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Abstract

We give an algorithm for removing stackiness from smooth, tame Artin stacks with
abelian stabilisers by repeatedly applying stacky blow-ups. The construction works
over a general base and is functorial with respect to base change and compositions with
gerbes and smooth, stabiliser-preserving maps. As applications, we indicate how the
result can be used for destackifying general Deligne–Mumford stacks in characteristic
0, and to obtain a weak factorisation theorem for such stacks. Over an arbitrary field,
the method can be used to obtain a functorial algorithm for desingularising varieties
with simplicial toric quotient singularities, without assuming the presence of a toroidal
structure.
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D. Bergh

1. Introduction and main theorems

Consider an algebraic stack X which is smooth over a field k. If X has finite inertia, then there

is a canonical map X → Xcs to a coarse (moduli) space. The algebraic space Xcs will, however,

in general not be smooth. Given a morphism f : X ′ → X of stacks with finite inertia, we get an

induced map fcs : X ′cs → Xcs. If f is proper and birational, we call f a stacky modification. Our

goal is to find nice choices of f and X ′ such that the map fcs becomes a desingularisation.

The stacky modifications we will work with are usual blow-ups with smooth centres and root

stacks, where we take roots of smooth divisors. Such modifications will collectively be referred to

as stacky blow-ups with smooth centres, and sequences of such stacky blow-ups will be referred

to as smooth stacky blow-up sequences (see Definition 2.2).

It is useful to think of the process described above as a process to remove stackiness from a

smooth stack. The method described in this paper will produce a roof-shaped diagram

X ′

π

}}

f

  
X ′cs X

where π is the coarse map. The map f is a composition of a sequence of stacky blow-ups and

π is a root stack if we start with an orbifold X and a composition of a gerbe and a root stack

otherwise. We will use the term destackification (see Definition 2.3) for a process producing such

a roof.

In this paper, we will focus on the case when X has diagonalisable stabilisers. This allows

us to attack the problem with toric methods. The combinatorial nature of toric methods makes

them quite insensitive to assumptions on the base we are working over. Hence, we will assume

that the base is an arbitrary scheme rather than a field. In fact, we could just as easily work

over an arbitrary algebraic stack if we used the appropriate relative versions of concepts such as

coarse space and stabilisers, but we will not work in this generality.

Just as in the classical method for desingularisation by Hironaka [Hir64a, Hir64b], divisors

with simple normal crossings will play an important role in the algorithms used in this

paper. Typically, the divisors will be exceptional divisors for the various blow-ups during

the destackification process. Furthermore, the centre of each stacky blow-up will have normal

crossings with the given simple normal crossings divisor. As in Hironaka’s method, it will be

crucial to keep track of the order in which the divisors have been created in order to achieve

functoriality. The main object that we will work with will therefore be a pair (X,E), where X is

a tame, smooth stack and E an ordered set of smooth divisors on X which have simple normal

crossings. For brevity, we will call such a pair a standard pair (see Definition 2.1 for technical

details). The elements of E will be called the components of E.

The first step in the destackification process is to create enough components of the divisor

E to be able to attack the problem with toric methods. We do this by making the pair

(X,E) divisorial (see Definition 7.13). The reader should be warned that the term divisorial

in this context is used in a non-standard way. If X is an orbifold, the pair (X,E) is divisorial

precisely when the stacky locus is contained in the divisor E. An alternative description is

that (X,E) is divisorial when the Gn
m-torsor associated to the divisor E is an algebraic space

(see Remark 7.14).
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Functorial destackification

Theorem 1.1 (Functorial divisorialification). Let (X,E)/S be a standard pair, as defined in
Definition 2.1. If X has diagonalisable stabilisers, then there exists a smooth, ordinary blow-up
sequence

Π: (Xn,En) → · · ·→ (X0,E0) = (X,E)

such that the pair (Xn,En) is divisorial. The construction is functorial (see Definition 2.6) with
respect to arbitrary base change S′ → S and with respect to gerbes and smooth, stabiliser-
preserving morphisms X ′ → X.

In [KKMS73], a combinatorial method for desingularising toroidal varieties is described.
Toroidal varieties naturally occur as coarse spaces of toroidal stacks (see Definition 7.4) and the
methods in [KKMS73] could quite easily be adapted to handle destackification of toroidal stacks.
However, it seems non-trivial to obtain a toroidal structure on a smooth stack with diagonalisable
stabilisers if not given one from the start. Note that toroidality is a much stronger property than
the divisoriality described above and, whereas divisorialification may be reached via the naivest
possible method using just usual blow-ups (see Algorithm C), toroidalification requires the whole
arsenal of stacky blow-ups. In fact, it seems like the easiest way to obtain a toroidal structure is
to simultaneously achieve destackification.

The method described in this paper makes use of two different invariants associated to each
point of the stack. The independency index (see Definition 7.1) measures how far the stack is
from being destackified at the point and the toroidal index (see Definition 7.4) measures how far
the stack is from being toroidal. The destackification process alternates between reducing the
toroidal index and the independency index in a controlled way. A complication is that the locus
where the toroidal index is maximal is not smooth in general, and therefore cannot be blown
up. Instead, other invariants must be used to single out suitable substacks for modification. The
result of the process is summarised in the following theorem, which is the main theorem of the
article.

Theorem 1.2 (Functorial destackification). Let (X,E)/S be a standard pair, as defined in
Definition 2.1, over a quasi-compact scheme S. If X has diagonalisable stabilisers, then there
exists a smooth, stacky blow-up sequence

Π: (Xm,Em) → · · ·→ (X0,E0) = (X,E),

which is a destackification as in Definition 2.3. In particular, the coarse space of Xm is smooth,
and the coarse map can be factored as a gerbe followed by a root stack. The construction is
functorial (see Definition 2.6) with respect to arbitrary base change S′ → S and with respect to
gerbes and smooth, stabiliser-preserving morphisms X ′ → X.

The functorial properties of the algorithm have the pleasant side effect that they guarantee
that the locus U of the stack X which only has generic stackiness will not be modified by the
algorithm. More precisely, each of the stacky blow-ups in the blow-up sequence will have centres
lying above the complement X\U . In particular, the algorithm will not modify the locus where
X is an algebraic space.

Applications
To illustrate how the destackification theorem may be applied, we will study three corollaries.
The proofs given here will be sketchy, since a more detailed account will appear later in a joint
paper with David Rydh.
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The destackification algorithm is useful even if one is not primarily interested in stacks. Let
X be a variety over a field k whose singular points are all simplicial, toric singularities. By this
we mean that each point ξ ∈ X has an étale neighbourhood X ′ → X with X ′ = U/∆ for some
smooth variety U and finite diagonalisable group ∆. In this situation, there exists a canonical
stack Xcan which is smooth and has X as coarse space [Vis89, Sat12]. By applying the functorial
destackification algorithm on Xcan, we obtain a functorial desingularisation algorithm.

Corollary 1.3 (Functorial desingularisation of simplicial toric singularities). Let X be an
algebraic space of finite type over an arbitrary field k. Assume that X has simplicial toric
singularities only. Then there exists a sequence

Π: Xm → · · ·→ X0 = X

of proper birational modifications such that Xm is smooth. The construction is functorial with
respect to change of base field and with respect to smooth morphisms X ′ → X.

Note that no toroidal structure is needed. This makes the corollary more general than the
toroidal methods described in [KKMS73]. On the other hand, the methods described in this
article are somewhat less explicit. It recently came to the author’s knowledge that a similar
result was obtained in the recent preprint [Buo15].

At first sight, the assumption in Theorem 1.2 that the stack X has diagonalisable stabilisers
seems to be quite restrictive. But at least if we work over a field of characteristic 0, this can be
overcome. By first using functorial embedded desingularisation on the stacky locus of X with the
Bierstone–Milman variant of Hironaka’s method [BM97], we reduce to the case where the stacky
locus is contained in a simple normal crossings divisor. But this implies that the stabilisers
are in fact diagonalisable [RY00, Theorem 4.1], so we are in a situation where we can apply
Theorem 1.2.

Corollary 1.4 (Functorial destackification of Deligne–Mumford stacks in characteristic 0).
Let X be a Deligne–Mumford stack which is smooth and of finite type over a field of
characteristic 0. Also assume that X has finite inertia. Then there exists a smooth stacky
blow-up sequence Π, as in the functorial destackification theorem, such that (Xm,Em) has the
same properties as mentioned in that theorem.

Finally, destackification can be used to obtain a stacky version of the weak factorisation
theorem by W lodarczyk [W lo00] for Deligne–Mumford stacks in characteristic 0. The corollary
is obtained by applying W lodarczyk’s result on the algebraic space obtained after destackifying
using Corollary 1.4.

Corollary 1.5 (Weak factorisation of orbifolds in characteristic 0). Consider a proper bira-
tional map f : X 99K Y of orbifolds over a field of characteristic 0. Then there exists a factorisation
of f in stacky blow-ups and blow-downs which is an isomorphism over the non-stacky locus where
f is an isomorphism.

Outline of the paper
Section 2 collects some preliminaries on algebraic stacks and clarifies the terminology used in this
paper. We will also make precise definitions of certain terms, such as functoriality and blow-up
sequence, used in the main theorems. In § 3, we will review some basic facts about toric stacks.
These will be used in § 4, where we describe two algorithms, Algorithms A and B, which prove
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the destackification theorems in the toric case. The algorithms are based on the classical toric
desingularisation algorithm, but have an additional twist in order to make the process functorial.

From § 5 and onwards, we leave the realm of toric stacks and work with more general smooth
stacks with finite diagonalisable stabilisers. First we show that any such stack is locally toric,
which allows us to work with local homogeneous coordinates. Then, in § 6, we introduce an
invariant, which we call the conormal representation. This invariant captures the local structure
of a stack near each point. In characteristic 0, we could have worked with the canonical action of
the stabiliser on the tangent space at each point, but, in positive characteristic, the tangent space
is not well behaved. Instead, we work with the conormal bundle of the residual gerbe. We will
also study a framework for constructing special purpose invariants, called conormal invariants,
based on the conormal representation. Simple, well-known examples of such invariants are the
order of the stabiliser and the multiplicity of the toric singularity of the corresponding point in
the coarse space.

In § 7, we give an outline of the general destackification algorithms and introduce all conormal
invariants used by these algorithms. Finally, in § 8, we go through the actual destackification
algorithms and prove their correctness.

The paper also includes three appendices, collecting results of more general interest. In
Appendix A, we prove a structure theorem for smooth, tame stacks in the spirit of the general
structure theorem given in [AOV08]. We will also simplify parts of the proof of the general
structure theorem given in [AOV08]. In Appendix B, we compute the cotangent complex of
a basic toric stack and, in Appendix C, we give an alternative interpretation of the conormal
representation in terms of the cotangent complex.

2. Stacky blow-up sequences and functoriality

2.1 Preliminaries and basic terminology
The cyclic (abstract) group of order n will be denoted by Cn.

We will use the definitions of algebraic stack and algebraic space used in the Stacks
project [Sta17]. By a sheaf, we mean a sheaf on the site of schemes with coverings given by
faithfully flat morphisms which are locally of finite presentation, i.e., the fppf topology. By a
stack, we mean a stack in groupoids over the same site. An atlas for a stack X is a 1-morphism
f : U → X, where U and f are representable by algebraic spaces and f is faithfully flat and
locally of finite presentation. If the morphism f is smooth, we call it a smooth atlas. A stack is
algebraic if it admits an atlas, and it is a theorem that every algebraic stack admits a smooth
atlas.

Let X be an algebraic stack. A morphism π : X → Xcs is called a coarse space if it is initial
among morphisms to algebraic spaces and the induced map |π| : |X|→ |Xcs| between topological
spaces is a homeomorphism. Usually, this is called a coarse moduli space, but we drop the word
moduli since we are discussing algebraic stacks without having any specific moduli problem in
mind. Due to a classical theorem by Keel and Mori [KM97] with generalisations by Rydh [Ryd13],
an algebraic stack X has a coarse space if its inertia stack is finite over X.

Let X be an algebraic stack which is quasi-separated and locally of finite presentation over
a base scheme S. Following Abramovich et al. [AOV08], we say that X is tame if it has finite
inertia and linearly reductive stabilisers. This property is reviewed in Appendix A. We will be
particularly interested in the case when X has diagonalisable stabilisers. We will use the term
orbifold, in the relative sense, for a tame stack X → S which is smooth over the base scheme,
and which has fibrewise generically trivial stabilisers.
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We recall the definition of a simple normal crossings divisor on a regular scheme X. Let
E = E1 + · · · + Er be an effective Cartier divisor on X. Given a point ξ ∈ X, we consider the
stalk OX,ξ with maximal ideal mξ. Each divisor Ei defines a regular element f iξ ∈ OX,ξ which is
well defined up to multiplication by a unit. We say that E is a simple normal crossings divisor
if it can be written as a sum E = E1 + · · · + Er of Cartier divisors such that at each point
ξ ∈ X, the subsequence of regular parameters f iξ satisfying f iξ ∈ mξ extends to a regular system

of parameters (t1ξ , . . . , t
n
ξ ). A closed subscheme Z of X is said to have simple normal crossings

with E if at each point ξ ∈ X, the system (t1ξ , . . . , t
n
ξ ) described above can be chosen such that

the ideal corresponding to Z in OX,ξ is generated by a subsequence of (t1ξ , . . . , t
n
ξ ).

The definitions above generalise directly to stacks. Let X be a regular algebraic stack with a
smooth atlas π : U → X. An effective Cartier divisor E is a simple normal crossings divisor if E
can be written as a sum E1 + · · ·+Er of regular divisors and the pull-back EU to U is a simple
normal crossings divisor. Similarly, a closed substack Z has simple normal crossings with E if
the same holds for ZU with respect to EU .

We will also consider the relative version of the definitions above. Let X → S be a smooth
stack over a scheme and let E = E1 + · · · + Er be an effective Cartier divisor on X, with each
Ei smooth over S. Note that E is a relative effective Cartier divisor in the sense of [EGAIV,
§ 21.15]. We say that E is a (relative) simple normal crossings divisor if Eξ is a simple normal
crossings divisor on the fibre Xξ for each geometric point ξ : Spec k̄ → S. Similarly, we define
what is meant for a substack Z ⊂ X which is smooth over S to have simple normal crossings
with E.

Definition 2.1. Let S be a scheme and consider a pair (X,E)/S, where:

(i) X is a tame algebraic stack which is smooth and of finite presentation over S;

(ii) E = (E1, . . . , Er) is an ordered set of distinct, effective Cartier divisors on X, called the
components of E. Each component Ei is required to be smooth over S and their sum
E =

∑
Ei is required to be a simple normal crossings divisor.

We call such a pair (X,E)/S a standard pair.

Note that the term component in this context does not refer to connected component ; the
components of E, as in the definition above, may well be empty or disconnected.

When referring to the ordering of the components of an ordered simple normal crossings divi-
sor, we will use an age metaphor. The components of such a divisor form a sequence E1, . . . , Er.
The indices may be thought of as birth dates of the components, and we say that Ei is older
than Ej , and that Ej is younger than Ei, provided that i < j.

2.2 Stacky blow-up sequences
Let S be a scheme and let (X,E)/S be a standard pair. By a smooth blow-up of (X,E)/S, we
mean a blow-up π : BlZX → X in a centre Z which is smooth over S and has simple normal
crossings with E. The transform of (X,E)/S along π is the pair (BlZX,E

′), where E′ denotes
the ordered set of the strict transforms of the components of E followed by the exceptional
divisor. In other words, the ordering of the components E′ is the one induced by the ordering
on E with the exceptional divisor added as the youngest divisor.

The root construction of a stack in an effective Cartier divisor is thoroughly described in
for instance [AGV08, Cad07] and [FMN10, § 1.3.b]. Let (X,E)/S be a standard pair. We will
only consider root stacks with roots taken of components of E. Such a root stack will be called
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a smooth root stack. If Ei ∈ E, we use the notation Xd−1Ei → X for the dth root of Ei. If d

is a sequence of positive integers indexed by the elements of E, then Xd−1E → X denotes the

fibre product of the stacks Xd−1
i Ei over X for all Ei ∈ E with di as corresponding element in d.

The sum of the components of E for which the corresponding index in d is larger than one is

called the centre of the root stack. If E′ is a subsequence of E and d is a sequence of positive

integers indexed by E′, then we sometimes use the notation Xd−1E′ → X for the root stack

obtained by extending d to E by ones. The transform of a pair (X,E)/S along a smooth root

stack π : Xd−1E → X is the pair (Xd−1E , π
−1E). Here π−1E denotes the sequence (d−1

i π∗Ei) of

roots of the components Ei of E.

A smooth stacky blow-up is either a smooth root stack or a smooth blow-up. Note that the

transform of a standard pair along a smooth stacky blow-up is again a standard pair.

Definition 2.2. Let (X0,E0)/S be a standard pair. A smooth, stacky blow-up sequence of

(X0,E0)/S of length n is a sequence

Π: (Xn,En)
πn−→ · · · π1−→ (X0,E0),

where each πi, for 1 6 i 6 n, is a smooth stacky blow-up in a centre Zi−1 and each (Xi,Ei) is

the transform of (Xi−1,Ei−1) along πi. The centres Zi for 0 6 i 6 n − 1, although suppressed

from the notation, are considered part of the structure. We require each Zi to have positive

codimension in Xi at each of its points. If all stacky blow-ups are in fact usual blow-ups, we call

Π a smooth, ordinary blow-up sequence.

Since all blow-up sequences we consider in this article will be smooth, stacky blow-up

sequences, we will usually drop the modifiers smooth and stacky and just say blow-up sequence.

Definition 2.3. Let (X0,E0)/S be a standard pair and let

Π: (Y,F ) = (Xn,En)
πn−→ · · · π1−→ (X0,E0)

be a smooth, stacky blow-up sequence on (X0,E0)/S. Let π : Y → Ycs be the coarse space. We

call Π a destackification if the following conditions hold.

(i) The space Ycs is smooth over S.

(ii) Each component of F cs = (F ics | F i ∈ F ) is smooth and
∑

i F
i has simple normal crossings.

(iii) The divisor F is a dth root of the pull-back π∗F cs for some sequence d of positive integers

indexed by the components of F .

(iv) The canonical factorisation Y → (Ycs)d−1F cs
→ Ycs through the root stack makes Y a gerbe

over (Ycs)d−1F cs
. In particular, if X0 is an orbifold, then Y → (Ycs)d−1F cs

is an isomorphism.

The conditions (i) and (ii) can be summarised by saying that the pair (Ycs,F cs)/S is a

standard pair.

