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Computation of Mordell–Weil bases for ordinary elliptic curves
in characteristic two

G. Moehlmann

Abstract

In this paper we consider ordinary elliptic curves over global function fields of characteristic
2. We present a method for performing a descent by using powers of the Frobenius and
the Verschiebung. An examination of the local images of the descent maps together with a
duality theorem yields information about the global Selmer groups. Explicit models for the
homogeneous spaces representing the elements of the Selmer groups are given and used to
construct independent points on the elliptic curve. As an application we use descent maps to
prove an upper bound for the naive height of an S-integral point on A. To illustrate our methods,
a detailed example is presented.

1. Introduction

Let A be an elliptic curve defined over a global field K. Then Â(K) := A(K)/(A(K))tor is a free
abelian group of finite rank. For K a number field or a rational function field of characteristic
greater than or equal to 5, there are algorithms, which may not always succeed, to compute
generators for Â(K) by doing a two-descent. These generators are called a Mordell–Weil basis.
See the documentation of [1] for references for the algorithms that are used in Magma. These
algorithms make use of the separability of the multiplication by two isogeny. Our main goal
in this paper is to describe how similar techniques can be applied to compute Mordell–Weil
bases for ordinary elliptic curves over global function fields of characteristic 2. By using flat
cohomology we first construct descent maps as described in [7, 16, 17] and utilize them to
compute Selmer groups. Then we represent the elements of the Selmer groups as homogeneous
spaces as in [4], utilize them to construct independent points, and enlarge the group generated
by these points as in [10]. At the end we use our descent maps to compute an upper bound
for the naive height of an S-integral point on A.

This paper is based on the author’s PhD thesis at Carl-von-Ossietzky University Oldenburg.

2. Descent via Frobenius and Verschiebung

Let A be an ordinary elliptic curve defined over a field K of characteristic 2. Then we can
assume that A is given by a Weierstrass equation of the form

A : y2 + a1xy + x3 + a2x
2 + a6 = 0.

We denote the zero of A by OA. Let φ : A → B be an isogeny of degree n and φ∨ its dual
isogeny. As a result of the snake lemma, the sequence of kernels and cokernels

0→ A(K)[φ]→ A(K)[n]→ B(K)[φ∨]→ B(K)/φ(A(K))

→ A(K)/nA(K)→ A(K)/φ∨(B(K))→ 0
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is exact. For an elliptic curve over a global function field K the computation of the torsion
points is comparatively easy, so we assume that they are known. Consequently generators
for A(K)/φ∨(B(K)) and for B(K)/φ(A(K)) yield generators for A(K)/nA(K), which also
generate a subgroup of finite index of A(K). In the following we make use of specific isogenies to
construct Z-linear independent points on A(K): the ith power Frobenius is a purely inseparable

isogeny F i : A → A(2i) of degree 2i given by F i(x, y) = (x2i

, y2i

). The Weierstrass equation

of A(2i) is
A(2i) : y2 + a2i

1 xy + x3 + a2i

2 x
2 + a2i

6 = 0. (2.1)

The dual isogeny of F i is called the ith power Verschiebung. We denote it by V i : A(2i) → A.
As we require A to be ordinary, the Verschiebung is separable. If the 2i-torsion of A(2i) is
K-rational, the kernel of the Verschiebung, kerV i, is isomorphic to Z/2iZ as a finite flat group
scheme over K. In the following, let T denote a generator of kerV i. An isomorphism Ξ is given
by mapping T to 1. For an arbitrary isogeny Φ, the kernel of the dual isogeny Φ∨ is isomorphic
to the Cartier dual (ker Φ)∨ of the kernel of Φ. The Cartier dual of Z/2iZ is isomorphic to the
K-group scheme of 2ith roots of unity µ2i. Hence for the Frobenius there is an isomorphism
ψ : kerF i → µ2i such that the diagram

kerF i × kerV i

Ξ

��
ψ

��

// Gm

id

��
µ2i × Z/2iZ // Gm

commutes. Here the rows are given by the Weil pairing ei or the Cartier duality pairing. Let R
be a finite K-algebra, then due to the commutativity of the diagram we have ψ(P ′) = ei(P

′, T )
for every SpecR-rational point P ′ on kerF i. The short exact sequences

0→ kerV i → A(2i) V
i

→ A→ 0

0→ kerF i → A
F i

→ A(2i) → 0

induce the long exact sequences

0→ kerV i(K)→ A(2i)(K)
V i

→ A(K)→ H1(K, kerV i)

0→ kerF i(K)→ A(K)
F i

→ A(2i)(K)→ H1(K, kerF i)

in flat cohomology. Thus we get homomorphisms

α̂i : A(K)→ H1(K, kerV i)

