎠

1(yi j=m)

. (B1)

where yi is the response vector for individual i , αi is individual i’s attribute profile, y1:n =
( y1, . . . , yn)

� is a n × J matrix of responses, and α1:n = (α1, . . . ,αn)
� denotes all attribute

profiles. An important feature to note about the conditional likelihood is that we can aggregate
terms in the product for individuals who reside in the same class and select the same response
options on items. That is, after switching the order of the i and j products and substituting
ai = aα�

i v we can aggregate Eq.B1 as

p( y1:n|α1:n, B) =
J∏

j=1

2K−1∏

c=0

∏Mj−1
m=0

[
exp

(
a�
c β jm

)]n jcm

[∑Mj−1
m′=0 exp

(
a�
c β jm′

)]nc (B2)

where n jcm = ∑n
i=1 1(yi j = m)1(α�

i v = c) indicates the number of individuals within class c
that select option m on item j and nc = ∑n

i=1 1(α�
i v = c) is the number of individuals residing

in class c.
The form of Eq.B2 enables us to adopt the Polya-Gamma data augmentation strategy for models
involving logistic functions (Polson et al., 2013) . In particular, Polson et al. (2013) reported the
following identity relating the logistic function with an integral for a Polya-Gamma (PG) random
variable,

(eψ)a

(
1 + eψ

)b = 2−beκψ

∫ ∞

0
e−wψ2/2 p(w)dw, a ∈ R, b > 0 (B3)

where κ = a−b/2 andw ∼ PG(b, 0). EquationB3 provides a data augmentation strategy for the
random variable ψ that is conjugate with normal priors. For instance, see Polson et al. (2013) for
a summary of a Gibbs sampling algorithm to infer the posterior distribution of logistic regression
model parameters using Markov chain Monte Carlo (MCMC). Additionally, the PG strategy was
also used for Bayesian estimation of the two parameter logistic item response theorymodel (Jiang
& Templin, 2019) and binary diagnostic models (Balamuta & Culpepper, 2022) .
We apply the PG identity in Eq.B3 by rewriting the portion of the conditional likelihood in Eq.B2
that corresponds with item j in a logistic format. Specifically, as noted by Holmes and Held and
Polson et al., the full conditional distribution for β jm can be written as,

p(β jm | y1:n, j ,α1:n, B j (m)) = p(β jm)p( y1:n, j |B j )

∝ p(β jm)

2K−1∏

c=0

[
exp

(
η jcm

)

1 + exp
(
η jcm

)

]n jcm
[

1

1 + exp
(
ηi jm

)

]nc−n jcm

.

(B4)
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where y1:n, j = (y1 j , . . . , ynj ), B j (m) = (β j0, . . . ,β j,m−1,β j,m+1, . . . ,β j,Mj−1) excludes
coefficients for response m on j , and

η jcm = a�
c β jm − C jcm (B5)

C jcm = ln

⎛

⎝
∑

m′ 
=m

exp(a�
c β jm′)

⎞

⎠ . (B6)

Full Conditional Distributions

δ j pm and γ The full conditional distribution for δ j pm is

p(δ j pm |β j pm, γ, σ 2
β ) ∝ p(β j pm |δ j pm, σ 2

β )p(δ j pm |γ ) (B7)

which is

δ j pm |β j pm, γ ∼ Bernoulli
(
γ̃ j pm

)
(B8)

where

γ̃ j pm = γ p(β j pm |δ j pm = 1, σ 2
β )

γ p(β j pm |δ j pm = 1, σ 2
β ) + (1 − γ )p(β j pm |δ j pm = 0, σ 2

β )
(B9)

The full conditional distribution for γ is

p(γ |�) ∝ p(�|γ )p(γ ) =
⎛

⎝
J∏

j=1

P−1∏

p=1

Mj−1∏

m=1

p(δ j pm |γ )