A stacky blow-up is said to be empty if the centre is empty. Although the algorithms

used in the constructions mentioned in the main theorems will never produce blow-up

sequences containing empty blow-ups, such may occur after pulling back blow-up sequences

along morphisms which are not surjective. We will consider such pull-backs when discussing
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functoriality below. We regard two blow-up sequences Π and Π′ to be equivalent if, after pruning
them from empty blow-ups, they fit into a 2-commutative ladder

Π: (Xn,En) //

��

· · · // (X0,E0)

��
Π′ : (X ′n,E

′
n) // · · · // (X ′0,E

′
0)

such that the vertical morphisms are isomorphisms preserving the centres.

2.3 Gerbes
Given a stack X, we denote by X → Xsh the canonical morphism to the coarse sheaf. This is,
by definition, a morphism which is initial among morphisms to sheaves in the fppf topology. An
algebraic stack X is called a gerbe if its associated coarse sheaf is an algebraic space. In this
case, the morphism π : X → Xsh is called the structure morphism of the gerbe. There is also a
relative notion of gerbe. A morphism π : X → Y of algebraic stacks is called a gerbe if the base
change X ′ → Y ′ of π along any morphism Y ′ → Y , with Y ′ an algebraic space, is the structure
morphism of a gerbe in the sense described above.

This definition is standard and coincides with the one given in, for instance, the Stacks
project [Sta17]. It is related to the definition given by Giraud [Gir71, Definition 2.1.1] in the
following way. A stack Y has a canonical structure of a site induced by the fppf topology on the
site of schemes. A morphism π : X → Y of algebraic stacks is a gerbe in our sense if and only if
X is a gerbe in the sense of Giraud when viewed as a stack in groupoids over the site Y .

Note that in the context of algebraic stacks, the terminology for gerbes sometimes conflicts
with algebrogeometric notions. For instance, the structure morphism π : X → Y of a gerbe in
our sense is always smooth (see Proposition A.2). In particular, the morphism π always admits a
section étale locally on Y . This does, however, not imply that X is a gerbe as a stack in groupoids
over Y considered as a site endowed with the smooth or étale topology. This is a potential source
of confusion as it makes terms such as smooth gerbe ambiguous. In this article, we try to avoid
the confusion by consistently working with the fppf topology.

2.4 Stabiliser-preserving maps
We recall the definition and some basic facts about stabiliser-preserving 1-morphisms of stacks.
Let f : X → Y be a 1-morphism of stacks. Given a generalised point ξ : T → X, where T is
a scheme, we get an induced map of stabilisers StabξX → Stabf◦ξY over T . The map f also
induces a pair of 2-commutative diagrams

IX //

��

IY

��

X
f //

��

Y

��
X

f
// Y Xsh

// Ysh

Here IX → X denotes the inertia stack of X, and the map X → Xsh is the coarse sheaf of X
(as defined in the previous section).

Definition 2.4. The 1-morphism f : X → Y is called stabiliser-preserving if any of the following
conditions, which are easily seen to be equivalent, hold.

(i) The map StabξX → Stabf◦ξY is an isomorphism for any generalised point ξ.
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(ii) The left 2-commutative square above is 2-cartesian.

(iii) The right 2-commutative square above is 2-cartesian.

If the first condition holds for all geometric points, we say that f is point-wise stabiliser-
preserving.

In particular, monomorphisms between stacks are stabiliser-preserving. Note that the notions
of stabiliser-preserving and point-wise stabiliser-preserving maps are distinct. Both properties
are preserved under composition and arbitrary base change. They are also local on the base in
the fppf topology.

Example 2.5. Let k be a field and let X = Spec k[ε] be the spectrum of the dual numbers over k.
Furthermore, let the group µ2 act on X by giving ε degree 1. Then we get a map [X/µ2] → Bµ2

from the quotient stack to the classifying stack of µ2, which is point-wise stabiliser-preserving,
but not stabiliser-preserving.

A useful fact is that if f : X → Y is an étale map between algebraic stacks with finite
inertia, then the locus where f is point-wise stabiliser-preserving is open in X, and f is
stabiliser-preserving over this locus [Ryd11, Proposition 6.5]. In fact, if the stacks are tame,
the corresponding fact for smooth morphisms is also true, but we will not use this here.

2.5 Functoriality
We consider two basic situations when a smooth stacky blow-up sequence can be transferred
from one standard pair to another. Fix a standard pair (X,E)/S.

The first situation is when we change base scheme. Given a morphism S′ → S, we can form
the pull-backs XS′ = X ×S S′ and ES′ = E×S S′. Then the pair (XS′ ,ES′)/S

′ is also standard,
and any smooth stacky blow-up sequence on (X,E)/S pulls back to a smooth stacky blow-up
sequence on (XS′ ,ES′)/S

′.
The second situation is when we have a morphism of stacks X ′ → X which is smooth. Then

we can form the pull-back E′ = E ×X X ′, and we get a standard pair (X ′,E′)/S. Again, any
smooth stacky blow-up sequence on (X,E)/S pulls back to a smooth stacky blow-up sequence
on (X ′,E′)/S.

Definition 2.6. Let (X,E)/S be a standard pair. We say that a construction of a blow-up
sequence is functorial with respect to base change S′ → S if the blow-up sequence obtained
by applying the construction to (XS′ ,ES′)/S

′ is equivalent (see § 2.2) to the pull-back of the
blow-up sequence obtained by applying the construction to (X,E)/S as described in the first
situation above.

We say that a construction of a blow-up sequence is functorial with respect to a morphism
X ′ → X if the blow-up sequence obtained by applying the construction to (X ′,E′)/S is
equivalent to the pull-back of the blow-up sequence obtained by applying the construction
to (X,E)/S as described in the second situation above. In order for this to make sense, the
morphism X ′ → X must be smooth.

The constructions in the main theorems are functorial with respect to arbitrary base change
S′ → S and with respect to morphisms X ′ →X which are either gerbes or smooth and stabiliser-
preserving. It is, however, not reasonable to expect the construction to be functorial with respect
to any smooth morphism. Indeed, if X ′ → X is a smooth atlas, any reasonable destackification
of X ′ must be trivial, whereas a destackification of X cannot be trivial in general.
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2.6 Distinguished structure
We do not want our algorithms to modify the locus lying over the smooth locus of the coarse
space of the original stack. This poses a problem when it comes to root stacks, since they always
modify the entire divisor of which the root is taken. Thus, we would like to keep track of divisors
which we are allowed to root. We do this by marking certain divisors as distinguished.

Definition 2.7. Let (X,E)/S be a standard pair, and let D ⊂ E be a subset such that all
divisors in D are younger than the divisors in the complement E\D. We say that (X,E,D)/S
is a standard pair with distinguished structure, and call the components of E lying in D
distinguished. A smooth stacky blow-up of (X,E,D)/S is simply a smooth stacky blow-up of the
underlying standard pair (X,E)/S. Such a blow-up is called admissible if its centre is contained
in the support of the divisors in D.

The transform (X ′,E′)/S of an admissible stacky blow-up of a standard pair with
distinguished structure (X,E,D)/S again has a distinguished structure D′ ⊂ E′. It consists
of the strict transforms of all distinguished divisors along with the exceptional divisor.

3. Smooth toric stacks

The theory of toric stacks has been treated by several authors. We mention a few. Borisov
et al. [BCS05] gave a basic definition of smooth toric Deligne–Mumford stacks via the
Cox construction. Iwanari gave a moduli interpretation of toric stacks using logarithmic
geometry [Iwa09b]. He also gave a structure theorem, characterising toric orbifolds over a field
of characteristic 0 in terms of stacks with torus actions [Iwa09a]. A similar result was obtained
independently by Fantechi et al. [FMN10], using a bottom-up construction. Geraschenko and
Satriano [GS15a, GS15b] extended the theory to non-smooth stacks and stacks with positive-
dimensional stabilisers and unified the theory with other notions of toric stacks.

In this section, we summarise some basic results from the theory of toric stacks. Since there
are several different suggestions on what a toric stack should be in the literature, we give the
following comparison.

(i) For the definition of toric stack, we follow [BCS05]. The same definition is used
in [Iwa09b], [Iwa09a] and [FMN10]. In the language of [GS15a, GS15b], this is equivalent to
a non-strict, smooth, separated toric stack.

(ii) We use the term toric orbifold for a toric stack which is also an orbifold. That is, a toric
stack with trivial generic stabilisers.

(iii) For the definition of a stacky fan, we basically follow [BCS05, § 3]. However, since we
only need to consider stacky fans which give rise to toric orbifolds, we only consider such fans.
We call such fans orbifold fans.

(iv) We work with toric stacks over an arbitrary base scheme S. Some of the references restrict
the discussion to the situation when S is a field, but at least for our needs considering general S
comes with no extra complications.

(v) Note that this definition of stacky fan used here is essentially different to the one given
in [GS15a, Definition 2.4]. The definition given in [GS15a, Definition 2.4] is less suitable for our
needs, since it makes the relation between the fan and the coarse space of the toric stack less
explicit.

Whenever it applies, we try to follow the notation and terminology for classical toric varieties
from [CLS11] as closely as possible.
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3.1 Basic toric stacks
First we introduce basic toric stacks. They play a similar role in the theory of toric stacks as
affine toric varieties in the theory of toric varieties. Toric stacks in general are obtained by gluing
basic toric stacks together along toric morphisms in the Zariski topology. Note that the term
basic toric stack is non-standard.

Fix a scheme S. Consider a finitely generated abelian groupA and anA-graded quasi-coherent
sheaf of OS-algebras R. The A-grading on R corresponds to an action of the Cartier dual A∨

(over S) on the relative spectrum SpecOSR. We get an algebraic stack associated to the pair
(R, A) by taking the stack quotient [SpecOSR/A

∨].
Let (R′, A′) be another pair as above. A graded homomorphism (f, ϕ) : (R, A) → (R′, A′)

is a pair where ϕ : A → A′ is a group homomorphism and f : R → R′ a morphism of sheaves
of OS-algebras. The morphism f is required to take homogeneous sections of degree a ∈ A
to homogeneous sections of degree ϕ(a). Such a graded homomorphism induces a morphism
[SpecOSR

′/A′∨] → [SpecOSR/A
∨] of quotient stacks.

Definition 3.1. An algebraic stack X associated to a pair (R, A), as described above, is called
a basic toric stack provided that the following conditions hold.

(a) The sheaf of rings R is of the form OS [x1, . . . , xr][x
−1
s+1, . . . , x

−1
r ] for some r and s such that

0 6 s 6 r.

(b) Each coordinate function xi, with 1 6 i 6 r, is homogeneous of degree ai ∈ A.

(c) The quotient group A/〈as+1, . . . , ar〉 is finite.

The triple (R, A,a), where a = (a1, . . . , ar), is called a homogeneous coordinate ring for
X. The closed substacks of the form Ei = V (xi), for 1 6 i 6 s, are called the toric divisors
of X. A morphism of basic toric stacks is called toric provided that it comes from a morphism
(R, A) → (R′, A′) such that the underlying OS-algebra homomorphismR→R′ takes monomials
to monomials. A basic toric stack admitting a homogeneous coordinate ring with s = r is said
to be without torus factors.

It should be noted that the homogeneous coordinate ring does not determine the isomorphism
class of the basic toric stack uniquely.

Proposition 3.2. Let X be a basic toric stack with homogeneous coordinate ring (R, A,a) with

R = OS [x1, . . . , xr][x
−1
s+1, . . . , x

−1
r ].

Let K be the subgroup 〈as+1, . . . , ar〉 and define r′ as r minus the rank of K. Consider the
A/K-graded sheaf of OS-algebras

R′ = OS [x1, . . . , xr′ ][x
−1
s+1, . . . , x

−1
r′ ]

with the grading given by the weight vector a = (a1, . . . , ar′), where ai denotes the image of ai
in A/K. Then the basic toric stack associated to the triple (R′, A/K,a) is isomorphic to X.

Proof. The proposition is trivial if all of the weights as+1, . . . , ar are zero. Hence, we assume
that one of these weights, which we without loss of generality may assume is ar, is non-zero.
By induction, it is enough to prove that the stack X is isomorphic to the stack associated to
(R′, A/K,a) with K = 〈ar〉 and R′, r′ and a being as in the statement of the proposition.
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Assume that ar has infinite order. Then it is straightforward to verify that the graded
homomorphism R→ R′ defined by

xi 7→
{

1 if i = r,

xi otherwise

induces an isomorphism of stacks.
Now assume that ar has finite order m. By a simple group theoretical argument, we may

find an element a′r ∈ A such that ar = na′r for some positive integer n and A splits as A0⊕ 〈a′r〉.
Consider the surjective homomorphism A′ = A0 ⊕Z → A taking (a, 1) to a+ a′r. We endow the
sheaf of rings R[t, t−1] with an A-grading, with |xr| = (1, n), |t| = (1, nm) and |xi| are arbitrary
lifts of ai to A′ for i ∈ {1, . . . , r−1}. Then the graded ring homomorphism (R[t, t−1], A′) → (R, A)
taking xi to xi for i = 1, . . . , r and t to 1 induces an isomorphism of stacks, since the order of
|t| is infinite. But the graded homomorphism (R[t, t−1], A′) → (R′, A/K) taking xi to xi for
i = 1, . . . , r−1, xr to 1 and t to xr also induces an isomorphism, since also |xr| has infinite order
in (R[t, t−1], A′). This concludes the proof. 2

Remark 3.3. Let X be an algebraic stack associated to a homogeneous coordinate ring (R, A)
satisfying (a) and (b) from Definition 3.1, but not necessarily (c). Then X has finite stabilisers
if and only if also (c) is satisfied. This follows easily from Proposition 3.2, which holds also if
condition (c) is omitted.

Remark 3.4. Another consequence of Proposition 3.2 is that we always may choose homogeneous
coordinates for our basic toric stacks such that the weights of the invertible coordinate functions
are zero. This shows that a basic toric stack always is a product of a basic toric stack without
torus factors and a torus.

Remark 3.5. From Proposition 3.2, it is also easy to determine when a basic toric stack is an
orbifold. Let (R, A,a = (a1, . . . , ar)) be homogeneous coordinates for a basic toric stack X and
let E be the support of the toric divisors in X. Let Arig be the subgroup of A generated by the
weights a1, . . . , ar. Then X\E is a product of a torus and the classifying stack B(A/Arig)∨. In
particular, the basic toric stack X is an orbifold if and only if the weights a1, . . . , ar generate A.

Note that there is a canonical graded homomorphism (R, Arig,a) → (R, A,a) induced by
the inclusion Arig ↪→ A. This corresponds to the rigidification ρ : X → Xrig of X (cf. [AOV08,
Appendix A]). Here ρ is a gerbe banded by (A/Arig)∨ and Xrig is a basic toric orbifold.

Remark 3.6. Let X be a basic toric stack with homogeneous coordinates (R, A,a), and let
(R0, 0,0) denote the weight-zero part of R together with the trivial grading by the trivial group.
We have an obvious graded homomorphism (R0, 0,0) → (R, A,a) induced by inclusion. This
corresponds to the coarse space π : X → Xcs of X. Note that according to our convention that
toric stacks be smooth, the space Xcs is not a toric stack in general. It is, however, an affine toric
variety (over S).

Remark 3.7. If we order the coordinate functions, then the set E of toric divisors on a basic toric
stack X inherits an ordering, and we get a standard pair (X,E). Indeed, this kind of standard
pair is prototypical and, in § 5, we will see that any standard pair with diagonalisable stabilisers
is locally a basic toric stack.
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3.2 Toric orbifolds
As with toric varieties, the gluing together of basic toric stacks can be described combinatorially.
We review the parts of the theory we need in this article, restricting the discussion to toric
orbifolds with no torus factors.

Let N be a lattice of rank n, and consider it as a subset of the vector space NR := N ⊗Z R.
By a cone σ in NR, we will always mean a polyhedral, rational and strictly convex cone. We
write τ � σ if τ is a face of σ. By σ(1), we mean the set of one-dimensional faces, also called
the extremal rays, of σ. Recall that σ is called simplicial if the cardinality of σ(1) equals the
dimension of the subspace of NR spanned by σ(1).

Given a fan Σ in NR, we denote the set of rays, that is, the set of one-dimensional cones, in
Σ by Σ(1). A fan is simplicial if all its cones are. We will frequently consider the free abelian
group ZΣ(1) on the set of rays in a fan Σ. An element c1ρ1 + · · ·+ crρr ∈ ZΣ(1), with ci ∈ Z and
ρi ∈ Σ(1), is called effective if all coefficients ci are greater than or equal to zero.

Definition 3.8. An orbifold fan is a triple Σ = (N,Σ, β), where N is a finitely generated free
abelian group, Σ is a simplicial fan in NR such that |Σ| spans NR and β : ZΣ(1)

→ N is a group
homomorphism taking each generator ρ ∈ ZΣ(1) to a non-zero lattice point on the ray ρ.

Given an orbifold fan Σ = (N,Σ, β), we construct a toric orbifold via the Cox construction.
Denote the dual HomZ(N,Z) by M . Then the Cartier dual of M over S is an n-dimensional torus,
which we denote by TN . Its cocharacter and character groups may be canonically identified
with N and M , respectively. The morphism β induces a homomorphism of algebraic groups
TZΣ(1) → TN , which fits into an exact sequence

1 → ∆(Σ) → TZΣ(1) → TN → 1,

where the exactness at the term TN is ensured by the fact that |Σ| spans NR. Now consider the
lattice ZΣ(1) and the corresponding space RΣ(1). Given a cone σ ∈ Σ, we have a corresponding
cone σ̃ in RΣ(1) spanned by the rays ρ ∈ σ(1) viewed as generators in RΣ(1). Collectively, the
cones σ̃, for σ ∈ Σ, form a fan Σ̃ in RΣ(1). Denote the corresponding toric variety, or rather
family of toric varieties over S, by X

Σ̃
.

We give an explicit description of the family X
Σ̃

of varieties. The total coordinate ring
associated to Σ is the sheaf of rings R = OS [xρ | ρ ∈ Σ(1)]. The irrelevant ideal is the ideal
sheaf

B(Σ) = 〈xσ̂ | σ ∈ Σ〉,

where xσ̂ denotes the product of all elements xρ with ρ 6∈ σ(1). Let AΣ(1)
S = SpecOSR be the

relative spectrum and Z(Σ) be the closed subscheme associated to the irrelevant ideal B(Σ). The

scheme X
Σ̃

is simply AΣ(1)
S \Z(Σ). Note that the torus TZΣ(1) is embedded in X

Σ̃
in a natural

way, and the action of ∆(Σ) on TZΣ(1) extends to X
Σ̃

.