β̂i : A(2i)(K)→ H1(K, kerF i)

for which ker α̂i = V i(A(2i)(K)) and ker β̂i = F i(A(K)). As a result of the Kummer sequence
or the Artin–Schreier–Witt sequence together with Hilbert 90, which states that H1(K,Gm)
and H1(K,Wi) are trivial, we have H1(K,Z/2iZ) ' Wi(K)/℘(Wi(K)) and H1(K,µ2i)
' K×/(K×)2i

. Here Wi denotes the truncated Witt vectors of length i, and ℘ is the
Artin–Schreier map given by mapping a truncated Witt vector v to Fv − v. The composition
of α̂i or β̂i and both the isomorphisms induced by Ξ or ψ and by the Artin–Schreier–Witt or
Kummer sequence yields homomorphisms

αi : A(K)→Wi(K)/℘(Wi(K))

βi : A(2i)(K)→ K×/(K×)2i

under the assumption that the 2i-torsion of A(2i) is defined over K. The following propositions
demonstrate how αi and βi can be evaluated in this situation.
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mordell–weil bases in characteristic two 3

Proposition 2.1. Let Q be in A(2i) with V i(Q) = P , and let σ be a generator of the cyclic
Galois group of K(Q)/K. Then αi(P ) = v + ℘(Wi(K)) where v ∈ Wi(K) is determined by
the equation Ξ(Q− σ(Q)) = w − σ(w) for w ∈Wi(K̄) with K(w) = K(Q) and ℘(w) = v.

Proof. This proposition follows from tracing through the various morphisms. As V i is
separable, kerV i is an étale group scheme. Hence Galois cohomology can be used for
computations in H1(K, kerV i). Consequently α̂i maps a point P to the cocycle σ 7→ Q−σ(Q),
and, on the other hand, when we identify Z/2iZ and Wi(F2) via 1 7→ (1, . . . , 1), the
isomorphism Wi(K)/℘(Wi(K)) → H1(K,Z/2iZ) is given by mapping v to σ 7→ w − σ(w).
Patching things together proves the statement.

Proposition 2.2. Let f be a function in the function field of A(2i) with principal divisor
(f) = (2iT − 2iOA(2i)) such that f ◦ F i = g2i

holds for a function g on A. Then for P in

A(2i)(K) we have

βi(P ) =


1 if P = OA(2i) ,

f(−P )−1 if P = T,

f(P ) otherwise.

Proof. If we use Čech cocycles to represent elements in the cohomology groups, the
isomorphism K×/(K×)2i → H1(K,µ2i) is given by a 7→ (1 ⊗ b)/(b ⊗ 1) with b2

i

= a. We
denote it by δK . Moreover, β̂i maps a point P ∈ A(2i)(K) to the cocycle (1 ⊗ xQ, 1 ⊗ yQ)−
(xQ ⊗ 1, yQ ⊗ 1) representing an element in H1(K, kerF i). Here F i(xQ, yQ) = P holds.
Composing β̂i and the isomorphism that is induced by ψ, we get

ei(δF (P ), T ) = ei((1⊗ xQ, 1⊗ yQ)− (xQ ⊗ 1, yQ ⊗ 1), T )

=
g((1⊗ xQ, 1⊗ yQ))

g((xQ ⊗ 1, yQ ⊗ 1))

=
1⊗ g((xQ, yQ))

g((xQ, yQ))⊗ 1
.

This follows from the formula for the Weil pairing given in [11, p. 313]. On the other hand,
we have

δK(f(P )) = δK(g(xQ, yQ)2i

) =
1⊗ g((xQ, yQ))

g((xQ, yQ))⊗ 1
.

For i = 1 this construction yields

α1 : A(K)→W1(K)/℘(W1(K)), (x, y) 7→ x+ a2

a2
1

≡ a6

a2
1x

2

and

β1 : A(2)(K)→ K×/(K×)2, (x, y) 7→


x for x 6= 0,

a6 for x = 0,

1 for (x, y) = OA(∈) .

These are the same maps as constructed in [7]. An easy computation shows that, for an
ordinary elliptic curve A given by A : y2 + a1xy + x3 + a2x

2 + a6 = 0, the curve A(4) has
K-rational 4-torsion if and only if a2 is of the form a2 = a2

1(s2 + s) for an element s ∈ K. The
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point T = (a2
1a6, a

6
1s

4a6 + a2
6) on A(4)(K) is of order 4. An examination of the Galois group

operation on the preimages of the Witt vector(
a6

a2
1x

2
,
a6y

a3
1x

3
+

a6

a4
1x

+
sa6 + a6

a2
1x

2
+

a2
6

a4
1x

4

)
and the computation of the principal divisor of (y + (1/a4

1)x2 + a4
1s

4x) demonstrates that α2

and β2 are given by

α2 : A(K)→W2(K)/℘(W2(K)), (x, y) 7→
(

a6

a2
1x

2
,
a6y

a3
1x

3
+

a6

a4
1x

+
sa6 + a6

a2
1x

2
+

a2
6

a4
1x

4

)
and

β2 : A(4)(K)→ K×/(K×)4, (x, y) 7→


a2

1a
3
6 if (x, y) = T,

1 if (x, y) = O′,(
y +

1

a4
1

x2 + a4
1s

4x

)
otherwise.