⎞

⎠ p(γ ) (B10)

so

γ |� ∼ Beta

⎛

⎝
J∑

j=1

P−1∑

p=1

Mj−1∑

m=1

δ j pm + a, J (P − 1)(M − 1) −
J∑

j=1

P−1∑

p=1

Mj−1∑

m=1

δ j pm + b

⎞

⎠

(B11)

σ 2
β The full conditional distribution for σ 2

β is

σ 2
β | B, � ∼ IGamma

⎛

⎝ασ + 1

2

J∑

j=1

P(Mj − 1), βσ + 1

2

J∑

j=1

P−1∑

p=0

Mj−1∑

m=1

β2
j pm(D(1 − δ j pm) + δ j pm)

⎞

⎠

(B12)
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αi and π We update α while integrating π out

p(α1, . . . ,αN ) =
∫

p(α1, . . . ,αN | π)p(π)dπ

= 1

B(d0)

∫
⎛

⎝
2K−1∏

c=0

π
nc+d0,c−1
c

⎞

⎠ dπ

= B(n + d0)
B(d0)

. (B13)

Then, the full conditional prior distribution for αi is

p(α�
i v = c | α(i)) = p(α1, . . . ,αN )

p(α1, . . . ,αi−1,αi+1, . . . ,αN )

= nc(i) + 1

n − 1 + 2K
, (B14)

where nc(i) represents the number of individuals other than i that have attribute profile αc. Full
conditional distribution of αi given y1:n and α(i) is

p(α�
i v = c | α(i), y1:n, B(t−1)) ∝ p(α�

i v = c | α(i))p( yi | α�
i v = c, B(t−1))

∝ (nc(i) + 1)p( yi | α�
i v = c, B(t−1)), (B15)

we update αi sequentially with weight proportional to (nc(i) + 1)p( yi | α�
i v = c, B(t−1)). For

π , we have

π | α1:n ∼ Dirichlet (n + d0), (B16)

where n = (n0, . . . , n2K−1).

Item Parameters, β jm, and Augmented Parameters, w jcm Applying the PG identity in Eq.B3 to
Eq.B4 yields,

p(β jm | y1:n, j , A, B j (m), δ jm,w jm) ∝ p(β jm |δ jm)

2K−1∏

c=0

[
exp

(
η jcm

)]n jcm

[
1 + exp

(
η jcm

)]nc

∝ p(β jm |δ jm)

2K−1∏

c=0

exp

(

ỹ jcmη jcm − w jcmη2jcm

2

)

,

(B17)
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where ỹ jcm = n jcm − nc/2 and w jm is a 2K vector with element c defined as a PG random
variable w jcm with full conditional distribution of w jcm |A, B j ∼ PG(nc, η jcm). We see,

p(β jm | y1:n, j , A, B j (m), δ jm , w jm) ∝ p(β jm | δ jm)

2K −1∏

c=0

exp

{

−ω jcm

2

(
ỹ jcm
ω jcm

− η jcm

)2
}

= p(β jm | δ jm)

2K −1∏

c=0

exp

{
−ω jcm

2

(
z jcm − a�

c β jm

)2}

= p(β jm | δ jm) exp

{
−1

2

(
z jm − Aβ jm

)�

 jm

(
z jm − Aβ jm

)}
(B18)

where A is a 2K × P design matrix and

z jcm = ỹ jcm
ω jcm

+ C jcm (B19)

z jm = (z0 jm, . . . , z2K−1, jm)�. (B20)

Since the prior distribution of β jm given δ jm is

β jm | δ jm ∼ N (0,	 jm), (B21)

where 	 jm = σ 2
βdiag(v jm0, . . . , v jm,2K−1) and v jmp = δ jmp + (1− δ jmp)/D. Then, adding the

prior term from the exponent for β jm yields the posterior distribution

p(β jm | y1:n, j , A, B j (m), δ jm , w jm) ∝ p(β jm | δ jm)