Definition 3.9 (The Cox construction). Let Σ = (N,Σ, β) be an orbifold fan, and consider the
group ∆(Σ) acting on the scheme X

Σ̃
over the base scheme S as defined above. The toric orbifold

XΣ associated to Σ is defined as the stack quotient [X
Σ̃
/∆(Σ)].

Just like in the case with usual toric varieties, there is an order-reversing correspondence
between cones in Σ = (N,Σ, β) and orbit closures in XΣ. Given a cone σ ∈ Σ, we have a closed
variety V (〈xρ, ρ ∈ σ(1)〉) in X

Σ̃
. Since this closed variety is ∆(Σ)-invariant, it descends to a
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closed substack V (σ) of XΣ. In the particular case when we have a ray ρ ∈ Σ(1), the substack
V (ρ) ⊂ XΣ is a prime divisor, and we denote it by Dρ. The divisor Dρ is a smooth Cartier
divisor. More generally, if ψ = c1ρ1 + · · · + crρr is an element of ZΣ(1), we let Dψ denote the
divisor c1Dρ1 + · · · + crDρr . Such a divisor is called a toric divisor, and is a simple normal
crossings divisor.

3.3 Morphisms of toric orbifolds
Next we describe morphisms of orbifold fans and toric orbifolds. Our definition is different from,
but equivalent to, the one given by Iwanari in [Iwa09a].

Recall that a morphism of fans f : (N,Σ) → (N ′,Σ′) is a group homomorphism f : N → N ′

such that the induced map fR = f ⊗ZR maps each cone σ ∈ Σ into a cone σ′ ∈ Σ′. This extends
to orbifold fans as follows.

Definition 3.10. Consider the orbifold fans Σ = (N,Σ, β) and Σ′ = (N ′,Σ′, β′). A morphism
Σ → Σ′ of orbifold fans is a pair (f, f̂) of group homomorphisms fitting into a commutative
square

ZΣ(1) f̂ //

β
��

ZΣ′(1)

β′

��
N

f
// N ′

such that both f : (N,Σ) → (N ′,Σ′) and f̂ : (ZΣ(1), Σ̃) → (ZΣ′(1), Σ̃′) are morphisms of fans.
Since f̂ is uniquely determined by f , we often omit f̂ from the notation, and simply say that
f : Σ → Σ′ is a morphism of orbifold fans.

It is easy to see that a morphism f : Σ → Σ′ of orbifold fans induces a corresponding
equivariant morphism of pairs (X

Σ̃
,∆(Σ)) → (X

Σ̃′ ,∆(Σ′)), which, in turn, induces a 1-morphism
XΣ → XΣ′ of toric orbifolds. This gives a functor from the category of orbifold fans to the
category of orbifolds over a base scheme S, and we call its essential image the category of toric
orbifolds (without torus factors).

The simplest example of a toric morphism is that of toric open immersions, which correspond
to subfans of stacky fans. Let Σ = (N,Σ, β) be an orbifold fan. A subfan Σ′ ⊂ Σ is a triple
Σ′ = (N,Σ′, β′), where Σ′ ⊂ Σ is a subset, which is a fan in its own right, and β′ is the restriction
of β to ZΣ′(1). The canonical map Σ′ → Σ, which is the identity on N , corresponds to an open
immersion XΣ′ → XΣ. We say that XΣ′ is a toric open substack of XΣ. The toric substacks
corresponding to orbifold fans with a single maximal cone σ ∈ Σ are of particular importance.
We denote the corresponding substack, which is a basic toric orbifold, by Uσ.

Remark 3.11. Let Σ = (N,Σ, β) be an orbifold fan. Then the coarse space of the toric orbifoldXΣ

coincides with the toric variety XΣ associated to the fan Σ. The association (N,Σ, β) 7→ (N,Σ)
extends to a functor from the category of orbifold fans to the category of usual fans, and this
functor corresponds to the functor taking a toric orbifold to its coarse space.

Remark 3.12. Let Σ be a simplicial fan on a lattice N . Then there is a canonical function
βcan : ZΣ(1)

→ N taking ρ ∈ Σ(1) to the non-zero lattice point uρ on ρ which is closest to the
origin. The orbifold Xcan associated to the orbifold fan (N,Σ, βcan) is the canonical stack of the
toric variety X = XΣ. Similarly as in the previous remark, the association (N,Σ) 7→ (N,Σ, βcan)
extends to a functor.
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3.4 Toric stacky blow-ups
For smooth toric varieties, blow-ups at orbit closures correspond to star subdivisions. This
generalises to toric orbifolds (see [EM12]). We recall the definition here.

Definition 3.13. Let Σ = (N,Σ, β) be an orbifold fan. Let σ be a cone in Σ and let v =∑
ρ∈σ(1) β(ρ). Denote the ray generated by v by ρ0. We define the star subdivision of the orbifold

fan Σ along σ as Σ∗(σ) = (N,Σ∗(v), β′). Here Σ∗(v) denotes the subdivision of the fan Σ obtained
by adding the ray ρ0 and subdividing each cone containing it, as described in [CLS11, § 11.1].
The function β′ is the extension of β to ZΣ∗(v) taking the ray ρ0 to v. There is a canonical map
Σ∗(σ) → Σ, which is the identity on N . The ray ρ0 is called the exceptional ray of the star
subdivision.

If XΣ is the toric orbifold corresponding to the orbifold fan Σ, and σ is a cone in Σ, then the
map XΣ∗(σ) → XΣ corresponding to the star subdivision is the blow-up of XΣ with centre V (σ).
The divisor Dρ0 on XΣ∗(σ) corresponding to the exceptional ray ρ0 is the exceptional divisor of
the blow-up.

Definition 3.14. Let Σ = (N,Σ, β) be an orbifold fan and ρ = {ρ1, . . . , ρr} ⊂ Σ(1) a set of
rays. For each ρi ∈ ρ, we assign a weight di, which is a positive integer. Denote the function
taking each ray to its weight by d. Consider the group homomorphism β′ : ZΣ(1)

→ N defined
by

β′(ρ) =

{
d(ρ)β(ρ) if ρ ∈ ρ,
β(ρ) otherwise.

We denote the orbifold fan given by the triple (N,Σ, β′) by Σd−1ρ. The natural morphism
Σd−1ρ → Σ of orbifold fans, which is the identity map on the underlying group N , is called the
root construction of Σ with respect to the rays in ρ with weights d.

The terminology in the definition above is, of course, motivated by its relation to the root
stack of the corresponding toric stacks. Using the same notation as in the definition above, we
let π : X ′ → X be the morphism of toric orbifolds associated to the root fan Σd−1ρ → Σ. On
both X and X ′ we have toric divisors corresponding to the rays ρ1, . . . , ρr. Denote the sets of
such divisors by D = {D1, . . . , Dr} and D′ = {D′1, . . . , D′r}, respectively. Then each divisor D′i
is a dith root of π∗Di, and this structure identifies X ′ → X with the root stack Xd−1D → X,
where we consider d as a function on D in the obvious way.

In terms of homogeneous coordinates, the root stack of a basic toric stack has the following
description. Let X be a basic toric stack with homogeneous coordinates (OS [x1, . . . , xr], A,a).
Assume that D is a set of toric divisors corresponding to the coordinates x1, . . . , xs for some
s 6 r. Denote the generators of the group Zs by e1, . . . , es and define the group

Ad−1a = A⊕ Zs/〈d1e1 − a1, . . . , dses − as〉,

which we think of as the group obtained from A by formally adjoining the roots ei = ai/di. Also,
let a′ = (e1, . . . , es, as+1, . . . , ar). Then the homogeneous coordinates of Xd−1D are given by

(OS [x
1/d1

1 , . . . , x1/ds
s , xs+1, . . . , xr], Ad−1a,a

′)

and the map Xd−1D → X corresponds to the map of graded rings taking xi to xi = (x
1/di
i )di .
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Remark 3.15. Any toric stack X = XΣ can be built up from the corresponding toric variety
Xcs = XΣ as follows. There are canonical morphisms

X → Xrig → Xcan → Xcs,

where the first is a gerbe (the rigidification of X), the second is a root stack and the third is the
canonical stack associated to XΣ. We describe this in terms of basic toric stacks. Let X be a basic
toric stack with homogeneous coordinates (OS [x1, . . . , xr], A, (a1, . . . , ar)). Then its rigidification
Xrig is a basic toric orbifold with homogeneous coordinates (OS [x1, . . . , xr], Arig, (a1, . . . , ar)),
with Arig = 〈a1, . . . , ar〉 (see Remark 3.5).

For each i = 1, . . . , r, we define Ai = Arig/〈a1, . . . , âi, . . . , ar〉, where âi indicates that the
element ai is omitted. Then we have an exact sequence

0 → Acan → Arig
ϕ−→ A1 × · · · ×Ar → 0,

where ϕ is the morphism induced by the canonical projections A→ Ai. Denote the order of Ai by
di, and note that adii ∈ Acan for each i = 1, . . . , r. Furthermore, we have a graded homomorphism

(OS [xd1
1 , . . . , x

d1
r ], Acan, (a

d1
1 , . . . , a

dr
r )) → (OS [x1, . . . , xr], Arig, (a1, . . . , ar))

given by obvious inclusion of sheaves of OS-algebras. It is straightforward to verify that this
corresponds to a dth root stack in the toric divisors, where d = (d1, . . . , dr), and that the
corresponding morphism Xrig → Xcan of basic toric orbifolds is the canonical morphism to the
canonical stack.

3.5 Multiplicity, independency and smoothness
The toric destackification algorithm, which is described in the next section, is based on the
well-known toric desingularisation algorithm described in for instance [CLS11, § 11]. In particular,
the multiplicity of a cone plays an important role. Here we will briefly recall the main properties
of multiplicities. We will also introduce the related concept of independency of toric divisors.

As usual, we let Σ = (N,Σ, β) be an orbifold fan and σ ∈ Σ a cone. Let ρ1, . . . , ρr be the
rays in σ(1), and let ui be the non-zero lattice point on the ray ρi which is closest to the origin.
We associate the parallelotope

Pσ =

{ r∑
i=1

λiui

∣∣∣∣ 0 6 λi < 1

}
to the cone σ. Then the number of lattice points in Pσ is called the multiplicity of σ and is
denoted by mult (σ). The multiplicity satisfies the basic property mult (τ)|mult (σ) if τ � σ. It
should be noted that the stacky structure β plays no part in the definition of multiplicity. In
particular, the multiplicity of a cone is preserved by the root construction. A cone σ is called
smooth provided that the multiplicity mult (σ) equals one. An orbifold fan is smooth provided
that all its cones are smooth.

The multiplicity mult (ξ) at a point ξ ∈ XΣ in the toric orbifold is defined as the multiplicity
of the cone spanned by the rays corresponding to the toric divisors passing through ξ. The
multiplicity is one at ξ if and only if the corresponding point in the coarse space XΣ is smooth
over the base. In particular, the coarse space is smooth if and only if the orbifold fan is smooth.

The following proposition describes how to read off the multiplicity from the homogeneous
coordinates of a basic toric orbifold.
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Proposition 3.16. Let X be a basic toric orbifold with homogeneous coordinates

(OS [x1, . . . , xr], A,a)

and let (N,Σ, β) be an orbifold fan defining X. Let σ be the (unique) maximal cone in Σ. Then

mult (σ) = |Acan|, where Acan is defined as in Remark 3.15.

Proof. Let u1, . . . , ur be the non-zero lattice points closest to the origin on the rays

ρ1, . . . , ρr ∈ Σ(1). Let (N,Σ, βcan) be the orbifold fan describing the canonical stack. Then

βcan(ρi) = ui. By [CLS11, (11.1.5)], the multiplicity of σ is given by the index [N : Zu1+· · ·+Zur].
Hence, the result follows from the exact sequence

0 → M
β′can−−→ HomZ(ZΣ(1),Z) → Acan → 0, β′can = HomZ(βcan,Z)

from the Cox construction for the canonical stack Xcan. 2

Singularities on toric varieties only occur at the intersections of the toric divisors. Generally

singularities get worse at points where more divisors intersect in the sense that the multiplicity

grows. We introduce the concept of independency to capture the idea of nice divisors which do

not make singularities worse.

Definition 3.17. Let Σ = (N,Σ, β) be an orbifold fan, σ ∈ Σ a cone and ρ ∈ σ(1) a ray. We

say that ρ is independent at σ if mult τ = multσ, where τ is the face of σ spanned by the rays

σ(1)\ρ. A ray ρ is independent if it is independent at all cones σ containing ρ.

Proposition 3.18. Let Σ = (N,Σ, β) be an orbifold fan and let σ be a cone in Σ. Then σ is

smooth if and only if all rays in σ(1) are independent at σ. In particular, the fan Σ is smooth if

and only if all rays in Σ(1) are independent.

Proof. Let σ ∈ Σ. Assume that σ is smooth. Then multσ′ = multσ = 1 for any facet σ′ ≺ σ. In

particular, any ray in σ(1) is independent at σ.

Conversely, assume that all rays in σ(1) are independent at σ. Denote the rays in σ(1)

by ρ1, . . . , ρr and let ui denote the non-zero lattice points closest to the origin at ρi for each

i = 1, . . . , r. Assume that P = λ1u1 + · · · + λrur is a lattice point in the parallelotope Pσ. By

the assumption that all rays are independent, we have mult τ = multσ for each facet τ of σ.

In particular, the point P is contained in Pτ for each τ . Since the lattice points u1, . . . , ur are

linearly independent in NR, this forces each λi = 0. Hence, the only lattice point in Pσ is the

origin, that is, multσ = 1. 2

Proposition 3.19. Let X be a basic toric orbifold with homogeneous coordinates

(OS [x1, . . . , xr], A, (a1, . . . , ar))

and let (N,Σ, β) be an orbifold fan defining X. Denote the rays of Σ by ρ1, . . . , ρr and let σ

denote the (unique) maximal cone of Σ. Then ρi is independent at σ if and only if the intersection

〈a1, . . . , âi, . . . , ar〉 ∩ 〈ai〉 is trivial.
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Proof. We assume, without loss of generality, that i = r. Let τ be the cone spanned by the rays
ρ1, . . . , ρr−1. By Proposition 3.16, the open substack Uτ ⊂ Uσ = X has homogeneous coordinates

(OS [x1, . . . , xr][x
−1
r ], A′, (ā1, . . . , ār)),

where A′ = A/〈ar〉. Define Acan and Ai as in Remark 3.15, and similarly for A′can and A′i. Since
the morphism 〈ar〉→ Ar is surjective, the snake lemma gives us the diagram

0

��

0

��

0

��
0 // K

��

// 〈ar〉

��

// Ar

��

// 0

0 // Acan

��

// A

��

// A1 × · · · ×Ar

��

// 0

0 // A′can

��

// A′

��

// A′1 × · · · ×A′r−1

��

// 0

0 0 0

with exact rows and columns. By Proposition 3.16, we have mult (σ) = |Acan| and
mult (τ) = |A′can|. Thus, it follows from Definition 3.17 and the diagram above that the ray
ρr is independent at σ if and only if K vanishes. This is obviously equivalent to the condition
stated in the proposition. 2

4. Toric destackification

In this section, we give an algorithm for functorial destackification (Definition 2.3) of toric
orbifolds. Recall that for an orbifold, a destackification is roughly given by a sequence of
smooth stacky blow-ups (see § 2.2) such that the modified orbifold becomes a root stack over
its coarse space. For a toric orbifold this translates to the combinatorial problem of subdividing
an orbifold fan (Definition 3.8) using star subdivisions at cones (Definition 3.13) and roots of rays
(Definition 3.14), such that the resulting fan becomes smooth (see § 3.5). If we do not care about
functoriality, this can be achieved by using an algorithm which is very similar to the classical
algorithm for resolving singularities of a simplicial toric variety (see [CLS11, § 11]). We illustrate
the procedure by giving an example.

Example 4.1. Consider the orbifold fan given in Figure 4.1(a). The maximal cone σ = Cone (ρ1,
ρ2) has multiplicity 5. To obtain a subdivision of the fan into cones with lower multiplicity, we
subdivide σ at a ray passing through a non-zero lattice point in the parallelotope Pσ. This can
be achieved by first taking the third root at the ray ρ1 and then taking the star subdivision at σ,
which yields the fan in Figure 4.1(b). Note that the exceptional ray ρ3 passes through the lattice
point (1, 1), which indeed lies in Pσ. The situation has improved, since the new maximal cones
have multiplicities 1 and 3, respectively. To complete the destackification, we take the second
root of ρ2 followed by a star subdivision at Cone (ρ2, ρ3), which yields a smooth orbifold fan.
The last steps are not shown in the figure.
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Figure 4.1. A stacky fan corresponding to a basic toric orbifold (a) together with the partial
destackifications (b) and (c) described in Examples 4.1 and 4.4, respectively.

The problem with the naive algorithm outlined in Example 4.1 is that it is not functorial
(Definition 2.6) with respect to toric open immersions, as illustrated in the next example. In
particular, this means that it will be hard to use it as a building block for a global destackification
algorithm which works for stacks which are only locally toric.

Example 4.2. The toric suborbifolds Uρ1 and Uρ2 of the toric orbifold associated to the orbifold
fan given in Figure 4.1(a) are isomorphic. Yet, corresponding suborbifolds in Figure 4.1(b) are
non-isomorphic since we have stackiness along the divisor corresponding to ρ1, but not along the
divisor corresponding to ρ2. This shows that destackification described in Example 4.1 cannot be
obtained from running a destackification algorithm which is functorial with respect to toric open
immersions. In fact, both the orbifolds Uρ1 and Uρ2 are smooth toric varieties and any sensible
destackification algorithm should leave such varieties unmodified.

The problem illustrated in Example 4.2 is really intrinsic to the root construction; taking
a root modifies the stack along a whole divisor, even at points lying over smooth points of the
coarse space. On the other hand, it is in general not possible to destackify by just using star
subdivisions at cones, as shown by the following example (cf. [Kol07, Claim 2.29.2]).

Example 4.3. Let us, for simplicity, assume that we are working over a field k. Then the basic
toric orbifold associated to the orbifold fan in Figure 4.1 has homogeneous coordinate ring
(k[x1, x2], C5, (1, 3)). Blowing up the origin yields two charts with homogeneous coordinate
rings (k[x1, x2/x1], C5, (1, 2)) and (k[x1/x2, x2], C5, (3, 3)), respectively. But the first chart is
isomorphic to the toric orbifold we started with since the weight vector (1, 3) can be obtained
from (1, 2) by multiplying with the unit 3 and swapping the coordinates. Thus, no improvement
towards destackification has been achieved.