Remark. Similar techniques can be used to construct descent maps for supersingular elliptic
curves in characteristic 2. These will be presented in a subsequent publication.

Remark. Let A(2i) be given by a Weierstrass equation of the form (2.1). Then for i = 1 the
2i-torsion is always K-rational. But for i > 2 this is not the case. By working over L, the field of
definition ofA(2i)[2i], we can still construct descent maps. This time they are mapping points on

A(K) or A(2i)(K) to subsets of Wi(L)/℘(Wi(L)) or L×/(L×)2i

, respectively. With an inflation-
restriction argument we can describe these subsets. When it comes to calculating the global
image of these descent maps for i = 1, 2 as described in § 5, it is possible to construct models
for the relevant homogeneous spaces that are defined over K. The techniques to complete this
task are basically the same as in § 5.

3. Local duality

Throughout this section let Kv be the completion of K with respect to a valuation v. For an
arbitrary isogeny φ : A → B of elliptic curves over Kv and dual isogeny φ∨ we denote the
connection homomorphisms in cohomology by

α : A(Kv)→ H1(Kv, kerφ∨) and β : B(Kv)→ H1(Kv, kerφ).

The Weil pairing induces a cup product pairing

∪ : H1(Kv, kerφ)×H1(Kv, kerφ∨)→ H2(Kv,Gm). (3.2)

Theorem 3.1. The images α(A(Kv)) and β(B(Kv)) are exact orthogonal complements
under the cup product pairing.

Proof. The diagram

H0(Kv, A
∨)×H1(Kv, A)

α

��

// H2(Kv,Gm)

H1(Kv, kerφ∨)×H1(Kv, kerφ)

ι

OO 44

https://doi.org/10.1112/S1461157014000175 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000175


mordell–weil bases in characteristic two 5

commutes (compare [8, C.5]). The upper pairing is given by [8, Theorem 7.8], and the vertical
morphisms are the suitable homomorphisms in the long exact cohomology sequences of

0→ kerφ→ A→ B → 0

and its dual sequence. Let b ∈ Imβ ⊆ H1(Kv, kerφ) and a ∈ Imα ⊆ H1(Kv, kerφ∨) be
elements in the images. This means there are Kv-rational points P ∈ H0(Kv, B) = B(Kv)
and Q ∈ H0(Kv, A

∨) ∼= H0(Kv, A) = A(Kv) such that α(Q) = a and β(P ) = b. If we
denote the upper pairing by (., .)1, the lower by (., .)2, and by ι the induced homomorphism
ι : H1(Kv, kerφ) → H1(Kv, A), then we have (a, b)2 = (Q, ι(b))1 = (Q, 0)1 = 0 due to the
exactness of the cohomology sequence. Hence the images are orthogonal. For b′ ∈ H1(Kv, kerφ)
such that (a, b′)2 = 0 holds for all a ∈ Imα, we have (Q, ι(b′))1 = 0 for all Q ∈ H0(Kv, A

∨).
As (., .)1 yields an exact duality, we have ι(b′) = 0 and consequently b′ ∈ Imβ.

Proposition 3.2. For the previously mentioned isogenies F i and V i and descent maps
αvi : A(Kv) → Wi(Kv)/℘(Wi(Kv)) and βvi : A(2i)(Kv) → K×v /(K

×
v )2i

, the cup product
pairing

∪ : H1(Kv, kerV i)×H1(Kv, kerF i)→ H2(Kv,Gm)

is nothing other than the Artin–Schreier–Witt pairing

[., .) : Wi(Kv)/℘Wi(Kv)×K×v /(K×v )2i

→ Q/Z.

Proof. Because of the commutativity of diagram (2), this statement follows from the explicit
formula for the cup product pairing on Z/2iZ and µ2i as given in [9, proof of Theorem 4].

Remark. The Artin–Schreier–Witt pairing can be evaluated efficiently as described in [14].

4. Local images

For i = 1, 2, statements about the images of αvi and βvi can be proven.

Proposition 4.1. Let k be the residue class field of Kv, Rv the valuation ring, and Un the
set Un := {u ∈ R×v | v(u− 1) > n}. Assuming that the coefficients of the Weierstrass equation
for A are in Rv, the following equations hold:

[Imβv1 : U2v(a1)(K
×
v )2/(K×v )2] = [A(2)(Kv) : A

(2)
1 (Kv)]/[A(Kv) : A1(Kv)],

[K×v /(K
×
v )2 : Imβv1 ] = 2(#k)v(a1)[A(Kv) : A1(Kv)]/[A

(2)(Kv) : A
(2)
1 (Kv)],

[Imβv2 : U4v(a1)(K
×
v )4/(K×v )4] = [A(4)(Kv) : A

(4)
1 (Kv)]/[A(Kv) : A1(Kv)],

[K×v /(K
×
v )4 : Imβv2 ] = 4(#k)v(a1)[A(Kv) : A1(Kv)]/[A

(4)(Kv) : A
(4)
1 (Kv)].