2K −1∏

c=0

exp

{

−ω jcm

2

(
ỹ jcm
ω jcm

− η jcm

)2
}

∝ exp

{
−1

2

(
β�

jm	−1
jmβ jm + (

z jm − Aβ jm
)�


 jm
(
z jm − Aβ jm

))}

∝ exp

{
−1

2

(
β jm − μ jm

)� V jm
(
β jm − μ jm

)}
. (B22)

Therefore, the full conditional distribution of β jm is

β jm | Y1:n, j , A, B j (m), δ jm,w jm ∼ N2K
(
μ jm,V jm

)
(B23)

V jm = A�
 jm A + 	−1
jm (B24)

μ jm = V−1
jm A�
 jm z jm = V−1

jm A� (
ỹ jm + 
 jmC jm

)
(B25)

where 	 jm = σ 2
βdiag(v jm0, . . . , v jmP ) and v jmp = δ jmp + (1 − δ jmp)/D. Note we use the

second equality in Eq.B25 to avoid numerical issues associated with dividing by a ω jcm that is
zero.
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Similarly, if we instead sample one coefficient at a time, we need the full conditional distribution
of β jmp as follows:

p(β jmp| y1:n, j , A, B j (m), q j , w jm) ∝ p(β jmp)

2K −1∏

c=0

exp

{

−ω jcm

2

(
ỹ jcm
ω jcm

− η jcm

)2
}

= p(β jmp) exp

{
−1

2

(
z jm − Aβ jm

)�

 jm

(
z jm − Aβ jm

)}

∝ exp

{

− β2
jmp

2	 jmp

}

exp

{
−1

2

(
z̃ jm − Apβ jmp

)�

 jm

(
z̃ jm − Apβ jmp

)}

∝ (
β jm − μ jm

)� V jm
(
β jm − μ jm

)
. (B26)

Therefore, the full conditional distribution for β jmp given Y1:n, j , A, β jm(p), and B j (m) is

β jmp | Y1:n, j , δ jmp, A,β jm(p), B j (m) ∼ N (μ jmp, σ
2
jmp), (B27)

σ 2
jmp = 1

A�
p
 jm Ap + 1/σ 2

βv jmp
, (B28)

μ jmp = σ 2
jmpA

�
p
 jm z̃ jm = σ 2

jmpA
�
p

(
ỹ jm + 
 jmC jm − 
 jmA(p)β jm(p)

)
, (B29)

z̃ jm = z jm − A(p)β jm(p) = z jm − Aβ jm + Apβ jmp, (B30)

where Ap is column p ofA andA(p) excludes column p ofA. Note computation of the conditional

mean and variance requires, A�
p
 jmAp = ∑2K−1

c=0 Apcω jcm .

Appendix C Starting Values of B

In this appendix, we will show the starting value generation steps of coefficients in B.

1. Perform a k−means clustering (MacQueen, 1967) on the observed responses.

(a) First, define the binary response array Yb with size N × J × M , where Yb
i jm =

I
{
Yi j = m

}
. Then, reshape the three dimensional array Yb into a matrix Y∗ with

size N × JM , through combining columns of every slice of Yb.
(b) Partition the JM−dimensional vectors corresponding to the N respondents Y ∗ =

(y∗
1 , . . . , y

∗
N )� into 2K distinct groups with nc′ respondents per group.

(c) Initialize the category response probabilities described in Eq.1 such that θ j ′c′ ∈
�JM×2K is the j ′-th element of the cluster center for group c′.

2. Assuming K factors, perform an exploratory factor analysis (EFA) on the slices of
observed responses array Yb

m , m = 1, . . . , M − 1.

(a) Generate factor scores for the i = 1, . . . , N respondents across the j = 1, . . . , J
items and k = 1, . . . , K attributes, θ̃mik .