Our solution to the problem is to admit only stacky blow-ups in centres lying over the original
problematic locus. In particular, this means that the first stacky blow-up must be an ordinary
blow-up.

Example 4.4. We describe how the toric stack given by the orbifold fan in Figure 4.1(a) can
be destackified using only stacky blow-ups with loci lying over the original problematic locus.
Instead of taking the third root of ρ1 and subdividing as in Figure 4.1(a), we take three subsequent
subdivisions at the cones Cone (ρ1, ρ2), Cone (ρ1, δ1) and Cone (ρ1, δ2) with δ1, δ1 and δ3 denoting
the exceptional rays of each subdivision. The resulting fan is pictured in Figure 4.1(c). Note that
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Cone (ρ1, δ3) is identical to Cone (ρ1, ρ3) from Figure 4.1(b). In particular, it has multiplicity 1.
The other cones of Figure 4.1(c) have multiplicities 1, 5 and 5 respectively when enumerated
from left to right. The cone Cone (δ1, ρ2) can be destackified by a single star subdivision (this is
not shown in the figure). But, as was shown in Example 4.3, the cone Cone (δ2, δ1) is isomorphic
to Cone (ρ1, ρ2) in Figure 4.1(a) which we started with. Hence, it may seem that no progress has
been made. However, since both the rays δ1 and δ2 correspond to divisors lying over the original
problematic locus, we may now root them. This allows us to complete the destackification by
proceeding as in Example 4.1 with the rays δ2 and δ1 taking the roles of ρ1 and ρ2, respectively
(this is not shown in the figure).

Note that the philosophy behind this solution is similar to the one behind classical strong
desingularisation algorithms. We relax the functoriality requirement and do not demand the
process to be functorial with respect to open immersions after each stacky blow-up. This requires
us to somehow keep track of the history of the destackification process. We do this by adding
additional structure to our toric orbifolds.

Firstly, we will assume that the rays of the orbifold fan are ordered. Note that the ordering
of the rays also induces a total ordering on the set of cones. This is induced by the lexicographic
ordering of the power set of the set of rays. The ordering of the rays ensures that the pair (X,E),
where X is the toric stack and E is the set of toric divisors, is a standard pair in the sense of
Definition 2.1. When taking roots and star subdivisions of cones, we use similar conventions
regarding the ordering of the rays of the new stacky fans as was described in § 2.2.

Secondly, we make use of a distinguished structure (Definition 2.7) on our toric orbifold.
Combinatorially, the distinguished structure corresponds to a subset of the set of rays in the
orbifold fan. As we will see, these rays represent divisors which lie over the original problematic
locus.

Roughly, Algorithm B, which is the main toric destackification algorithm, works as follows.
At each iteration of the main loop one problematic cone is identified. This cone is subdivided with
a single star subdivision and the exceptional ray is marked as distinguished. The resulting cones
are then improved by invoking Algorithm A, which performs a sequence of admissible stacky
blow-ups (Definition 2.7). Combinatorially, admissible stacky blow-ups correspond to roots of
distinguished rays and star subdivisions of cones containing at least one distinguished ray. Note
that the admissible stacky blow-ups precisely correspond to stacky blow-ups in centres lying over
the problematic cone identified in the first step of the iteration.

Example 4.5. In principle, the destackification described in Example 4.4 corresponds to a single
iteration of Algorithm B. The first blow-up creates the exceptional ray δ1, which is marked as
distinguished. Since the exceptional ray of each admissible star subdivision is distinguished, all
subsequent star subdivisions and roots described in the example are distinguished.

Note that the actual output of Algorithm B will be slightly different (and considerably harder
to draw) than that described in Example 4.4. The output depends on the somewhat arbitrary
choice of ordering made in Step A2.

In Example 4.4, we could make all cones smooth via admissible stacky blow-ups after
a single initial blow-up creating a distinguished exceptional ray. This is always possible for
two-dimensional cones, but not for cones of higher dimension. Instead we focus on making all
distinguished rays independent (Definition 3.17). Since independent rays do not contribute to
the multiplicity of the cone, this effectively reduces the problem of destackifying the cone to the
problem of destackifying a cone of lower dimension.
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Algorithm A (Partial toric destackification). The input of the algorithm is an orbifold fan Σ0

with an ordered set of rays having a distinguished structure. The output is a sequence

Σn → · · ·→ Σ0

of admissible stacky blow-ups, with the property that all distinguished rays of Σn are
independent. The construction is functorial with respect to isomorphisms Σ′0 → Σ0 of stacky fans
preserving the ordering and the distinguished structure. We use the notation Σi = (N,Σi, βi) in
the description of the algorithm.

A0. [Initialise.] Set i = 0.

A1. [Choose a cone.] Let S be the set of cones σ ∈ Σi such that σ(1) contains a distinguished
divisor and such that the relative interior of the parallelotope Pσ contains a lattice point.
Order the cones σ ∈ S first by number of non-distinguished rays in σ(1), then by multiplicity
and finally by the ordering induced by the ordering on Σi(1). If S is empty, the algorithm
terminates. Otherwise let σi be the largest element of S with respect to the ordering
described above.

A2. [Choose a formal sum of rays.] Let P be the set of formal sums ψ ∈ Zσi(1) such that the
ray R>0βi(ψ) passes through a lattice point in the relative interior of the parallelotope
Pσi . This set is non-empty by our choice of σi in the previous step. Let ψi be the smallest
element of P with respect to the lexicographic ordering of Zσi(1) induced by the ordering
of Σi(1).

A3. [Root distinguished rays.] Assume that ψi = d1ρ1 + · · ·+dsρs+c1δ1 + · · ·+crδr, with ρj and
δj being distinct non-distinguished and distinguished rays, respectively. Let Σi+1 → Σi be
the root construction (Σi)c−1

1 δ1,...,c
−1
r δr

→ Σi and ψi+1 = d1ρ1 + · · · + dsρs + δ1 + · · · + δr.

Increment i by one. Note that after this step all distinguished rays in the support of ψi
have coefficient one. Also, the transformation rule asserts that βi(ψi) = βi−1(ψi−1).

A4. [Perform a stacky star subdivision.] Let σi be the cone generated by the support of ψi. Let
Σi+1 → Σi be the stacky star subdivision Σi(σi) → Σi and denote the exceptional ray by
εi+1. Furthermore, let ψi+1 = ψi −

∑
ρ∈σi(1) ρ+ εi+1 and then increment i by 1. Note that

after this step the support of ψi contains just one distinguished ray εi, which occurs with
coefficient one. Also, the transformation rule asserts that βi(ψi) = βi−1(ψi−1).

A5. [Iterate inner loop.] While the support of ψi contains more than one ray, repeat from
Step A4.

A6. [Iterate main loop.] Repeat from Step A1.

Proof of correctness of Algorithm A. Functoriality is clear, since all choices in the algorithm
depend only on properties preserved by isomorphisms.

If σ is a cone containing a distinguished, non-independent ray δ, then there is a face σ′ of
σ containing δ with Pσ′ containing a lattice point in its relative interior. Hence, the algorithm
does not halt prematurely.

It remains to prove that the algorithm halts. For notational convenience, we assume, without
loss of generality, that i = 0 at the beginning of an iteration of the main loop and i = n when
the iteration ends.

Denote the cone generated by the support of ψ0 by σ0, and let τ0 be any cone in Σ0 of
maximal dimension containing σ0. Using the notation in Step A3, we have

τ0 = Cone (ρ1, . . . , ρs, δ1, . . . , δr, ν1, . . . , νt)

for some rays ν1, . . . , νt. By maximality of σ0 with respect to the ordering defined in Step A1, we
have mult (τ0) = mult (σ0). Define τi+1 recursively as any choice of cone of maximal dimension
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in the subdivision of τi such that τi+1 has the same number of non-distinguished rays as τi. For
i > 2, we have

τi = Cone (ρ1, . . . , ρs, δ1, . . . , δ̂k, . . . , δr, ν1, . . . , νt, εi),

where δ̂k indicates that the ray δk should be omitted from the list for some k with 1 6 k 6 r.
The transformation rule for the elements ψi asserts that βi+1(ψi+1) = βi(ψi) throughout a

whole iteration of the main loop. In particular, we have βn(ψn) = βn(εn) = β0(ψ0). But the ray
through β0(ψ0) passes through a lattice point in Pσ0 ⊂ Pτ0 by choice of ψ0. For the same reason
as for the traditional algorithm for toric varieties, it follows that the multiplicity of τn is strictly
smaller than mult τ0. Since any cone produced in the iteration of the main loop is either a face
of τn for some choice of sequence τ0, . . . , τn or has fewer non-distinguished rays, it follows that
all new cones are smaller than σ0 with respect to the ordering defined in Step A2. Since σ0 has
been removed, this process cannot continue indefinitely, and the algorithm eventually stops. 2

The inner workings of Algorithm A are best understood by considering some examples.

Example 4.6. We given an explicit example of the formal sum ψi associated to a cone σi as
described in A2. For notational convenience, we assume that i = 0. Assume that σ0 is a cone
spanned by the three rays ρ1, ρ2, ρ3 and that the marked lattice points on the rays are given by

β0(ρ1) = (6, 3, 3), β0(ρ2) = (0, 2, 1), β0(ρ3) = (0, 0, 1).

Then the non-zero lattice points on the rays in σ0(1) closest to the origin are given by

u1 = (2, 1, 1), u2 = (0, 2, 1), u3 = (0, 0, 1)

and we see that the multiplicity of σ0 equals |det(u1, u2, u3)| = 4. Hence, the parallelotope Pσ0

contains three non-trivial lattice points. It is easily verified that these are given by

v1 = (1, 2, 2), v2 = (0, 1, 1), v3 = (1, 1, 1).

Note that only v1 and v3 lie in the relative interior of Pσ0 . These points can also be expressed as

v1 = 1
12β0(2ρ1 + 9ρ2 + 9ρ3), v3 = 1

12β0(2ρ1 + 3ρ2 + 3ρ3).

Hence, ψ0 = 2ρ1 +3ρ2 +3ρ3 since this expression is smaller than 2ρ1 +9ρ2 +9ρ3 lexicographically.

Example 4.7. We continue the previous example by tracing what happens when executing the
Steps A3 through A5 of Algorithm A. The results depend on which rays in σ0 are distinguished,
and we consider three different cases. In the first case all rays are distinguished and we let
δ1 = ρ1, δ2 = ρ2, δ3 = ρ3. In the second case the rays δ1 = ρ2, δ2 = ρ3 are distinguished. In the
third case only the ray δ1 = ρ3 is distinguished. Table 4.1 shows how the formal sum ψi changes
with i.

The resulting fans are illustrated in Figure 4.2. The key things to note about these fans are
the following.

(i) Since the lattice point βi(ψi) is independent of i during the execution of the Steps A3
through A5, the ray ε := εi is the same in all three cases when the inner loop terminates. Note
also that ε passes through v3, which lies in the parallelotope Pσ0 as explained in Example 4.6.
Hence, any cone containing ε and two of the rays in σ0(1) must have strictly lower multiplicity
than σ0. These cones are shaded in Figure 4.2.
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Figure 4.2. Examples of the subdivision procedure from Algorithm A in the three different cases
described in Example 4.7. In each case only the intersection of the respective fan with the plane
through the points β0(σ0(1)) is shown, and the resulting intersection is affinely transformed such
that the cone σ0 is pictured as an equilateral triangle. The maximal cones which are guaranteed
to have lower multiplicity than σ0 are shaded and the distinguished rays are marked by black
dots.

Table 4.1. The formal sum ψi for the three examples described in Example 4.7.

Case 1 Case 2 Case 3
ψ0 2δ1 + 3δ2 + 3δ3 2ρ1 + 3δ1 + 3δ2 2ρ1 + 3ρ2 + 3δ1
ψ1 δ1 + δ2 + δ3 2ρ1 + δ1 + δ2 2ρ1 + 3ρ2 + δ1
ψ2 ε = ε2 ρ1 + ε2 ρ1 + 2ρ2 + ε2
ψ3 − ε = ε3 ρ2 + ε3
ψ4 − − ε = ε4

(ii) For the other maximal cones in the subdivision we have no control over the multiplicity,
which might well be higher than what we started with. However, each of these cones has fewer
non-distinguished rays. The distinguished rays are marked by black dots in Figure 4.2.

This shows that all maximal cones in the subdivision are smaller than the cone σ0 with respect
to the ordering introduced in Step A1. Hence, we do get an improvement towards destackification.

We conclude the section by describing the functorial toric destackification algorithm. We
leave the (easy) proof of correctness to the reader, since the algorithm is a special case of the
more general Algorithm E.

Algorithm B (Functorial toric destackification). The input of the algorithm is an orbifold fan
Σ0 together with a total ordering on the set Σ0(1) of rays. The output is a sequence

Σn → · · ·→ Σ0

of stacky modifications such that all rays in Σn(1) are independent. In particular, all cones in
Σn are smooth. The construction is functorial in the obvious sense with respect to isomorphisms
Σ′0 → Σ0 preserving the ordering of the rays and subfans Σ′′0 ⊆ Σ0.

B0. [Initialise.] Set i = 0.

B1. [Choose a cone.] Consider the set S of cones σ in Σi with the property that none of the
rays in σ(1) are independent at σ. If this set is empty, then all rays in Σi are independent
and the algorithm terminates. Choose a cone σ ∈ S of maximal dimension. If several such
cones exist, choose the largest one with respect to the natural ordering on the cones in Σi.
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B2. [Create distinguished ray.] Let Σi+1 → Σi be the star subdivision of Σi in σ. Give Σi+1

a distinguished structure by letting the exceptional ray from the subdivision be the only

distinguished ray. Increment i by one.

B3. [Resolve the cone.] Invoke Algorithm A and append the output to the sequence. Increment

i by the length of this output.

B4. [Iterate.] Forget the distinguished structure, and iterate from Step B1.

5. Local homogeneous coordinates

In § 3, we introduced basic toric stacks. Here we will show that every smooth tame stack with

diagonalisable stabilisers is locally of this form in a certain sense. This will allow us to use local

homogeneous coordinates even for non-toric stacks, which in turn will allow us to generalise the

toric destackification algorithm. We start by making a precise definition of what we mean by a

stack being locally toric.

Definition 5.1. Let X be an algebraic stack which is smooth over a scheme S, and let ξ ∈ X
be a point. By a toric chart of X over S at ξ, we mean a diagram

X ′

f

~~

g

!!
X X ′′

of algebraic stacks over S, together with a point ξ′ ∈ X ′. The data are required to satisfy the

following properties.

(i) The stack X ′′ is a basic toric stack over S.

(ii) The point ξ′ maps to ξ in X and to a point ξ′′ ∈ X ′′ lying in the intersection of the prime

toric divisors of X ′′.

(iii) The maps f and g are étale and stabiliser-preserving.

A homogeneous coordinate ring of X ′′ is called a local homogeneous coordinate ring at ξ.

Assume that E is a simple normal crossings divisor on X and that Z is a closed substack of X

having simple normal crossings with E. Then we say that E and Z are compatible with the toric

chart if the pull-back of E to X ′ coincides with the pull-back of a toric divisor on X ′′, and the

pull-back of Z to X ′ coincides with the pull-back of an intersection of prime toric divisors on

X ′′.

To prove that a smooth tame stack with diagonalisable stabilisers has a toric chart at

every point, we need a version of the structure theorem for tame algebraic stacks which takes

smoothness into account. We give such a theorem in Appendix A. We will also need the following

lemma.

Lemma 5.2. Let X = SpecA be an affine scheme over an affine base scheme S, and let G be a

finite, linearly reductive, locally free group scheme over S acting on X. Let ξ ∈ X be a point,

and let D(f) be a distinguished open subscheme of X containing the orbit of ξ. Then there is a

refinement ξ ∈ D(g) ⊂ D(f) such that g is an invariant section which is a multiple of f .
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Proof. Let π : X → X/G = SpecA0 be the coarse quotient, where A0 ⊂ A is the ring of invariant
sections. The map π is integral and therefore closed. The set π(V (f)) does not contain π(ξ), by
the assumption that the orbit of ξ is contained in D(f). Let D(h), with h ∈ A0, be a distinguished
open neighbourhood of π(ξ) in the complement of π(V (f)) in X/G. This pulls back to an open
subset, also denoted by D(h), satisfying ξ ∈ D(h) ⊂ D(f). The condition D(h) ⊂ D(f) implies
that rad (h) ⊂ rad (f). Hence, there is a power g = hn of h which is a multiple of f . 2

Now we are ready for the main result of this section.

Proposition 5.3. Let X be an algebraic stack with finite inertia and diagonalisable geometric
stabilisers. Assume that X is smooth and quasi-separated over a scheme S. Then X admits toric
charts over S at each of its points. Furthermore, if E is a simple normal crossings divisor on X,
and Z is a closed substack of X having simple normal crossings with E, then the toric charts
may be chosen such that they are compatible with E and Z.

Proof. The question is local on X with respect to stabiliser-preserving étale morphisms. Thus,
by Propositions A.8 and A.9, we may assume that X is of the form [U/∆], where U is an affine
scheme which is smooth over S and ∆ is a diagonalisable group acting on U . Furthermore, we
may assume that ξ lifts to a point ξ′ ∈ U which is fixed under the ∆-action.

The ∆-action corresponds to a grading on OU by the character group ∆∨, which is a finite
abelian group. Choose homogeneous global sections f1, . . . , fn of OU such that the differentials
df1, . . . , dfn form a basis of ΩU/S ⊗OU κ(ξ′). Consider the map OS [x1, . . . , xn] → OU taking xi
to fi. We give the polynomial ring a ∆∨-graded structure, by letting xi have the same degree as
fi. This gives an equivariant map ĝ : U → AnS over S. By construction, the canonical map

ΩAnS/S ⊗OS [x1,...,xn] κ(ξ′) → ΩU/S ⊗OU κ(ξ′)

is an isomorphism. Since U is smooth over S, it follows that ĝ is étale at ξ′ by [EGAIV,
Corollary 17.11.2]. Denote the corresponding map [U/∆] → [AnS/∆] of stacks by g. The map
g is representable, so the stabiliser of ξ injects into the stabiliser of g(ξ). Since ξ′ is fixed by the
action of ∆, the stabiliser at ξ is ∆, so the map of stabilisers must be an isomorphism. Since the
locus where f is étale and stabiliser-preserving is open [Ryd13, Proposition 6.5], we may as well
assume that [U/∆] → [AnS/∆] is étale and stabiliser-preserving, after shrinking U invariantly by
using Lemma 5.2 if necessary. Finally, we simply remove the prime toric divisors from [AnS/∆]
which do not contain g(ξ).