Proof. The first two equalities can be found in [7]. For the other two, we can adapt the
proof. The rows of the commutative diagram

0 // A1(Kv)
F 2
//

� _

�

A
(4)
1 (Kv)� _

�

βv
2 // U4v(a1)(K

×
v )4/(K×v )4 //
� _

�

0

0 // A(Kv)
F 2
// A(4)(Kv)

βv
2 // Imβ2

// 0
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6 g. moehlmann

are exact. Here A1 or A
(4)
1 denotes the kernel of reduction. As in [7], the surjectivity of the

upper right map is the only part that is not obvious. It can be proven by a short calculation:(
y +

x2

a4
1

+ a4
1s

4x

)
a4

1x
4

y4
=
x3

y2

a4
1xy + x3 + a8

1s
4x2

y2

=
y2 + a4

1xy + a8
1(s8 + s4)x2 + a4

6

y2

y2 + a8
1s

8x2 + a4
6

y2

= 1 + a4
1u
−4

(
z + a4

1s
4z2 + a8

1s
8z3 + a4

6

z

y2
+ a4

1a
4
6s

4 z
2

y2

)
where u is a unit in the valuation ring and z := x/y. As (x, y) is in A

(4)
1 (Kv), the valuation of

z is positive. Hence the image is in U4v(a1). The map (x, y) 7→ x/y is an isomorphism between

A
(4)
1 (Kv) and the valuation ideal of Rv. This proves the surjectivity.

Corollary 4.2. If the valuation v(∆(A)) of the discriminant is equal to 0 then the local
images are given by

Imβvi = U0(K×v )2i

/(K×v )2i

and
Imαvi = Wi(k) + ℘(Wi(Kv))/℘(Wi(Kv)).

Remark. If A does not have good reduction at v, we can still compute Imαvi . In order
to do so, we calculate random points on A(Kv) and their images. To generate the points,
we apply Hensel’s lemma and approximate their coordinates to a prescribed precision. Using
Tate’s algorithm and the second or fourth equation of Proposition 4.1 we can determine the
cardinality

# Imαvi = [K×v /(K
×
v )2i

: Imβvi ],

and consequently we know when to stop our algorithm. For small examples this is really fast.
But for increasing valuation of a1, this step may cause trouble, as it gets more difficult to
generate the random points in a way that the probability of their images generating Imαvi is
reasonable. The image of βvi is an infinite group. But it only takes finitely many computations

to decide if a given element b ∈ K×v /(K×v )2i

is in Imβvi or not. All we have to do is to test if b
is orthogonal to Imαvi . Moreover, evaluating the Artin–Schreier–Witt pairing as described in
[14] requires the arguments to be given only up to a finite precision.

5. Global images

Let K be a global function field and v a valuation of K. Let A(2i) have K-rational 2i-torsion.
The embedding K → Kv induces homomorphisms

resvV i : Wi(K)/℘Wi(K)→Wi(Kv)/℘Wi(Kv) and resvF i : K×/(K×)2i

→ K×v /(K
×
v )2i

.

The V i- and F i-Selmer group are respectively defined as

Sel(K,V i) := {w ∈Wi(K)/℘Wi(K) | resvV i(w) ∈ Imαvi for all valuations v}

and

Sel(K,F i) := {a ∈ K×/(K×)2i

| resvF i(a) ∈ Imβvi for all valuations v}

= {a ∈ K×/(K×)2i

|
[
Imαvi , resvF i(a)

)
= 0 for all valuations v}
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mordell–weil bases in characteristic two 7

Proposition 5.1. For i = 1, 2, there are effective divisors Dj of Div(K) such that every
element in Sel(K,V i) has a representative b = (b0, . . . , bi−1) ∈ Wi(K) where bj is in the
Riemann–Roch space L(Dj). At most one place where A has good reduction appears in the
support of the Dj .

Proof. We choose one place v0 of K and arbitrary representatives in Wi(K) for the elements
in Sel(K,V i). To deal with the places v 6= v0 where A has good reduction, we apply Artin–
Schreier–Witt reduction to get new representatives for which the valuation of the components
at v is either not negative or odd. Due to Corollary 4.2 the second case does not occur. As a
result of the strong approximation theorem, the components of the new representatives will
not have any new poles except at v0. Afterwards we apply the same reduction to the remaining
places different from v0. This time it is possible for the components to have an odd, negative
valuation. But, as the local image is finite, the valuation is bounded below. Finally, we reduce
the valuation at v0. Again we get a lower bound, but this time it depends not only on the
finite image of αv0i but also on the degree of v0 and the genus of K.