(b) Compute within-cluster averages of the factor scores θ̃m
c′k = 1

n′
c

∑nc′
i c′=1

θ̃m
ic′k for

each of the 2K groups.
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Table 6.
Summary of simulation performance for RLCM with dense � and Q

ρ K N MAD EAR

�̂ π̂ Q̂

0 2 1000 0.0214 0.0151 0.8840
2 2000 0.0179 0.0108 0.9234
2 5000 0.0120 0.0067 0.9531
2 10000 0.0077 0.0048 0.9733
3 1000 0.1097 0.0204 0.8513
3 2000 0.0135 0.0152 0.8981
3 5000 0.0086 0.0062 0.9345
3 10000 0.0069 0.0046 0.9474

0.25 2 1000 0.0229 0.0204 0.8593
2 2000 0.0170 0.0152 0.9134
2 5000 0.0084 0.0062 0.9630
2 10000 0.0061 0.0046 0.9783
3 1000 0.0256 0.0111 0.8299
3 2000 0.0195 0.0089 0.8749
3 5000 0.0155 0.0085 0.9099
3 10000 0.0120 0.0069 0.9231

MAD = mean absolute deviation; EAR = element-wise accuracy rate

(c) Dichotomize the within-cluster factor score averages into pseudo-attributes as

α̃m
c′k = I

(
θ̃m
c′k > 0

)
.

3. Define the pseudo-attribute profiles α̃m
c′ = (α̃m

c′1, . . . , α̃
m
c′ K )� in terms of the binary-

integer bijection (α̃m
c′ )�v = c.

4. Based on the bijection integers in step 3, swap the label of latent class of the initialized
category response probabilities matrix got in step 1.

5. For m = 1, 2, . . . , M − 1, initialize the m-th slice of B as follows:

(a) Define the category response probability as Logit−1(θ jcm) = α�
c β

(0)
jm ∈

M(0)
αβ:J×2K

.

(b) Calculate B(0)
m = M(0)

αβ A(A�A)−1, where A is the 2K × P design matrix.

Appendix D Simulation Results for Dense �

The unknown denser true � and true Q matrices for each option are shown as follows (columns
in � follow the same order as the design vector shown in Eq.3):

• � cube with K = 2
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�m=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, �m=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0
1 1 0 0
1 1 1 1
1 1 0 0
1 1 0 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 1 0
1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, �m=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0
1 0 1 0
1 0 1 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 1 1 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 1 0
1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B31)

• � cube with K = 3

�m=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 1 0 0 1
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,�m=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 0 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 1 1
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 1 1 1 1 1 1
1 0 0 1 0 0 0
1 0 1 1 0 0 1
1 0 1 1 0 0 1
1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 1 0
1 0 0 1 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,�m=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 1 0
1 0 0 1 0 0 0
1 1 1 0 1 0 0
1 0 1 1 0 0 1
1 1 0 1 0 1 0
1 0 0 1 0 0 0
1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 1 1 0 1 0 0
1 1 1 1 1 1 1
1 0 0 1 0 0 0
1 0 1 1 0 0 1
1 1 0 0 0 0 0
1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B32)

• Q matrices with K = 2

Qm=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 1
1 1
1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
1 0
1 1
1 0
1 0
1 1
0 1
1 0
0 1
1 1
0 1
1 1
0 1
1 0
1 0
0 1
1 0
0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1
0 1
1 1
1 0
0 1
1 1
0 1
1 0
0 1
1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B33)
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• Q matrices with K = 3

Qm=1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1
1 1 1
1 1 1
1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0
1 1 0
1 1 1
0 1 0
0 0 1
1 1 1
0 0 1
0 1 1
0 1 1
1 1 1
1 0 0
1 1 1
1 0 0
0 1 0
1 0 1
0 0 1
1 0 0
0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Qm=3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0
1 0 0
0 1 0
0 1 0
1 0 1
0 0 1
1 1 0
0 1 1
1 0 1
0 0 1
1 1 1
1 0 0
1 1 0
1 1 1
0 0 1
0 1 1
1 0 0
1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B34)

Simulation results are shown in Table 6.
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