Now we turn to the statement about the simple normal crossings divisors. Let E1, . . . , Er
be the components of E passing through ξ. They correspond to locally principal homogeneous
ideals Ii in OU . Also, denote the homogeneous ideal corresponding to Z by I. Next we choose our
sections f1, . . . , fn one by one in a way such that the differentials dfi remain linearly independent
in ΩU/S⊗OU κ(ξ′). First we pick homogeneous fi from Ii for 1 6 i 6 r. Then we pick homogeneous
fr+1, . . . , fs from I with s as large as possible. Finally, we pick the remaining homogeneous
sections from OU . By the normal crossings assumption, we get compatibility in a neighbourhood
of ξ′, which we may assume is ∆-invariant by Lemma 5.2. 2

6. Conormal invariants

In the last section, we established that any standard pair (X,E) with diagonalisable stabilisers
locally looks like a basic toric stack. This basic toric stack is described by a set of combinatorial
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parameters, which we will call the toric type. In principle, the toric type captures the information
of the stacky fan describing the basic toric stack together with how the rays in this stacky fan
correspond to the components of E. As we will see, the toric type at a given point can be
recovered in a coordinate-free manner.

In the destackification algorithms, several different invariants are used in order to determine
appropriate loci to blow up. In this section, we develop a common framework for studying a
class of invariants, which we will call conormal invariants. By definition, the value of a conormal
invariant at a given point depends only on the toric type. Given a standard pair (X,E), a
conormal invariant induces an upper semi-continuous function on the underlying topological
space |X| taking values in some ordered set. Since we usually want to blow up the locus where
the function obtains its maximum, we need to assert that this locus is smooth. We also need
to assert invariance under base change and compositions with smooth, stabiliser-preserving
morphisms and rigidifications in order to get the right functorial properties. We will establish
simple combinatorial criteria for conormal invariants to satisfy these properties.

Let (X,E) be a standard pair over a scheme S, and assume that X has diagonalisable
stabilisers. The stabiliser at a geometric point ξ : Spec k̄ → X will be denoted ∆ξ. Denote the
pull-back of X along the composition Spec k̄ → X → S by Xk̄. Then the morphism ξ factors as

Spec k̄ → B∆ξ ↪→ Xk̄ → X.

The map Spec k̄ → Xk̄ is a section of the natural projection. By Lemma A.10, this implies that
the canonical monomorphism B∆ξ ↪→ Xk̄ is a closed immersion. The invariants which we are
interested in will be derived form the conormal bundle NB∆ξ/Xk̄

.
Let A(ξ) denote the character group of ∆ξ. Since ∆ξ is assumed to be diagonalisable, the

category of coherent O∆ξ
-modules is simply equivalent to the category of A(ξ)-graded k̄-vector

spaces. In particular, the sheaf NB∆ξ/Xk̄
splits into rank-1 locally free subsheaves. In general, this

splitting is non-canonical, but each divisor in the set E passing through the point ξ canonically
determines a rank-1 subbundle of NB∆ξ/Xk̄

.

Proposition 6.1. Let (X,E) be a standard pair over a scheme S and assume that X has
diagonalisable stabilisers. Given a geometric point ξ : Spec k̄ → X, we let E1, . . . , Es be the
components of E passing through ξ. Let gi : B∆ξ ↪→ Ei

k̄
denote the canonical morphism to the

fibre of the component Ei. Then the conormal bundle NB∆ξ/Xk̄
splits as a direct sum

NB∆ξ/Xk̄
= g∗1NE1

k̄
/Xk̄
⊕ · · · ⊕ g∗sNEs

k̄
/Xk̄
⊕Nres, (6.1)

where each summand g∗iNEi
k̄
/Xk̄

Vi has rank 1.

Proof. By passing to the fibre, we may, without loss of generality, assume that S = Spec k̄. Let
Z0 = X and define Zi recursively by means of the cartesian diagrams

Zi //

hi
��

Zi−1

��
Ei // X

Since we assume that the divisors Ei intersect transversally, each Zi is smooth and we have
canonical isomorphisms NZi/Zi−1

' h∗iNEi/X by [EGAIV, Proposition 17.13.2]. Now consider
the increasing filtration

B∆ξ ↪→ Zs ↪→ · · · ↪→ Z0 = X
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of closed immersions between stacks which are smooth over S. We denote the various
compositions by fi : B∆ξ → Zi. By [EGAIV, Proposition 16.9.13], we have short exact sequences

0 → f∗i NZi/Zi−1
→ NB∆ξ/Zi−1

→ NB∆ξ/Zi → 0

for each i ∈ {1, . . . , s}. Since the group ∆ξ is linearly reductive, these sequences split, and we
get a decomposition

NB∆ξ/X = f∗1NZ1/Z0
⊕ · · · ⊕ f∗rNZs/Zs−1

⊕NB∆ξ/Zs .

But the maps gi factors through hi, which implies that we get canonical isomorphisms
g∗iNEi/X ' f∗i NZi/Zi−1

. We therefore get the desired decomposition by letting Nres = NB∆ξ/Zs .

Since the substacks Ei are effective Cartier divisors, the bundles NEi/X are locally free of
rank 1. 2

For the purpose of constructing the invariants needed in the destackification algorithm, we
only need some combinatorial information extracted from the conormal representation. The next
step is to give a precise description of this information.

Given a finite set E, we denote its associated pointed set by E+. That is, the pointed set
E+ is the disjoint union of E with the singleton set {∗}, with ∗ regarded as the distinguished
point in E+.

Consider the class of pairs (A,v), where A is a finite abelian group and v is an unordered
sequence of pairs vi = (ai, ei) ∈ A×E+ such that each element of E occurs at most once in the
sequence e1, . . . , er. Such a pair (A,v) is considered equivalent to another pair (A′,v′) provided
that there exists a group isomorphism ϕ : A → A′ such that v′ = ((ϕ(a1), e1), . . . , (ϕ(ar), er)) for
some suitable ordering of the elements in the sequence v′.

Definition 6.2. The set U(E) of toric types parametrised by a finite set E is defined as the set
of equivalence classes of pairs (A,v) with A a finite abelian group and v an unordered sequence
of elements vi = (ai, ei) ∈ A×E+ as described above. The element ai is called the weight of vi.
If ei ∈ E, we say that vi is marked by ei. Otherwise, we say that vi is unmarked.

The conormal representation lets us associate a toric type to each point of a standard pair
(X,E).

Definition 6.3. Let (X,E) be a standard pair and let ξ ∈ X be a point in X. Let N1⊕· · ·⊕Nr
be a splitting of the conormal bundle NB∆ξ/Xk̄

into locally free sheaves of rank 1. Denote the
character group of the stabiliser at ξ by A and let ai be the character corresponding to Ni.

We assume that the splitting is compatible with the splitting given in (6.1) in the sense that
Ni = g∗iNEi

k̄
/Xk̄

for 1 6 i 6 s using the notation and the indexing from Proposition 6.1. Let

vi =

{
(ai, E

i) if 1 6 i 6 s,
(ai, ∗) otherwise.

We define the toric type of (X,E) at ξ as the element in U(E) represented by (A, (v1, . . . , vr))
in U(E).

Remark 6.4. Note that the unordered sequence a1, . . . , ar referred to in Definition 6.3 depends
only on the class [NB∆ξ/Xk̄

] of the conormal bundle in the Grothendieck group K0(Coh (B∆ξ)).
Alternatively, one could instead consider the class of the derived pull-back of the cotangent
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complex to the Grothendieck group of the triangulated category of perfect complexes on B∆ξ.
This is proved in Appendix C.

Next we investigate how the toric type varies over a basic toric stack.

Proposition 6.5. Let S be a scheme and let X be a basic toric stack with homogeneous
coordinate ring (OS [x1, . . . , xr], A,a). Assume that 1 6 s 6 r, and let E = (E1, . . . , Es) with
Ei = V (xi). We consider the standard pair (X,E)/S.

Let ξ be an arbitrary point in X. Then we have a surjection ϕ : A → A(ξ) to the character
group of the stabiliser at a geometric point representing ξ. The kernel of ϕ is generated by the
elements ai such that ξ 6∈ V (xi). The toric type at ξ is given by

(A(ξ), (v1, . . . , vr)), vi = (ϕ(ai), ei),

where ei = Ei if i 6 s and the divisor Ei passes through ξ and ∗ otherwise.

Proof. Since the field k̄ is algebraically closed, the map ξ factors through SpecOSOS [x1, . . . , xr].
Let αi be the image of xi through the corresponding map

Γ(OS [x1, . . . , xr]) → k̄.

Then we have αi = 0 precisely when ξ passes through V (xi).
Consider the atlas X̃k̄ = Spec k̄[x1, . . . , xr] of Xk̄. The closed immersion B∆ξ ↪→ Xk̄

corresponds to the slice of the action groupoid at the closed subscheme V (I) ⊂ X̃k̄ defined
by the ideal I = (x1 − α1, . . . , xr − αr). In other words, we have the cartesian diagram

∆ξ
g′ //

��

X̃k̄ ×k̄ ∆

f
��

Spec k̄ g
// X̃k̄ ×k̄ X̃k̄

The map g corresponds to the k̄-algebra map k̄[x1, . . . , xr, y1, . . . , yr] → k̄ taking xi and yi to αi,
and the map f corresponds to the k̄-algebra map

k̄[x1, . . . , xr, y1, . . . , yr] → k̄[x1, . . . , xr][A]

taking xi to xi and yi to aixi. It follows that the map g′ corresponds to

k̄[x1, . . . , xr][A] → k̄[A]/(αi − aiαi)

taking xi to αi, where i ranges from 1 to r. Since the relation αi = aiαi is trivial if αi = 0 and
equivalent to ai = 1 otherwise, the right-hand side is the group algebra k̄[A(ξ)] in the statement of
the proposition. The conormal representation is the k̄-vector space I/I2, which has the elements
ui = (xi − αi) + I2 for i ∈ {1, . . . , r} as basis. Since ui has weight ϕ(ai) and corresponds to the
divisor V (xi) precisely when αi = 0, the result follows. 2

Example 6.6. Let k be a field and (X,E) the standard pair with X being the basic toric
stack with homogeneous coordinates (k[x1, x2, x3], C2 × C2, ((1, 0), (0, 1), (1, 1))) and E being
the sequence (E1, E2) with Ei = V (xi) for i = 1, 2. Table 6.1 shows how the toric type varies
over the strata defined by the toric divisors. Note that the toric types in the rows 1 through 7
are distinct whereas the toric type in row 8 is identical to the toric type in row 7.
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Table 6.1. The table shows how the conormal representation varies over the strata defined by
the toric divisors of the basic toric stack in Example 6.6. The stratum

⋂
si=1 V (xi)\

⋃
si=0 V (xi)

corresponds to the row labelled by the binary word s1s2s3.

Motivated by Proposition 6.5, we introduce a partial ordering on the set U(E) for each finite
set E. Let X be a basic toric stack and let E be a sequence of toric divisors on X. By design,
the ordering on U(E) makes the function taking a point in X to the toric type at that point
upper semi-continuous.

Definition 6.7. Let α ∈ U(E) be a toric type represented by the triple (A,v) with v =
(v1, . . . , vr) and vi = (ai, ei). Given α′ ∈ U(E), we write α > α′ if there exists a subset
J ⊂ {1, . . . , r} such that α′ is represented by (A′, (v′1, . . . , v

′
r)) with A′ = A/〈ai〉i∈J and

v′i =

{
(ai, ei) if i 6∈ J,
(0, ∗) if i ∈ J,

where ai denotes the image of ai through the canonical morphism A → A′.

We are now ready define what we mean by a conormal invariant.

Definition 6.8. A conormal invariant ι is a rule which to each finite totally ordered set E
associates an order-preserving function ιE : U(E) → W (E) to a partially ordered set W (E) and,
to each injective order-preserving function f : E → E′ associates an order-preserving function
W (f) : W (E) → W (E′) such that the diagram

U(E)
ιE //

U(f)
��

W (E)

W (f)
��

U(E′) ιE′
//W (E′)

commutes.
For each standard pair (X,E), we get a function ι(X,E) : |X|→ W (E) taking a point ξ ∈ X

to ιE(α), where α is the toric type at ξ. We call the function ιE(α) the realisation of the conormal
invariant for the standard pair (X,E).

Remark 6.9. Note that a conormal invariant is simply a natural transformation U →W between
functors from the category of finite totally ordered sets and injective order-preserving functions
to the category of partially ordered sets.
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For most of the conormal invariants actually used by the destackification algorithm, the
partially ordered set W (E) will simply be the set N of natural numbers with its standard
ordering.

Example 6.10. Let (X,E)/S be a standard pair and let ξ ∈ X be a point with toric type
(A,v). The following example illustrates that several well-known invariants can be thought of as
realisations of conormal invariants U → N, where we regard N as the constant functor.

(i) The relative dimension of X over S at ξ is the length of the sequence v.

(ii) The order of the stabiliser at ξ is the order of A.

(iii) The multiplicity at ξ is the order of Acan, with Acan defined by the exact sequence in
Remark 3.15.

Example 6.11. For the conormal invariants given in Example 6.10, the ordered set E played no
part. Here we give some examples where E does play a part.

(i) The identity natural transformation U → U can be regarded as the universal conormal
invariant. Its realisation for the standard pair (X,E) evaluated at a point ξ is simply the toric
type at ξ.

(ii) Let 2E denote the power set of E endowed with the lexicographical ordering induced by
the ordering on E. Consider the conormal representation given by the natural transformation
U(E) → 2E which takes (A,v) to the set of elements in E marking some element in v. Its
realisation for the standard pair (X,E) evaluated at a point ξ is the set of components of E
passing through ξ.

Example 6.12. Let ι1, . . . , ιn be conormal invariants taking values in the totally ordered sets
W1, . . . ,Wn. Then we can form its lexicographical composition ι1 × · · · × ιn taking values in the
product set W1 × · · · ×Wn endowed with the lexicographical ordering.

Next we the investigate the functorial properties of conormal invariants. Let (X,E)/S be
a standard pair and ι : U → W a conormal invariant. As described in § 2.5, we a get new
standard pair (XS′ ,ES′)/S

′ given any base change S′ → S. Note that we have a naturally
defined one-to-one correspondence between the ordered sets E and the base change ES′ induced
by pull-back. Hence, we get a diagram

|XS′ |

��

ι(XS′ ,ES′ ) //W (ES′)

��
|X| ι(X,E)

//W (E)

(6.2)

Similarly, given a smooth morphism f : X ′ → X, we get a standard pair (X ′,E′)/S and
a naturally defined order-preserving function E′ → E. This function is injective, but not
necessarily surjective since we allow ourselves to omit empty divisors from E′. This gives us
a diagram

|X ′|

��

ι(X′,E′) //W (E′)

��
|X| ι(X,E)

//W (E)

(6.3)

We want to establish conditions when the two diagrams above commute.
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Definition 6.13. We define the following two properties which a conormal invariant ι : U → W
may have.

(P1) For any finite ordered setE and any (A,v) ∈ U(E), we have ι(A,v) = ι(A,v′), where v′ is
the subsequence of v consisting of the elements distinct from the trivial element (0, ∗) ∈ A×E+.

(P2) For any finite ordered set E and any (A,v) ∈ U(E), we have ι(A,v) = ι(Arig,v), where
Arig is the subgroup of A generated by the weights of v. That is, the subgroup Arig = 〈a1, . . . , ar〉
if v = ((a1, e1), . . . , (ar, er)).

Proposition 6.14. Let ι : U → W be a conormal invariant and let (X,E)/S be a standard pair
with diagonalisable stabilisers. Consider the 2-commutative diagrams

Y
f //

  

X

��
S

X ′
g //

��

X

��
S′ // S

where f is smooth and the square is 2-cartesian. Let F be the pull-back of E along f and let
E′ be the pull-back of E along g. Then ι(X′,E′)/S′ = ι(X,E)/S ◦ |g|. Furthermore, we have the
equality ι(Y,F )/S = ι(X,E)/S ◦ |f | under any of the following circumstances.

(i) The morphism f is étale and stabiliser-preserving.

(ii) The morphism f is smooth and stabiliser-preserving and ι satisfies property (P1).

(iii) The morphism f is a gerbe and ι satisfies property (P2).

Proof. Let ξ′ : Spec k̄ →X ′ be a geometric point. Since we have a canonical isomorphism between
X ′ ×S Spec k̄ and X ×S Spec k̄, functoriality with respect to base change follows immediately.

We explore the other functoriality properties by examining the first diagram. Let
ξ : Spec k̄ → Y be a geometric point. By the previous paragraph, we may, without loss of
generality, assume that S = Spec k̄. Denote the toric type at ξ, as defined in Definition 6.3, by

(A, (v1, . . . , vr)), vi = (ai, ei).

We may assume that v1, . . . , vs are marked by the components E1, . . . , Es of E and that vi is
unmarked for i > s. Similarly, we denote the toric type at f ◦ ξ by

(A′, (v′1, . . . , v
′
r′)), v′i = (a′i, e

′
i)

and assume that v′1, . . . , v
′
s are marked by the components F 1, . . . , F s, where F i denotes the

pull-back of Ei. The elements v′i for i > s are unmarked. We have 2-commutative diagrams

B∆ξ
b //

a

��

Y

f

��
B∆f◦ξ // X

B∆ξ
gi //

a

��

F i //

fi
��

Y

f

��
B∆f◦ξ

hi
// Ei // X

(6.4)

where the rightmost square is 2-cartesian and i ranges from 1 to s.
First assume that the morphism f is stabiliser-preserving. Then we can identify ∆ξ with

∆f◦ξ and assume that a is the identity map. In particular, the character groups A and A′ are
equal. Since conormal bundles commute with flat base change, we get

h∗iNEi/X ∼= g∗i f
∗
i NEi/X ∼= g∗iNF i/Y

from the right-hand diagram. It follows that ai = a′i for 1 6 i 6 s.
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We introduce the shorthand notation Ỹ for the fibre product B∆ξ ×X Y and denote the
canonical projections to B∆ξ and Y by p and q, respectively. Note that p is smooth and q is a

regular immersion. Consider the sequence B∆ξ
σ−→ Ỹ

q−→ Y of morphisms, where σ is the canonical
morphism induced by b. Since σ is a regular immersion, being a section of p, we get an exact
sequence

0 → σ∗N
Ỹ /Y

→ NB∆ξ/Y → N
B∆ξ/Ỹ

→ 0 (6.5)

by [EGAIV, Proposition 16.9.3]. The bundle N
Ỹ /Y

is the pull-back of NB∆ξ/X along the

projection p. Since σ is a section of p, this allows us identify the first term in (6.5) with NB∆ξ/X .
Consider the 2-commutative square

Ỹ

��

p // B∆ξ

π

��
Ỹcs

// S

induced by passing to coarse spaces. Since p is stabiliser-preserving and π is a gerbe, this square is
2-cartesian. It follows that the conormal bundle N

B∆ξ/Ỹ
associated to the section σ is isomorphic

to the pull-back π∗N
S/Ỹcs

of the conormal bundle N
S/Ỹcs

associated to σcs. Hence, the sequence

(6.5) can be rewritten as

0 → NB∆ξ/X → NB∆ξ/Y → π∗N
S/Ỹcs

→ 0.