Remark. In order to calculate the divisors Dj , one only has to compute the poles and
zeros of the coefficients and the genus of K. As a result we get representatives for a finite
subset of Wi(K)/℘(Wi(K)) that contains Sel(K,V i). To compute the elements that actually
are in Sel(K,V i) we have to find those that are contained in the local images Imαvi for the
finitely many places v of bad reduction. This task requires elements in K to be represented as
Laurent series in Kv to a prescribed precision and Artin–Schreier polynomials to be factorized
over Kv.

For Sel(K,F i) we can proceed in a similar fashion.

Proposition 5.2. For i = 1, 2, there is a finite set S of places of K such that Sel(K,F i) is
a subset of

K(S, 2i) := {a ∈ K×/(K×)2i

| v(a) ≡ 0 mod 2i for all v 6∈ S}.

If A(2i) has good reduction at v, then v is not in S.

Proof. This is a consequence of Corollary 4.2.

Remark. The calculation of generators for K(S, 2i) amounts to calculating generators for
the S-class and the S-unit group of K (see, for example, [13]). In order to determine if an
element a ∈ K(S, 2i) is in Sel(K,F i), we examine whether it is orthogonal to Imαvi for the
places of bad reduction. This requires a finite amount of evaluations of the Artin–Schreier–Witt
pairing.

Finally, we want to compute the elements w = (w0, . . . , wi−1) that are in Sel(K,V i) (or
a ∈ Sel(K,F i)) that are in the image of αi (or βi). Therefore we have to decide if there is a

point Pw ∈ A(K) (or Pa ∈ A(2i)(K)) for which αi(Pw) = w (or βi(Pa) = a) holds or not. For
αi this results in the equations

i = 1 : y2 + a1xy + x3 + a2x
2 + a6 = 0

x+ a2

a2
1

= w0 + z2
0 + z0,

i = 2 : y2 + a1xy + x3 + a2
1(s2 + s)x2 + a6 = 0(

a6

a2
1x

2
,
a6y

a3
1x

3
+

a6

a4
1x

+
sa6 + a6

a2
1x

2
+

a2
6

a4
1x

4

)
= (w0, w1) + ℘(z0, z1),
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in the variables x, y, z0, . . . , zi−1. Their homogenizations define a projective curve Cw over K
which is a covering of A. Artin–Schreier–Witt theory shows that this covering is unramified,
thus has genus 1 and is cyclic of exponent 2i. Moreover, it is flat, hence étale and smooth. The
points over O ∈ A(K) define a K-rational divisor of degree 2i on Cw. For βi we get similar
results. This time the equations are

i = 1 : y2 + a2
1xy + x3 + a2

2x
2 + a2

6 = 0

x = az2,

i = 2 : y2 + a4
1xy + x3 + a8

1(s2 + s)4x2 + a4
6 = 0

y +
1

a4
1

x2 + a4
1s

4x = az4,

in the variables x, y, z. Their homogenizations define a projective covering Ca of the elliptic
curve A(2i). This covering is defined over K and purely inseparable. A short computation using
Tate’s genus formula shows that Ca has genus 1 and is smooth. The preimage of O ∈ A(2i)(K)

under Ca → A(2i) is a K-rational divisor of degree 2i on Ca. In [4] it is shown that smooth
projective curves of genus 1 having a K-rational divisor of a specific degree, in our case 2 or
4, possess special models. As these models are advantageous for the computation of rational
points we have to compute rational transformations from the aforementioned models to those
presented in [4]. For i = 1 this amounts to using the second equation to eliminate x in the
first, followed by some obvious transformations. As a result, for i = 1 we get the models
given by

Cw : y2 + (a1z
2 + a2

1z + (a3
1w0 + a1a2))y + a2

1w0z
4 + (a3

1w0 + a3
1 + a1a2)z3

+ (a4
1w

2
0 + a4

1w0 + a2
2)z2 + (a5

1w
2
0 + a1a

2
2)z + a6

1w
3
0 + a2

1a
2
2w0 + a6 = 0

and
Ca : y2 + a2

1axy + a2
1a6ax

4 + a2
2a

2x2z2 + a3z4 = 0

in a weighted projective space. For i = 2 we can represent Cw and Ca as the intersection
of two quadrics. This time it is too hard to find a transformation to such a model by hand.
We can do it by using Magma for the computation of bases for some Riemann–Roch spaces.
This results in formulas for the defining equations, but as they are rather lengthy we omit
them. Deciding whether an element w ∈ Sel(K,V i) or a ∈ Sel(K,F i) is in the image of αi or
βi is equivalent to deciding if Cw or Ca possesses a K-rational point, and such a K-rational
point yields a preimage on A(K) or A(2i)(K). The element w (or a) is by construction in the
local image of αvi (or βvi ). Consequently, there is a Kv-rational point on Cw (or Ca) for every
valuation v of K. Due to the failure of the Hasse principal for curves of genus 1, this does
not imply the existence of a K-rational point. As described in [4], when performing a search
for K-rational points on such a curve it is advantageous if the curve is given by a model with
small coefficients. In [4] techniques to minimize and reduce the coefficients of the models we
are dealing with are presented. The minimization algorithms can be applied to our situation
without any modifications. A straightforward algorithm based on Groebner base computations
over the constant field of K can be used to reduce the coefficients. Sieving techniques as
described in [18] prove to be useful for the computation of points on the minimized and
reduced model. For the computation of Mordell–Weil bases, this calculation of rational points
on the homogeneous spaces is a major bottleneck. Here the models given by the α2- and
β2-descent are often advantageous. Assuming a point P on A(K) can be computed as a
preimage of a point on a homogeneous space C1 for α1 (or β1) and as a preimage of a point C2

for α2 (or β2), and assuming the models both for i = 1 and for i = 2 are minimized and reduced,
then in general C2(K) will have a point that has roughly one half of the height of the smallest
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point on C1(K). The rank of the elliptic curve A given by

y2 + (t4 + t3 + t2 + 1)xy + x3 + (t4 + t3 + t2) = 0

over F2(t) is 1. But even though the coefficients of the Weierstrass equation are small, finding
a point of infinite order on A(K) using a V - and F -descent is very time-consuming. Using a
V 2- and F 2-descent instead, it only takes a few minutes.

6. Heights and infinite descent

Siksek [10] presents an algorithm to compute a Mordell–Weil basis for an elliptic curve over
a number field given the generators of a subgroup of finite index. With minor modifications,
this algorithm can also be applied over global function fields of characteristic 2. All we need
is an estimate of the difference between the naive height h and the canonical height ĥ. Such
an estimate can be achieved by the same means as described in [12]. As a result we get the
following proposition.

Proposition 6.1. Let A be an elliptic curve over a global function field K given by a
Weierstrass equation. Denote the j-invariant of A by j. Then for every P = (x, y) ∈ A(K) the
inequality

h(P )− ĥ(P ) 6 1
12h(j) + C

holds. Here C is a constant that depends only on the poles of the coefficients of a Weierstrass
equation of A. It can be calculated explicitly.

Proof. Silverman’s method for elliptic curves over number fields can also be applied over
global function fields. The term 1

12h(j) is due to the difference of the local height function
and the valuation of the x-coordinate for points on an elliptic curve with integral coefficients.
For the poles of the coefficients of A we have to transform the model. In this way the constant
C comes into existence.

Another way to obtain an upper bound for the difference of the naive and the canonical
height is described in [10] and [5]. Their techniques can also be applied in our situation.

7. S-integral points

Let S be a finite set of valuations of K, and let A be an ordinary elliptic curve given by the
Weierstrass equation

y2 + a1xy + x3 + a2x
2 + a6 = 0,

where the coefficients ai do not have any poles outside of S. We call a point P = (x0, y0) ∈ K2

that satisfies the Weierstrass equation S-integral if and only if x0 hence also y0 do not have
poles outside of S. As shown by Voloch in [17], an ordinary elliptic curve whose j-invariant
is transcendental over the constant field of K has finitely many S-integral points (see also
[2] and [3]). We use Voloch’s methods to compute an upper bound for their naive height.
Combining α1 and β1, we get a homomorphism

µ : A(K)→ K, (x, y) 7→ a6

a2
1x

2
+ ℘

(
a6δx

x

)
.

Here δ is given by δ = d/da6 assuming a6 is not a square in K and ℘(z) = z2 + z. See [17] for
details and proofs. The kernel of µ is 2A(K), hence its image is finite. Given generators for a
subgroup of odd finite index of A(K) (e.g. a Mordell–Weil basis), one can easily compute Imµ
because it is generated by the images.
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Proposition 7.1. Let (x0, y0) ∈ A(K) be an S-integral point, v ∈ S and n ∈ N sufficiently
large. If v(x0) 6 −n, then v(µ(x0, y0)) > n/2 − Cv, where Cv is an explicit constant that
depends only on the Weierstrass equation of A.

Proof. We use the notation v(x0) =: −n, v(y0) =: −m, v(ai) =: −di. Now n is sufficiently
large if 3n > max{d1 +m+n, d2 +2n, d6} holds. In that case we have 2m = 3n. This means y2

0

and x3
0 have the same valuation at v, and the valuation of the other terms is greater. Setting

d := max{2d1, d2, d6/3}, then we have n > d. For c := n − d the valuation of x3
0 and y2

0 at v
is v(x3) = v(y2) = 3d + 3c, but the valuation of the other terms in the Weierstrass equation
is greater than or equal to 3d + 5

2c. When writing the terms as Laurent series in a local

uniformizer π at v, we have that x3
0 and y2

0 are non-zero first at π−(3d+3c) while the others
are zero before π−(3d+5/2c), hence the first 1

2c coefficients of the series of x3
0 and y2

0 are equal.
Consequently for x0 the leading 1

2c coefficients at the odd powers of π are zero. Therefore
we have v(dx/xdπ) > c/2 − 1. Set c2 := v(a6dπ/da6); then v(a6dx/xda6) > c/2 + c2 − 1 =
(n− d)/2 + c2 − 1. The valuations of (a6dx/xda6)2 and a6/a

2
1x

2 are greater than or equal to
(n− d)/2 + c2 − 1, and this proves the statement.