Since the bundle π∗N
S/Ỹcs

is defined over the base field S, it must correspond to the trivial

character. It follows that we can choose the indexing of the toric types such that ai = a′i whenever
1 6 i 6 r and a′i = 0 whenever i > r. In particular, this implies (ii). Furthermore, the difference
r′ − r is easily seen to be equal to the relative dimension of f , which implies (i).

Next we instead assume that f is a gerbe. In this case we have r′ = r since the relative
dimensions of X and Y over S are equal. Furthermore, all squares in the diagram (6.4) are
2-cartesian. We have a surjective group homomorphism ∆ξ → ∆f◦ξ, which allows us to identify
A with a subgroup of A′. Since conormal bundles commute with flat base change, we get

NB∆ξ/Y = a∗NB∆f◦ξ/X .

The pull-back functor a∗ : Coh (B∆f◦ξ) → Coh (B∆ξ) corresponds to the obvious functor from
the category of A-graded vector spaces to the category of A′-graded vector spaces, which preserves
the grading. This implies that a′i = ai for 1 6 i 6 r for a suitable indexing of the toric types.
A similar argument applied to the right-hand diagram in (6.4) shows that we also have e′i = ei,
which proves (iii). 2

As a direct consequence of Proposition 6.14, it follows that realisations of conormal invariants
are upper semi-continuous.

Proposition 6.15. Let ι : U → W be a conormal invariant and let (X,E) be a standard
pair with diagonalisable stabilisers. Then the realisation ι(X,E)/S is an upper semi-continuous
function. In particular, the locus where ι(X,E)/S obtains a maximum is a closed subset of |X|.

Proof. Since the property of being semi-continuous is preserved under post composition by order-
preserving functions, it is enough to verify semi-continuity for the toric type. Furthermore, it
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is enough to verify that the locus Z ⊂ X where the toric type is maximal is closed. If X is a
basic toric stack and E a subset of the toric divisors, this is clear from the computation of toric
types for basic toric stacks given in Proposition 6.5 and the construction of the order relation in
Definition 6.7. In general, we may choose a toric chart

X ′

g

!!

f

~~
X X ′′

as in Definition 5.1, at any point ξ ∈ X by Proposition 5.3. Since the property of Z being closed
can be verified locally on X, we may assume that f is surjective. Let Z ′ and Z ′′ denote the loci
where the toric type is maximal in X ′ and X ′′, respectively. Since both f and g are étale and
stabiliser-preserving, we have Z ′ = f−1(Z) = g−1(Z ′′) by Proposition 6.14(i). Since X ′′ is a basic
toric stack, the locus Z ′′ is closed. Hence, Z ′ is closed by continuity of g. Since f is submersive,
it follows that also Z is closed, which concludes the proof. 2

In the destackification algorithm we need to blow up X in a locus which is maximal with
respect to some conormal invariant. Since we only want blow-ups with smooth centres, we need
a criterion to ensure that the maximal locus has a structure of a smooth substack. If the base
S is reduced, it is obvious that there can be at most one such structure, but in the general case
this is not so clear. Fortunately, there exists a simple combinatorial condition, which is easy to
verify in practice, which ensures both of these properties.

Definition 6.16. Let ι : U → W be a conormal invariant. We say that ι is smooth provided
that for each finite ordered set E and each triple α, α′, α′′ ∈ U(E) such that α > α′ and α > α′′,
the condition ι(α) = ι(α′) = ι(α′′) implies that ι(α) = ι(α′ ∧ α′′).

This definition has a rather combinatorial flavour. To get a feeling for what it means
geometrically, it is useful to note that the order relation > on the set U(E) corresponds to
generalisation in the following sense: if (X,E) is a standard pair and Zα ⊆ X denotes the
locus with toric type α ∈ U(E), then α′ 6 α implies that Zα lies in the closure of Z ′α. Thus,
Definition 6.16 has the following interpretation: let (X,E) be a standard pair and consider a
smooth conormal invariant ι. Assume that ξ ∈ X is a point where (the realisation of) ι assumes
it maximum. If the invariant ι remains constant when we generalise in two different directions
separately, then it must remain constant if we generalise in both these directions at the same
time.

Example 6.17. All the conormal invariants given in Examples 6.10 and 6.11 are smooth, but
since we are not going to use this fact, its proof is left to the reader.

Example 6.18. To understand the condition in Definition 6.16, it is useful to study a situation
where it is not satisfied. Let τ be the conormal invariant which takes a toric type represented
by (A,v) to the number of elements vi = (ai, ei) in the sequence v satisfying ai 6= 0 and ei = ∗.
Consider the case where E = (E1, E2) and the toric type α is represented by (A,v), where
A = C2 × C2 and v has three elements vi = (ai, ei) with

a1 = (1, 0), a2 = (0, 1), a3 = (1, 1), e1 = E1, e2 = E2, e3 = ∗.
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Then τ(α) = 1. The basic toric stack over the field k associated to this toric type has homogeneous

coordinate ring (k[x1, x2, x3], A, (a1, a2, a3)) with E1 = V (x1) and E2 = V (x2). One verifies that

the invariant τ assumes the value 1 at the locus (V (x1)∪V (x2))∩V (x3) and 0 outside this locus.

In other words, if we start in the origin, the invariant τ remains constant if we generalise in the

x1 or the x2 directions separately, but not if we generalise in both these directions at the same

time. In particular, the locus where τ assumes its maximum is not smooth.

As a side remark, the conormal invariant τ actually plays a role in the destackification

algorithm and will be introduced as the toroidal index in Definition 7.4 in the next section.

Proposition 6.19. Let (X,E)/S be a standard pair with diagonalisable stabilisers and let

ι : U → W be a smooth conormal invariant. Let m be a maximal value for ι(X,E)/S . Then

the locus where ι(X,E)/S obtains m has a unique structure of a smooth substack of X having

normal crossings with E.

Proof. The question is local on the base, so we may assume that S = SpecR is affine. By a

standard limit argument, we may also assume that R is noetherian.

We start by investigating the situation locally. Let X be a basic toric stack with homogeneous

coordinates

(R[x1, . . . , xr], A, (a1, . . . , ar))

and let E = (E1, . . . , Es), with Ei = V (xi) for some s 6 r.
Now let α = (A,v) be the toric type at the origin, and let β = (A′,v′) be the greatest lower

bound of the set {α′ | α > α′, ι(α) = ι(α′)}. Such an element exists since the set is finite, and it

is contained in the set by the smoothness hypothesis for ι. Let J ⊆ {1, . . . , r} be the maximal

subset defining the relation β 6 α as in Definition 6.7, and let K be the kernel of the canonical

group homomorphism A → A′. Furthermore, define O = {1, . . . , s}\J and P = {s+ 1, . . . , r}\J .

From the explicit description of the toric type for a basic toric stack given in Proposition 6.5,

it is easy to see that the maximal locus for ι(X,E)/S is Z = V (xi | i ∈ O ∪ P ). In particular,

the substack Z is smooth. The locus F = V (xi | i ∈ O) is the intersection of the divisors Ei

containing Z.

If S is reduced, the substack Z ⊂ X is clearly the only substack structure on the underlying

space |Z| of the required form. If S is non-reduced, we can, by the noetherian hypothesis, factor

the map Sred ↪→ S into a finite sequence of nilpotent thickenings defined by square zero ideals.

It is enough to show that the substack structure of Zred lifts uniquely at each step. This reduces

the situation to the following deformation problem:

Z // F �
� // X // S

Z0
� � //

OO

F0
� � //

OO

X0
//

OO

S0
?�

OO

where the map S0 → S is a nilpotent thickening defined by a square zero ideal N . We want to

show that the stack Z, together with the dashed arrows, is essentially the only stack fitting into

the diagram, in a way such that the leftmost square becomes cartesian and the stack becomes

smooth over S. Note that, since we require Z to have normal crossings with E, we deform

Z inside F and not inside X. Let I be the ideal 〈xi | i ∈ P 〉 in the homogeneous coordinate

ring of F0 and let I be the corresponding ideal in OF0 . Let M be the sheaf of OZ0-modules
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HomOZ0
(I/I2, N ⊗OZ0). Then the set of objects completing the diagram is a torsor under the

group H0(Z0,M). The sheaf M corresponds to the graded R′-module

M• = Hom•R′(I/I
2, N ⊗R′),

where R′ is the A-graded ring R[x1, . . . , xs]/〈xi | i ∈ O ∪ P 〉. The global sections functor factors
through the pushforward functor π∗, where π : Z0 → (Z0)cs is the map to the coarse space, and
π∗M is simply the degree-zero part of M•, viewed as an (R′)0-module. But the homogeneous
elements of R′ have degrees in K, whereas I is generated by homogeneous elements with degrees
not in K. It follows that the degree-zero part of M• is the zero module, which shows that the
lift of Z0 is unique.

Now let X ′ → X be an étale stabiliser-preserving map. Denote the pull-backs of Z0 and Z
by Z ′0 and Z ′, respectively. The natural map Z ′0 → Z0 is also étale and stabiliser-preserving. By
flatness, the sheafM pulls back to the sheafM′ = HomOZ′0 (I ′/(I ′)2, N ⊗OZ′0), where I ′ is the

ideal sheaf defining Z ′0 in X0. The square

X ′ //

��

X

��
(X ′)cs

// Xcs

formed by the maps to the coarse spaces is cartesian and the horizontal maps are étale. Hence,
also H0(Z ′0,M′) = 0, and we get unicity for the closed substack Z ′ ⊂X ′. A general stack (X ′′, E′′)
satisfying the standard hypothesis can be covered by stacks as X ′ above. The unicity of Z ′ ⊂ X ′
asserts that the stack structure descends to a closed substack Z ′′ of X ′′, as desired. 2

7. Outline of the algorithms

In this section, we outline the destackification algorithms. We also introduce the various conormal
invariants used by the algorithms and describe how they are used. All invariants we define, except
the divisorial type, take values among the natural numbers.

Definition 7.1 (Independency index). Let α = (A,v) be a toric type with v = (v1, . . . , vr) and
vj = (aj , ej). An element vj of the sequence v is called independent if the intersection

〈aj〉 ∩ 〈a1, . . . , âj , . . . , ar〉 (7.1)

is the trivial subgroup. The independency index of α is the number of elements in the sequence
v which are not independent.

The following definition is a direct generalisation of the concept of independency for toric
divisors on toric stacks (see Definition 3.17).

Definition 7.2. Let (X,E)/S be a standard pair with diagonalisable stabilisers. Let ξ be a
point in X and E a component of E passing through ξ. Assume that the toric type at ξ is
(A,v). Then E is said to be independent at ξ provided that the element in v marked by E
is independent in the sense of Definition 7.1. The component E is said to be independent if it is
independent at each of its points.
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Table 7.1. The table shows some conormal invariants computed for various toric types. The
columns marked by ι, τ and δ contain the independency index, the toroidal index and the
divisorial index, respectively. The column marked by δi, for i ∈ {1, 2, 3, 4}, contains the Ei-
divisorial index.

The independency index measures how far the coarse space Xcs is from being smooth.
In particular, the invariant vanishes at a point ξ ∈ |X| precisely when Xcs is smooth
at the corresponding point. This easily follows from Propositions 3.18 and 3.19 by using
local homogeneous coordinates as described in § 5. Thus, one of the main objectives of the
destackification process is to make this invariant vanish.

Example 7.3. Table 7.1 gives several examples where the various conormal invariants introduced
in this section are computed. An example where the independency index does not vanish is given
in row 3. Here v1 and v4 are independent whereas v2 and v3 are not. Hence, the independency
index is 2.

Although the independency index is a smooth conormal invariant, in the sense of
Definition 6.16, it is not fruitful to just repeatedly blow up the locus where the invariant
assumes its maximum, as was demonstrated in Example 4.3. Instead we would like to use the
combinatorial approach described in Algorithm A. This requires that we have enough globally
defined divisors to work with. We introduce a conormal invariant that quantifies this.

Definition 7.4 (Toroidal index). Let α = (A,v) be a toric type with v = (v1, . . . , vr) and vi =
(ai, ei). The toroidal index of α is the number of elements in the sequence v which are unmarked
and have non-trivial weight. That is, the number of elements vi of the form vi = (ai, ∗) with
ai 6= 0. If the toroidal index is zero at a point ξ ∈ X, we say that (X,E)/S is toroidal at ξ. The
standard pair (X,E)/S is toroidal if it is toroidal at each of its points.

Remark 7.5. This definition of toroidal stack is closely related to the classical definition of
toroidal variety given in [KKMS73]. By using local homogeneous coordinates, it is easy to see
that a stack is toroidal at a point ξ precisely when it has a toric chart at ξ, which is compatible
with E in the sense of Definition 5.1, such that E(ξ) is in one-to-one correspondence with the
toric divisors of the chart. If S is the spectrum of a field, this implies that the pair (Xcs, Ucs) is
a toroidal variety in the sense of [KKMS73], where Ucs is the coarse space of the complement of
the support of E. More generally, if S is a scheme, then (Xcs, Ucs)/S is a flat family of toroidal
varieties. It should be noted that since we assume that our toric stacks are simplicial, not every
toroidal variety can be constructed in this way.
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Let (X,E) be a standard pair. The following example illustrates that in order to obtain a
destackification in the sense of Definition 2.3, it is necessary to bring both the independency
index and the toroidal index to zero. That this is also sufficient, at least if the components of E
are connected, will be proved in Proposition 8.7.

Example 7.6. Let C be a nodal cubic in the projective plane P2
k, where k is a field, and denote the

node by P ∈ P2
k. By using the construction from [MO05, Theorem 4.1], which is a generalisation

of the root construction, it is possible to construct a stack X with coarse space P2 such that
the stabiliser over the smooth locus of C is µ3. Although the coarse space of X is smooth, the
standard pair (X,∅) is not toroidal. The toric type at the point lying over the node of C will be
as in row 2 of Table 7.1. Note that although X is a root stack over its coarse space over an étale
neighbourhood of P , it is not possible to describe X as a root stack of Xcs in any simple normal
crossings divisor.

Since the toric destackification process is essentially a global approach, some care must be
taken when destackifying stacks which are not toric, but only toroidal. This is illustrated by the
following example.

Example 7.7. Consider a two-dimensional toroidal stack (X,E), where E has two components
E1 and E2 that intersect at two points P and Q.

Assume that the independency index is 2 at P and Q. Clearly, we must blow up both P and
Q during the destackification process, but not necessarily at the same time. Locally, at each of
the points P and Q, the stack X is isomorphic to toric stacks, but these stacks need not be
isomorphic to each other. Thus, it might be necessary to apply different combinatorial recipes to
destackify the points. Even if they are isomorphic, the components E1 and E2 may play different
roles, so the order of the components are important.

The example shows that we need an invariant which captures the combinatorial recipe for
destackification. In principle, we use the stacky cone describing the toric stack to which X is
locally isomorphic at the point in question. We shall, however, use a more algebraic description.

Definition 7.8 (Divisorial type). Let E be a finite set. The set T (E) of divisorial types
parametrised by E is the subset of the set U(E) of toric types consisting of elements represented
by pairs (A,v) such that:

(i) all elements in v are marked by some divisor in E;

(ii) no element in v is independent in the sense of Definition 7.1;

(iii) the group A is generated by the weights of the elements of v.

Given a toric type (A,v), its associated divisorial type is the pair (A′,v′), where v′ is the
subsequence of v of elements which are marked and not independent and A′ is the subgroup
generated by the weights of v′.
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Example 7.9. The divisorial type associated to the toric type in row 4 in Table 7.1 is (C6 × C2,
(a1, E1), (a2, E2)), with a1 = (1, 0) and a2 = (5, 1). Note that this is the same as the divisorial
type for the toric type in row 5. Indeed, since v3 is independent, it is omitted from the divisorial
type and the subgroup of C6×C6 generated by (1, 0) and (5, 3) is isomorphic to C6×C2 with (1, 0)
and (5, 3) in C6 ×C6 corresponding to (1, 0) and (5, 1) in C6 ×C2 under this isomorphism. The
divisorial type for row 6 is given by (C6×C2, (a1, E1), (a2, E2)), with a1 = (1, 0) and a2 = (1, 1).
Although the set of divisors and the isomorphism class of the group are the same as for row 4,
this divisorial type is different since there is no automorphism of C6 ×C2 taking the pair (1, 0),
(5, 1) to the pair (1, 0), (1, 1).

The set T (E) of divisorial types parametrised by E inherits a partial ordering from the
partial ordering on U(E). We refine this partial ordering to a total ordering. First we give an
alternative description of the set T (E). Let (A,v) be a divisorial type with v = v1, . . . , vr and
vi = (ai, ei). By Definition 7.8(i), each element ei is an element Ei of E and we may assume that
indexing is chosen such that e1, . . . , er is decreasing. The sequence a1, . . . , ar of weights defines a
group homomorphism ϕ : Zr → A. By Definition 7.8(ii), this is surjective and therefore fits into
an exact sequence

0 → K
f−→ Zr ϕ−→ A → 0 (7.2)

with K being free of rank r since A is finite. Note that the divisorial type (A,v) is uniquely
determined by the subsequence (E1, . . . , Es) of E together with f up to composition by an
automorphism of K. By choosing a basis of K, we may view f as a non-singular r-by-r matrix
with integer entries and the automorphisms of K as elements in the unimodular group GLr(Z).
A coset in Matr×r(Z)/GLr(Z) has a unique representative on Hermite normal form (see [Coh93,
§ 2.4.2]). Recall that a non-singular matrix H = (aij) is on Hermite normal form if it is upper
triangular, with aii > 0 for all i, and aii > aij > 0 for j > i. This allows us to uniquely associate
a pair (E′, H) to each element of T (E), where E′ is a subsequence of E of some length r and H
is a non-singular r-by-r matrix with integer entries on Hermite normal form. We order such pairs
first lexicographically on E′ and then lexicographically on the entries of H. Here the entries are
ordered first by rows, with high row numbers being more significant, and then by columns, with
low column numbers being more significant. We illustrate the ordering by an example.