In order to calculate the constants Cv, one only has to compute the valuation of the ai and of
a6dπ/da6 at v. By combining Cv and the valuation of the finitely many elements in Imµ at v,
we get lower bounds for the valuations of the x-coordinate of points on A(K) \ 2A(K) at the
places in S. But the naive height of S-integral points in 2A(K) is also bounded.

Proposition 7.2. Let P = (x0, y0) be an S-integral point in 2A(K). Then h(P ) 6 C.
The constant C only depends on the coefficients of the Weierstrass equation of A and can be
computed explicitly.

Proof. Let Q = (x1, y1) be in A(K) with 2Q = P , and let w be a valuation outside of S.
Due to the addition law, we have x0 = (x4

1 + a2
1a6)/a2

1x
2
1. If w(x1) < 0, then w(x0) is also less

than zero because we have w(ai) > 0. Hence Q is an S-integral point, and we have w(x1) > 0
and w((x4

1 + a2
1a6)/a2

1x
2
1) > 0. Using the triangle inequality, we see that for the valuation of

the numerator of (x4
1 + a2

1a6)/a2
1x

2
1 at w there are two possibilities. Either w(x4

1) 6 w(a2
1a6)

or w(x4
1 + a2

1a6) = w(a2
1a6). Looking at the denominator, the latter implies w(x1) 6 1

2w(a6).
Therefore x1 may have zeros only at finitely many valuations, and those zeros are bounded.
This yields bounds for the naive height of S-integral points in 2A(K).

Remark. If a6 is a square, the same proof can be applied after a minor modification of µ.
Using the results about the Selmer groups, it is possible to compute bounds for the valuations
of the elements in the image of µ without having explicit points on A(K).

8. Examples

In this section we apply our algorithm to different examples. The computations are carried
out by our Magma implementation.

8.1. Example 1

First we consider the elliptic curve A given by

A : y2 + xy + x3 + t12 + t10 + t8 + t5 + t4 + t3 + t2 + t+ 1 = 0

over the rational function field F2(t). We compute the V - and the F -Selmer group. This
takes less than a second. The places of bad reduction are (t2 + t + 1), (t6 + t5 + t3 + t2 + 1)
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and (1/t). Following Proposition 5.1, we see that the Riemann–Roch space L(3(1/t)) contains
representatives for the image of α1. The local image of α1 at (t2 +t+1) and (t6 +t5 +t3 +t2 +1)
is trivial. Hence the elements in the V -Selmer group possess representatives that vanish at
(t2 + t + 1) and (t6 + t5 + t3 + t2 + 1). The cardinality of the local image of α1 at (1/t) is 4.
We compute it by randomly generating sufficiently many points on A defined over F2((1/t)).
Combining the local information proves that the V -Selmer group is generated by the classes
of 1 and t3. The F -Selmer group is generated by the class of t8 + t + 1 and t2 + t + 1. The
non-trivial 2-torsion point on A(2) is a preimage of t8 + t+ 1 under β1. Therefore the rank of
A(F2(t)) is at most 3 and the preimages of 1 and t3 under α1 plus the image of Q under the
Verschiebung, where Q is a preimage of t2 + t + 1, generate a subgroup of finite index. The
preimages of 1 correspond to F2(t)-rational points on the curve of genus 1 given by

y2 + (x2 + xz + z2)y = x4 + xz3 + (t12 + t10 + t8 + t5 + t4 + t3 + t2 + t)z4.

We minimize it, reduce it and transform it into the intersection of two quadrics. This takes
about a minute and yields the model given by the equations

(t+ 1)x2
1 + tx1x2 + (t3 + t+ 1)x1x3 + (t2 + 1)x1x4 + (t2 + t)x2

2 + (t4 + t3 + t)x2x3

+ (t2 + 1)x2x4 + t3x2
3 + (t3 + t)x3x4 + (t2 + t+ 1)x2

4 = 0,

(t3 + t2 + t)x12 + (t3 + t2 + 1)x1x2 + (t3 + 1)x1x3 + (t3 + t2 + t+ 1)x2x3

+ (t3 + t2 + 1)x2x4 + t2x2
3 + (t3 + 1)x3x4 + (t3 + t2 + t)x2

4 = 0.