Example 7.10. The Hermite normal forms of the matrices, as discussed above, associated to the
examples in the rows 4, 5 and 6 in Table 7.1 are computed to(

6 2

0 2

)
,

(
6 2

0 2

)
,

(
6 4

0 2

)
,

respectively. In particular, the divisorial type of the example in row 6 is larger than the divisorial
type for the others.

It is easy to see that this ordering is a refinement of the partial ordering inherited by U(E)
and that taking the associated divisorial type of an arbitrary toric type gives a conormal invariant
U → E.

Remark 7.11. To any divisorial type (A,v), we get an associated orbifold fan Σ = (N,Σ, β) with
a unique maximal cone such that the rays in Σ(1) are labelled by the markings on the elements of
v. Indeed, consider the exact sequence 7.2. Define N as the dual HomZ(K,Z) of K and β as the
dual HomZ(f,Z) of f . The cones of Σ are the cones spanned by all subsets of {β(u1), . . . , β(us)},
where ui denotes the dual of the standard basis of Zs.
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Figure 7.1. The stacky fans associated to the divisorial types associated to the toric types in
rows 4 and 5 (left-hand picture) and row 6 (right-hand picture) of Table 7.1.

Example 7.12. The stacky fans associated to the divisorial types described in Example 7.10
are pictured in Figure 7.1. Running Algorithm B on the orbifold fan in the left-hand picture
yields a destackification in three steps (this is illustrated in Figure 8.3). The corresponding
destackification for the orbifold fan in the right-hand picture terminates after a single blow-up.
This illustrates that different combinatorial recipes may be needed for different divisorial types.

The techniques described so far are enough to solve the destackification problem in the
toroidal case. The procedure is described by Algorithm E in the next section if we omit Step E5.
If we do not have a toroidal structure when we start, we need to create one. One problem is that
the toroidal index is not a smooth conormal invariant, as was demonstrated in Example 6.18.
Instead of using the toroidal index directly, we introduce a coarser invariant, the divisorial index,
which may be thought of as a smoothed version of the toroidal index.

Definition 7.13 (Divisorial index). Let α = (A,v) be a toric type and let Adiv ⊆ A be the
subgroup generated by the weights of the elements of v which are marked by some divisor. The
divisorial index of α is the number of elements vi in the sequence v with weights ai satisfying
ai 6∈ Adiv. If the divisorial index is zero at ξ, we say that the standard pair (X,E)/S is divisorial
at ξ. Furthermore, we say that the pair (X,E)/S is divisorial if it is divisorial at each of its
points.

Remark 7.14. Geometrically, the property for a stack of being divisorial can be understood as
follows: each of the components Ei of E gives rise to a Gm-torsor F i, and the fibre product
F = F 1 ×X · · · ×X Fm is a Gr

m-torsor. If X is an orbifold, the pair (X,E) is divisorial precisely
when F is an algebraic space. This is equivalent to the stacky locus being contained in the divisor
E. In general, the pair (X,E) is divisorial precisely when F is a gerbe.

Classically, a scheme is called divisorial [SGA6, Definition 2.2.5] if it has an ample family
of line bundles. This is equivalent to the scheme having a Gn

m-torsor, for some n, whose total
space is quasi-affine (see [Hau02, Theorem 1] for varieties and [Gro13, Corollary 5.5] for the
generalisation to stacks). Hence, our notion of divisorial stack is related, but not equivalent, to
the classical definition.

The process of modifying X such that it becomes divisorial is straightforward, and described
in Algorithm C. But to modify a divisorial stack such that it becomes toroidal is trickier. It turns
out that, in general, this is not possible by just using ordinary blow-ups; root stacks are needed.
It seems that the easiest approach is to interleave the process of reducing the toroidal index with
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the process of reducing the independency index. Simply put, we just ignore the fact that (X,E)
is not toroidal, and use exactly the same algorithm as in the toroidal case. The distinguished
divisors we create will, in general, not be independent in this case, but they will have the weaker
property of being divisorially independent.

Definition 7.15. We assume that (X,E)/S is divisorial. Let ξ ∈ X be a point and let E be a
component of E passing through ξ. Assume that the toric type at ξ is (A,v) with v = (v1, . . . , vr)
and vi = (ai, ei). Choose the indexing such that v1 is marked by E and v2, . . . , vs are the
other marked elements of v. We say that E is divisorially independent at ξ provided that the
intersection 〈a1〉 ∩ 〈a2, . . . , as〉 is the trivial subgroup. A component of E not passing through ξ
is considered divisorially independent at ξ by default.

Note that the property for a component of E of being independent at a point ξ ∈ X does not
depend on the other components of E, whereas the property of being divisorially independent
does.

This reduces the problem to modifying (X,E) such that the divisorially independent divisors
become independent. This is achieved by Algorithm D. Or, rather, the algorithm ensures that
either the divisor becomes independent or the toroidal index drops. In either case we get an
improvement, which allows us to solve the problem by repeating the procedure.

The main invariant used by Algorithm D is slightly more subtle than the others.

Definition 7.16 (E-divisorial index). Let α = (A,v) ∈ U(E) be a toric type with divisorial
index zero, with v = (v1, . . . , vr) and vi = (ai, ei). Fix a component E of E. If none of the
elements of v are marked by E, then the E-divisorial index of α is defined to be zero. Otherwise,
we choose the indexing such that e1 = E and consider the groups

Adiv = 〈ai | ei 6= ∗〉, A1
div = 〈ai | ei 6= ∗ and i 6= 1〉.

Then the subquotient AE = Adiv/A
1
div of A is cyclic and generated by the canonical image ā1 of

a1 in AE . Since the divisorial index is assumed to be zero, each weight ai for any element has a
canonical image ai in AE . Let ci be the smallest non-negative number such that ai = cia1. The
E-divisorial index is defined as the sum

c =
∑
ej=∗

cj .

Example 7.17. Consider the toric type in row 7 in Table 7.1. Using the notation from
Definition 7.16, we have AE

1 ∼= C3. Choose the isomorphism such that the image of a1 is 1
in C3. Then the images of a3 and a4 are 1 and 2, respectively. Hence, the E1-divisorial index
is 3.

The E-divisorial index measures how far a divisorially independent divisor E is from being
actually independent. More precisely, the following is true: let (X,E) be a standard pair and let
Ei be a component of E. Choose a point ξ ∈ Ei, where (X,E) is divisorial and Ei divisorially
independent. Then Ei is independent at ξ if and only if the Ei-divisorial index vanishes at ξ.

We conclude the section by summarising the properties of the conormal invariants introduced
here.

Proposition 7.18. All of the following conormal invariants satisfy the properties (P1) and (P2)
defined in § 6:
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(a) independency index;

(b) toroidal index;

(c) divisorial type;

(d) divisorial index;

(e) E-divisorial index for any component E ∈ E.

Of these, the invariants (a), (d) and (e) are smooth. The invariants (b) and (c) are not
smooth, but they are locally constant on the locus where the independency index obtains its
maximum.

Proof. Let (A,v) ∈ U(E) be a toric type with v = (v1, . . . , vr) and vj = (aj , ej). We choose the
indexing and integers s, t such that ej = ∗ precisely when j > s and vj = (0, ∗) precisely when
j > t. We denote the subgroup generated by a1, . . . , ar by Arig.

Let ι be one of the conormal invariants in (a)–(e). To see that the conditions (P1) and (P2)
are satisfied for ι, we need to verify that ι(A,v) = ι(Arig, (v1, . . . , vs)). For the independency
index this is clear since the definition only involves Arig and the sequence a1, . . . , ar and since
the condition (7.1) is trivially verified whenever aj = 0. The conditions are equally easy to verify
for the other invariants and we leave the details to the reader.

Now consider a toric type (A′,v′) which is dominated by (A,v) and use the notation v′ =
(v′1, . . . , v

′
r) and v′j = (a′j , e

′
j). By definition, we obtain (A′,v′) by choosing a subset J ⊂ {1, . . . , r}

and letting

A′ = A/〈aj | j ∈ J〉, a′j = āj , e′j =

{
∗ if j ∈ J,
ej otherwise,

where āj denotes the canonical image of aj in A′. Let ι denote one of the conormal invariants
in (a), (d) or (e). In each case we state the precise condition on J under which we have
ι(A,v) = ι(A′,v′):

(a) 〈aj〉 ∩ 〈a1, . . . , âj , . . . , ar〉 = 0 for each j ∈ J ;

(d) aj ∈ Adiv = 〈a1, . . . , as〉 for each j ∈ J ;

(e) aj ∈ 〈a1, . . . , âk, . . . , as〉 for each j ∈ J , where k corresponds to the given divisor.

From these characterisations, it is clear that the smoothness condition of Definition 6.16 is
satisfied for all three invariants.

The last statement follows from the fact that the independency index must drop if either the
toroidal index or the divisorial type drops. 2

8. The destackification algorithm

In this section, we give the full details of the destackification algorithms outlined in the previous
section. We fix some notation which will be used throughout the section.

Let (X0,E0)/S be a standard pair with diagonalisable stabilisers over a quasi-compact
scheme S. We wish to construct a smooth, stacky blow-up sequence

Π: (Xn,En) → · · ·→ (X0,E0).

Each stacky blow-up πi : (Xi+1,Ei+1) → (Xi,Ei) in the sequence will have a centre Zi which
is determined by some smooth conormal invariant ι as described in Proposition 6.19. Different
invariants ι will be used at different stages of the algorithm.
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Let ξi ∈ Xi be a point, which we assume lies in Zi. Typically, we wish to investigate how
the value of some conormal invariant ι under consideration at a lift ξi+1 of ξi to Xi+1 relates to
the value of ι at ξi. Assume that the toric type of Xi at ξi is (A,v), where v = (v1, . . . , vr) and
vj = (aj , ej). It is convenient to work with local homogeneous coordinates, which we may do in
light of the locally toric description of standard pairs given in Proposition 5.3 together with the
functoriality properties of conormal invariants described in Proposition 6.14. Hence, we may just
as well assume that Xi is a basic toric stack with homogeneous coordinates

(OS [x1, . . . , xr], A, (a1, . . . , ar)) (8.1)

and that ξi lies in the locus where the toric type is maximal, which is V (xj | aj 6= 0 or ei 6= ∗).
The substack Zi is of the form

Zi = V (xj | j ∈ J), J ⊆ {1, . . . , r}, (8.2)

where the subset J depends on the toric type (A,v) as well as the conormal invariant ι under
consideration. The blow-up Xi+1 is covered by |J | coordinate patches indexed by p ∈ J . The
coordinates for these patches are

(OS [x̃1, . . . , x̃r], Ã, (ã1, . . . , ãr)) (8.3)

with

Ã = A, x̃j =

{
xj/xp if j ∈ J\{p},
xj otherwise,

ãj =

{
aj − ap if j ∈ J\{p},
aj otherwise.

(8.4)

In these coordinates V (x̃j) is the strict transform of V (xj) if j 6= p and V (x̃p) is the exceptional
divisor, which we denote by F . We see that the toric type at the patch is bounded above by
(Ã, ṽ), with ṽ = (ṽj) and ṽj = (ãj , ẽj), where ẽj is given by

ẽj =


F if j = p,

π−1
i (ej) if ej ∈ Ei and j 6= p,

∗ otherwise.

(8.5)

Algorithm C (Divisorialification). The input of the algorithm is a standard pair (X,E) over a
quasi-compact scheme S, with X having diagonalisable stabilisers. The output of the algorithm
is a smooth, ordinary blow-up sequence

Π: (Xn,En) → · · ·→ (X0,E0) = (X,E)

such that (Xn,En)/S is divisorial. The construction is functorial (see Definition 2.6) with respect
to arbitrary base change S′ → S and with respect to morphisms X ′ → X which are either gerbes
or smooth and stabiliser-preserving.

C0. [Initialise.] Set i = 0.

C1. [Finished?] Let Zi be the locus in Xi where the divisorial index of the standard pair (Xi,Ei)
is maximal. If Zi = Xi, then the algorithm terminates.

C2. [Blow up.] Let πi : (Xi+1,Ei+1) → (Xi,Ei) be the blow-up of Xi in Zi.

C3. [Iterate.] Increment i by 1 and iterate from Step C1.

Proof of correctness of Algorithm C. We will show that the maximum of the divisorial index
decreases strictly after each iteration of the algorithm. This cannot continue forever, so the
algorithm eventually halts. Since the divisorial index vanishes generically, it must vanish
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Figure 8.1. The blow-up tree produced by Algorithm C for the input described in Example 8.1.
The first three columns correspond to the three blow-ups performed by the algorithm and, at
each blow-up, the coordinate patches marked by • are replaced by one or more patches. These
columns are labelled by the exceptional divisor of the corresponding blow-up. The indices j in
the set J , as defined in (8.2), are indicated by underlining the corresponding weight aj . The
column marked by δ contains the divisorial index.

identically when the algorithm halts, which proves that (Xn,En) is indeed divisorial. The
functoriality properties follow directly from the corresponding functoriality properties of
conormal invariants described in Proposition 6.14.

Assume that we are in Step C2 and fix a point ξi ∈ Zi with toric type (A,v). We use
the notation from the introduction of the section. To verify that the divisorial index decreases,
we may work locally and without loss of generality assume that Xi is a basic toric stack with
homogeneous coordinates as in (8.1). Let Adiv ⊂ A be the subgroup of A generated by the weights
aj such that ej 6= ∗. Recall from Definition 7.13 that the divisorial index is the number of indices
j ∈ {1, . . . , r} such that aj 6∈ Adiv. It follows that the set J , as defined in (8.2), corresponding to
the divisorial index is simply J = {j | aj 6∈ Adiv}.

Now consider the coordinate patch of Xi+1 corresponding to p ∈ J , with coordinates as in
(8.3). From (8.4) and (8.5), we see that the subgroup Ãdiv ⊆ A generated by the weights ãj
for which ẽj 6= ∗ is generated by Adiv and ap. It follows that ãj 6∈ Ãdiv implies that aj 6∈ Adiv.

Moreover, we have ãp ∈ Ãdiv whereas ap 6∈ Adiv. Hence, the divisorial index at each point in
(Xi+1,Ei+1) is strictly smaller that the divisorial index at ξi, which concludes the proof. 2

Example 8.1. Let k be a field and consider the basic toric stack (X,E) with homogeneous
coordinates (k[x1, x2, x3], C6, (4, 2, 3)) and E = ∅. The blow-up tree generated by Algorithm C
with this input is described in Figure 8.1. The algorithm terminates after three iterations. Note
that the third blow-up does not modify the underlying stack. However, it is non-trivial in the
sense that it modifies the ordered set of divisors.

The following example illustrates that divisorialification can be non-trivial even if the stack
we start with has a smooth coarse space.

Example 8.2. Consider the standard pair (X,∅) described in 7.6. The divisorialification
algorithm will first blow up the point lying over the node of C, which has divisorial index 2.
Note that the strict transform C̃ of the divisor C is smooth. The divisorial index vanishes away
from C̃ and is one at each point of C̃. Hence, the algorithm terminates after blowing up C̃ in
the second iteration. In this particular case, we actually even get a destackification of (X,∅).
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Recall the definition of a distinguished structure on a standard pair from Definition 2.7.

Algorithm D (Divisorialification along distinguished divisors). The input of the algorithm is
a divisorial stack with distinguished structure (X,E,D) over a quasi-compact base scheme S.
The output of the algorithm is a smooth, ordinary blow-up sequence

Π: (Xn,En,Dn) → · · ·→ (X0,E0,D0) = (X,E,D),

with each blow-up being admissible (see Definition 2.7). The resulting triple (Xn,En,Dn) has the
property that for each component D ofDn, the D-divisorial index, in the sense of Definition 7.16,
vanishes. Furthermore, each of the centres Zi in the blow-up sequence is contained in exactly
one of the components of Di and transversal to all other components of Ei. The construction is
functorial (see Definition 2.6) with respect to arbitrary base change S′ → S and with respect to
morphisms X ′ → X which are either gerbes or smooth and stabiliser-preserving.

D0. [Initialise.] Let i = 0.

D1. [Finished?] Let D′i denote the oldest component ofDi for which the D′i-divisorial index does
not vanish identically. If no such component exists, the algorithm terminates. Otherwise,
we let Zi be the smooth substack of Xi where the D′i-divisorial index assumes its maximal
value.

D2. [Blow up maximal locus.] Let πi : (Xi+1,Ei+1,Di+1) → (Xi,Ei,Di) be the blow-up of Xi

in Zi.

D3. [Iterate.] Increment i by one and iterate from Step D1.

Proof of correctness of Algorithm D. Assume that we are in iteration i. Let ξi ∈ Zi be a point
in the centre of the blow-up, and let ξi+1 be an arbitrary lifting of ξi to the exceptional locus.
We will prove the following three statements.

(i) The D̃-divisorial index at ξi+1 for the strict transform D̃ of any component D of Di is
not larger than the D-divisorial index at ξi.

(ii) In the case where the component in the previous statement is D′i, the index is strictly
smaller.

(iii) The F -divisorial index at ξi+1, where F is the exceptional divisor of the blow-up, is
strictly smaller than the D′i-divisorial index at ξi.

Together these statements prove that the algorithm terminates with the right exit condition.
Indeed, let N be the maximum of the D-divisorial index where D ranges through the components
of D0. At each iteration i, let wj be the number of components D of Di such that the
maximum of the D-divisorial index is j. Then the N -tuple (wN , wN−1, . . . , w1) decreases strictly
in lexicographical ordering with each iteration of the algorithm.

We use the notation from the introduction of the section. To verify the statements above, we
may work locally and assume that Xi is a basic toric stack with homogeneous coordinates as in
(8.1). We choose the indexing such that the divisor D′i as defined in Step D1 is V (x1). For each
k ∈ {1, . . . , r}, we define the subgroup

Akdiv = 〈aj | j 6= k, ej 6= ∗〉

and, for each j ∈ {1, . . . , r}, we define ckj as the smallest natural numbers such that aj ≡
ckjak mod Akdiv. Recall from Definition 7.16 that if V (xk) corresponds to a component E of

E, the E-divisorial index is given by
∑
ckj , where the sum is taken over the indices j such that

ej = ∗.
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Figure 8.2. Blow-up tree produced by Algorithm D as described in Example 8.3. The last five
columns contain the independency index, the toroidal index and the Dj-divisorial indices with
j equal to 1, 2 or 3, respectively.