A sieving algorithm computes the point

(t+ 1, t4 + t2, t2 + 1, 1)

in a few seconds. This point yields the point

(t2 + t+ 1, t6 + t5 + t3 + t+ 1)

on A(F2(t)). In the same manner we calculate(
t9 + t7 + t5 + t4 + t3 + t2 + t

t6 + t4 + 1
,

t15 + t8 + t6 + t5 + t4 + 1

t9 + t8 + t7 + t4 + t3 + t2 + 1

)
,

which is a preimage of t3. Calculating a preimage for t2 + t+ 1 yields the point

(t6 + t5 + t4 + t2 + t+ 1, t12 + t10 + t8 + t6 + t5 + t4 + t3 + t2 + t)

on A(2)(F2(t)). Its image under the Verschiebung is(
t3 + t2 + t

t4 + 1
,
t12 + t11 + t9 + t8 + t2 + t+ 1

t6 + t4 + t2 + 1

)
on A(F2(t)). These points could also be calculated using a V 2- and F 2-descent. We compute
the V 2- and F 2-Selmer groups. The former is generated by the classes of the Witt vectors
(0, t3), (1, t5 +t3), and (t3, t5 +t3 +1), the latter by 1/(t4 +t2 +1) and 1/(t8 +t+1). Calculating
explicit models for the corresponding homogeneous spaces and F2(t)-rational points on them
yields the same points on A(F2(t)). These three points are Z-linearly independent and generate
a subgroup G of finite index of Â(K). Their regulator is 30. The estimate of the difference
between the naive and the canonical height together with a brute force search for small points
shows that there are no points of canonical height less than 7

6 . Hence the index [Â(F2(t)) : G]

https://doi.org/10.1112/S1461157014000175 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000175


12 g. moehlmann

is at most 12. See [10] for more information. A short computation reveals that the index is
equal to 9, and a Mordell–Weil basis is given by(

t9 + t7 + t5 + t4 + t3 + t2 + t

t6 + t4 + 1
,

t15 + t8 + t6 + t5 + t4 + 1

t9 + t8 + t7 + t4 + t3 + t2 + 1

)
,

(t2 + t+ 1, t6 + t5 + t3 + t+ 1), (t3 + t2 + t, t6 + t5 + t2 + 1).

Set S := {(1/t)}. Then the Weierstrass equation for A has coefficients that are S-integral. With
the method mentioned in § 7, it can be seen that 12 is an upper bound for the naive height of an
S-integral point. Iterating over the possible x-coordinates, we compute 20 different S-integral
points. In [6] the authors describe a method to transform a bound for the naive height into a
bound for the absolute value of the coefficients of a representation of an S-integral point as
a linear combination in the Mordell–Weil basis. In our case the bound for the Mordell–Weil
coefficients is 8. Iterating over the possible coefficients yields the same 20 points.

8.2. Example 2

Ulmer [15] constructs the family An of elliptic curves over Fq(t) defined by the Weierstrass
equations

An : y2 + xy = x3 + t2
n+1.

Without constructing any points, he proves that the rank of An(Fq(t)) is greater than or equal
to (2n − 1)/2n. We use our implementation to compute the rank and independent points on
An(Fq(t)) for q = 2 and n = 1, . . . , 5. As a result we get

n = 1 : rank
(
A1(F2(t))

)
= 1

points: (t, 0);

n = 2 : rank
(
A2(F2(t))

)
= 1

points: (t2, t3);

n = 3 : rank
(
A3(F2(t))

)
= 2

points: (t3, 0), (t4, t6 + t5);

n = 4 : rank
(
A4(F2(t))

)
= 2

points: (t6 + t5 + t4 + t2, t9 + t5 + t2), (t8, t12 + t10 + t9);

n = 5 : rank
(
A5(F2(t))

)
= 4

points: (t12 + t9, t18 + t12 + t9), (t11, 0), (t16, t24 + t20 + t18 + t17),(
t22 + t20 + t16 + t15 + t11 + t10 + t6

t8 + t6 + 1
,
t33 + t32 + t31 + t26 + t24 + t23 + t16 + t15 + t12

(t12 + t11 + t10 + t9 + t8 + t6 + t4 + t3 + 1

)
.

For these five curves, the rank of An(F2(t)) is equal to d(2n − 1)/2ne.
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6. J. Gebel, A. Pethő and H. Zimmer, ‘Computing integral points on elliptic curves’, Acta Arith. 68 (1994)
no. 2, 171–192.

7. K. Kramer, ‘Two-descent for elliptic curves in characteristic two’, Trans. Amer. Math. Soc. 232 (1977)
279–295.

8. J. S. Milne, Arithmetic duality theorems, 2nd edn (BookSurge, 2006).
9. S. Shatz, ‘Cohomology of Artinian group schemes over local fields’, Ann. of Math. (2) 79 (1963) no. 3,

411–449.
10. S. Siksek, ‘Descent on curves of genus 1’, PhD Thesis, University of Exeter, 1995.
11. J. H. Silverman, The arithmetic of elliptic curves (Springer, 1986).
12. J. H. Silverman, ‘The difference between the Weil height and the canonical height on elliptic curves’,

Math. Comp. 55 (1990) 723–743.
13. D. Simon, Equations dans les corps de nombres et discriminants minimaux’, PhD Thesis, Université
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