The set J , defined as in (8.2), with respect to the D′-divisorial index is the set of indices j
such that c1

j 6= 0. Fix p ∈ J and consider the corresponding patch of Xi+1 with homogeneous

coordinates as in (8.3). We define Ãkdiv and c̃kj similarly as above.
Now assume that V (xk) corresponds to a component D of the distinguished divisorDi. When

computing the π−1
i (D)-divisorial index, we may assume that k 6= p. Then Ãkdiv = Akdiv + 〈ap〉. It

follows that for any j such that 1 6 j 6 r, we have

ãj ≡ ckjak mod Ãkdiv,

so c̃kj 6 c
k
j . By taking the sum over all j such that ẽj = ∗, we see that the π−1

i (D)-divisorial index
is bounded above by the D-divisorial index, which proves the first statement. In the particular
case when k = 1, one verifies that c̃1

p = 0, whereas c1
p 6= 0, which proves the second statement.

Finally, we investigate the F -divisorial index where F is the exceptional divisor, which is
given by V (yp). We have Ãpdiv = A1

div + 〈a1 − ap〉, so ãp ≡ ap ≡ a1 mod Ãpdiv. For j ∈ J , we get

ãj ≡ aj − ap ≡ (c1
j − 1)ãp mod Ãpdiv,

which proves that c̃pj < c1
j , and the third statement follows. 2

Example 8.3. Let k be a field. Figure 8.2 illustrates the blow-up tree produced by Algorithm D
when applied to the standard pair (X,E,D) with distinguished structure D defined as follows:
the stack X is the basic toric stack with homogeneous coordinates (k[x1, . . . , x4], (C3)2,a), where
a = ((0, 1), (1, 0), (1, 1), (2, 1)). We let E1 = V (x1) and D1 = V (x2). The ordered sets E and D
are defined as (E1, D1) and (D1), respectively.

Lemma 8.4. Let (X,E,D) be a divisorial stack with distinguished structure over a quasi-
compact scheme S, and let

Π: (Xn,En,Dn) → · · ·→ (X0,E0,D0) = (X,E,D)

be the output of Algorithm D applied to (X,E,D). Let ξ0 ∈ X0 be a point at which all
distinguished divisors are divisorially independent in the sense of Definition 7.15. For each i
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such that 0 < i 6 n, let ξi ∈ Xi be a lift of ξi−1 such that the toroidal index (see Definition 7.4)
at ξi is the same as the toroidal index at ξi−1. Then all components of Di are divisorially
independent at ξi. In particular, all components of Dn are independent at ξn in the sense of
Definition 7.2.

Proof. Note that a divisor E is independent at a point if and only if it is divisorially independent
and the E-divisorial index is zero. This is an easy consequence of the definitions. Therefore, the
last statement of the lemma follows from the second last statement.

We fix i and assume that all components of Di are divisorially independent at ξi. We want
to prove that all components of Di+1 are divisorially independent at ξi+1.

As usual, we may work locally and assume that Xi is a basic toric stack. We use the
same notation as in the proof of correctness of Algorithm D. We need only consider the patch
corresponding to p= 1 of the blow-up, since the toroidal index is lower at all other patches. But, at
this patch, we have ẽj ∈Ei+1 (or ẽj ∈Di+1) precisely when ej ∈Ei (or ej ∈Di). Furthermore, we
have ãj = aj whenever ej 6= ∗. From this it follows that the distinguished divisors are divisorially
independent at ξi+1 provided that the distinguished divisors are divisorially independent at ξi,
as desired. 2

Example 8.5. Consider the standard pair (X,E,D) from Example 8.3. Note that the divisors
in E are divisorially independent (see Definition 7.15) since the group (C3)2 is a direct sum of
the cyclic groups generated by the weights a1 and a2 of the coordinate functions x1 and x2,
respectively. Hence, Lemma 8.4 applies. From Figure 8.2, we see that the a1 coefficient has been
reduced to zero in the weights of the third and fourth coordinate functions in chart 3. Hence, the
divisor D3 is independent at this chart (see Definition 7.1). At all other terminal charts, i.e., the
charts 4, 6, 7 and 8, the property of divisorial independence is destroyed. Note, however, that at
these charts the toroidal index has dropped.

Let (X,E) be a standard pair. Recall that we do not require the components of the sequence
E to be connected (see Definition 2.1). This poses a small technical problem at the final stage of
the destackification process. To deal with this, we introduce the concept of a refinement of the
sequence E.

Definition 8.6. Let (X,E) and (X,E′) be standard pairs. Assume that the sequence E is
indexed by the set [s] = {1, . . . , s} and E′ by the set [s′] = {1, . . . , s′}. We say that E′ is a
refinement of E if there exists a surjective function f : [s′] → [s] such that for each i ∈ [s], the
component Ei in E is the disjoint union

⋃
j(E

′)j , with (E′)j ∈ E′, where the union is taken over

the set f−1({i}).

The next proposition shows that, up to a refinement of the divisor E, a divisorial standard
pair (X,E) is destackified (cf. Definition 2.3) provided that the independency index vanishes
everywhere.

Proposition 8.7. Let (X,E)/S be a divisorial stack over a quasi-compact scheme S, and
assume that the independency index is everywhere zero at X. Let π : X → Xcs be the coarse
space. Then (Xcs,Ecs)/S is a standard pair. In particular, the stack Xcs is smooth and Ecs has
simple normal crossings.

Moreover, there exists a refinement E′ of E, in the sense of Definition 8.6, such that the
following holds.
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(i) The divisor E′ is the dth root of π∗E′cs for some sequence d of positive integers indexed by
the components of E′.

(ii) The canonical factorisation X → (Xcs)d−1E′cs
→ Ecs makes X a gerbe over the stack

(Xcs)d−1E′cs
.

Proof. That Xcs is smooth and that Ecs has normal crossings can be verified étale locally on
Xcs. Hence, we may assume that X is a basic toric stack with homogeneous coordinates as in
(8.1). We use the notation

R := OS [x1, . . . , xr].

We choose the coordinates such that the components of E are V (xj) for j ∈ {1, . . . , s}. Let
Arig = 〈a1, . . . , ar〉. By the assumption that the independency index is everywhere zero, we have
Arig =

⊕r
j=1Aj with each group Aj finite and cyclic. By the assumption that (X,E) is divisorial,

the group Aj vanishes for each j > s.
Denote the order of Aj by dj . Then the coarse space is the relative spectrum of the invariant

ring
R′ := OS [xd1

1 , . . . , x
ds
s , xs+1, . . . , xr].

In particular, the coarse space is smooth since this is a polynomial ring. The coarse space Ejcs of a

component Ej of E corresponding to the jth coordinate is V (x
dj
j ). Hence also Ejcs is smooth, and

the divisors Ejcs, . . . , E
j
cs have simple normal crossings. This proves that (Xcs,Ecs) is a standard

pair.
From the local coordinates, we also see that Ej is a djth root of π−1(Ejcs). Globally, the

coefficient dj is locally constant on Ej . By refining E such that dj becomes constant on each
component, we may assume that Ej is the djth root of π−1(Eics) globally, which proves (i).
This gives the factorisation in (ii) by the universal property of root stacks. The fact that X
is a gerbe over (Xcs)d−1Ecs

can again be verified locally. Here it follows from the sequence of
homomorphisms between the local homogeneous coordinate rings of graded OS-algebras

(R′, 0) → (R,Arig) → (R,A);

here the first map corresponds to the root stack and the second map corresponds to the gerbe
(cf. Remark 3.5). 2

Remark 8.8. Let (X,E) be a standard pair. It is easy to see that any refinement E′ of E can be
obtained via a sequence of blow-ups, at least if we do not care about the ordering of E′. Indeed,
we only have to blow up a suitable subset of the components of E′ one after another. Notice
that each such blow-up is trivial in the sense that it does not modify X since the centres of the
blow-ups are effective Cartier divisors.

Remark 8.9. A naive choice of refinement of E in Proposition 8.7 would be to take E′ such that
each component of E′ is connected. The problem with this choice is that it in general cannot
be made functorial, even with respect to isomorphisms. To see this, let X be a two-dimensional
orbifold admitting a non-trivial involution σ. Assume that P and Q are distinct points on X
which are exchanged by σ and that the corresponding points on Xcs are isolated singularities.
Then it is easy to see that any functorial destackification algorithm must blow up the points P
and Q simultaneously, which results in a disconnected divisor.

Remark 8.10. Let (X,E) be a divisorial standard pair and assume that the independency index
is everywhere vanishing. By Remark 8.8, there is a refinement E′ of E as in Proposition 8.7,
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but, by Remark 8.9, some care must be taken when constructing a refinement algorithm in order
to get the right functorial properties. A simple algorithm which works is to take each of the
components Ei of E and repeatedly blow up the locus where the order of the corresponding
weight ai in the toric type is maximal until the order becomes zero. This gives a refinement E′

such that the order of ai is constant for each component (E′)i of E′. We leave to the reader to
verify that this gives an algorithm with the right functorial properties and that E′ is a suitable
choice of refinement for the purpose of Proposition 8.7.

Algorithm E (Destackification). The input of the algorithm is a divisorial stack (X,E)
over a quasi-compact base scheme S. The output of the algorithm is a destackification (see
Definition 2.3)

Π: (Xn,En) → · · ·→ (X0,E0) = (X,E).

The construction is functorial (see Definition 2.6) with respect to arbitrary base change S′ → S
and with respect to morphisms X ′ → X which are either gerbes or smooth and stabiliser-
preserving.

E0. [Initialise.] Let i = 0.

E1. [Find the worst locus.] The main conormal invariant of the algorithm is the invariant
U(Ei) → N × N × T (Ei) composed lexicographically, in the sense of Example 6.12, by
the independency index (see Definition 7.1), the toroidal index (see Definition 7.4) and the
divisorial type (see Definition 7.8). Let Zi be the locus in Xi where this invariant obtains
its maximum. If Zi = Xi, we perform the algorithm indicated in Remark 8.10 and then
terminate.

E2. [Blow up Zi.] By construction of the main invariant in Step E1, the divisorial type is constant
at Zi. Let Σ be the orbifold fan with ordered rays associated to this divisorial type in the
sense of Remark 7.11. Let (Xi+1,Ei+1) → (Xi,Ei) be the blow-up of (Xi,Ei) in the centre
Zi. Denote the exceptional divisor by Di+1 and mark it as a distinguished divisor. Also,
let Σi+1 be the star subdivision Σ∗(σ), where σ is the maximal cone in Σ. We label the
exceptional ray δ by Di+1, and give Σi+1 a distinguished structure by letting {δ} be the
set of distinguished rays. Increment i by 1.

E3. [Perform toric destackification.] Perform Algorithm A on Σi, and denote the result by
Σi+k → · · ·→ Σi.

E4. [Perform corresponding stacky blow-ups.] Perform the corresponding stacky blow-ups on
(Xi,Ei,Di) to form the sequence

(Xi+k,Ei+k,Di+k) → · · ·→ (Xi,Ei,Di).

At each step, a star subdivision corresponds to a blow-up in the intersection of the divisors
labelling the rays of the subdivided cone. Rooting a ray corresponds to the taking of a root
stack of the same order in the corresponding distinguished divisor. Also, the ray–divisor
correspondence is extended in each step such that the exceptional ray of each subdivision or
root corresponds to the exceptional divisor of the corresponding stacky blow-up. Increment
i by k.

E5. [Eliminate divisorial index along distinguished divisors.] Perform Algorithm D on the triple
(Xi,Ei,Di), and append the output of the algorithm to the blow-up sequence. Increment
i by the length of the output. After this step we forget the distinguished structure.

E6. [Iterate.] Iterate from Step E1.
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Proof of correctness of Algorithm E. When the algorithm terminates, the independence index is
constant (zero) atXi, according to the termination criterion in Step E1. Hence, by Proposition 8.7
and Remark 8.10, we only need to prove that the algorithm terminates.

We will prove that the maximum of the conormal invariant composed by the independency
index, the toroidal index and the divisorial type decreases strictly with each iteration of the main
loop of the algorithm. Note that the independency index decreases weakly with each iteration
since all blow-ups performed during the iteration have centres with intersect the transforms of
the divisors which were independent at the start of the iteration transversally. It is easy to see
that also the toroidal index decreases weakly at each blow-up.

We examine how the invariant described above is affected during a single iteration of the
main loop. For notational convenience, we assume that i = 0 at the start of the iteration and
that i = n at the end of the iteration. Assume that we are in Step E1 of the algorithm, and let ξ
be any point in Z0. Since all blow-ups during a single iteration have centres lying above Z0, it is
enough to show that any point in Xn lying over ξ has either strictly lower independence index,
or strictly lower toroidal index, than ξ at the end of the iteration.

Using the notation from the beginning of the section, we denote the toric type at ξ by (A,v),
where v = (v1, . . . , vr) and vj = (aj , ej). Choose the indexing of v such that, for some integers
s, t satisfying 1 6 s 6 t 6 r, the following holds.

(i) The component vj is independent in the sense of Definition 7.1 if and only if j > t.

(ii) For indices j such that 1 6 j 6 s, we have ej ∈ E0.

(iii) For indices j such that s < j 6 t, we have ej = ∗.

In particular, the independency index at ξ is t. Note that since (X0,E0) is assumed to
be divisorial, we have aj = 0 for each j > t such that ej = ∗ by the assumption that vj is
independent. This implies that the toroidal index at ξ is t− s. The set J , as defined in (8.2), is
equal to {1, . . . , t}.

The toroidal index and the independency index can be computed using local homogeneous
coordinates, so we may just as well assume that X0 is a basic toric stack. Using the indexing
convention described above, the local homogeneous coordinates are given by

R = OS [x1, . . . , xs, xs+1, . . . , xt, xt+1, . . . , xr].

By our assumption that vj is independent for j > t, the group Arig = 〈a1, . . . , ar〉 ⊂ A splits as
a direct sum Arig = A′ ⊕A′′, where A′ = 〈a1, . . . , at〉 and A′′ = 〈at+1, . . . , ar〉.

After the blow-up in Step E2, the stack X1 is covered by |J | = t patches. Choose any p ∈ J
and let U1 ⊂ X1 be the corresponding coordinate patch. The coordinate ring of U1 is given by

R̃ = OS [x̃1, . . . , x̃s, x̃s+1, . . . , x̃t, x̃t+1, . . . , x̃r]

using the notation from (8.3). We define Ãrig ⊂ Ã and the subgroups Ã′ and Ã′ similarly as

above and note that Ã′ = A′ and Ã′′ = A′′.
If p > s, then ẽp 6= ∗ whereas ep = ∗, so the toroidal index at the patch is strictly lower than

the toroidal index at ξ. Hence, we may assume that p 6 s.
Next we consider the toric stacks X ′i associated to the stacky fans Σi. Recall that X ′0 is the

basic toric stack associated to the divisorial type of (A,v). Note that the group A′ is generated
by a1, . . . , as by the assumption that (X0,E0) is divisorial. It follows that the homogeneous
coordinates for X ′0 are

(R′ = OS [x1, . . . , xs], A
′, (a1, . . . , as)).
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By the assumption that p 6 s, the blow-up X ′1 contains a basic toric substack U ′1 ⊂ X ′1 with
homogeneous coordinates

(R̃′ = OS [x̃1, . . . , x̃s], Ã
′, (ã1, . . . , ãs)).

Now execute the partial toric resolution in Step E3, and assume that it finishes in k steps.
Also, perform the corresponding stacky blow-ups in Step E4. For each stacky blow-up Xi+1 →Xi

with 1 < i 6 k, we choose an arbitrary patch Ui+1 lying over Ui, with Ui+1 being a basic toric
stack. We assume by induction that Ui has homogeneous coordinates

(R̂ = OS [x̂1, . . . , x̂r], Â, (â1, . . . , ât, ât+1, . . . , âr))

satisfying the following conditions.

(i) The orbifold fan Σi has a maximal cone whose corresponding basic toric stack U ′i has
homogeneous coordinates

(OS [x̂1, . . . , x̂s], 〈â1, . . . , âs〉, (â1, . . . , âs)).

(ii) The toric divisor on U ′ corresponding to x̂j corresponds to a component E of Ei if and
only if V (x̂j) = E in Ui.

(iii) For each j > s, the divisor V (x̂j) on Ui is either unmarked or independent.

It is straightforward to verify that these properties are preserved under the stacky blow-ups
described in Step E4. In particular, they hold for Uk+1. By the exit condition of Algorithm A,
any distinguished divisor V (x̂j) on U ′k+1 is independent. It follows that the corresponding divisor
V (x̂j) on Uk+1 is divisorially independent at the points where the toroidal index has not dropped.

Now execute the subalgorithm in Step E5. From Lemma 8.4, we see that after this step all
distinguished divisors are independent at points where the toroidal index has not dropped. Due
to the first blow-up, there is at least one distinguished divisor going through every point lying
over ξ. Thus, at points where the toroidal index has not dropped, the independency index is at
most t− 1, which concludes the proof. 2

Example 8.11. In a final example, we examine the output of Algorithm E when applied to the
basic toric stack (X,E) with homogeneous coordinates (k[x1, x2, x3], A,a). Here we let A =
C6 × C2, a = ((1, 0), (5, 1), (3, 1)) and E = (E1, E2) with E1 = V (x1) and E2 = V (x2).

In Step E1, the origin Z0 = V (x1, x2, x3) is identified as the most problematic locus. The
divisorial type is given by the triple (A, (a1, E

1), (a2, E
2)) with the weights corresponding to

E1 and E2, respectively. Figure 8.3 shows the destackification of the corresponding orbifold fan,
which is obtained by invoking Algorithm A from Step E3. This gives a combinatorial recipe for
destackifying (X,E); after the initial blow-up of Z0, we blow up the intersections D1 ∩ E2 and
E1 ∩D1 in turn. The resulting blow-up tree is shown in Figure 8.4. The key things to note are
as follows.

(i) If we forget the weight in the third column, i.e., the weight not corresponding to any
divisor in E, in the charts 1–7 of Figure 8.4, we precisely get the blow-up tree described in
Figure 8.3. Since all the distinguished divisors in the output of Algorithm A are guaranteed to be
independent, the distinguished divisors in Figure 8.4 are guaranteed to be divisorially independent
at the charts 3, 4, 6 and 7. Hence, these charts will improve after invoking Algorithm D from
Step E5.

(ii) In the remaining terminal charts the toroidal index has dropped, which gives the desired
improvement. Note that the blow-ups of the loci in charts 8 and 9 do nothing to further improve
the situation; they are merely side effects of improving charts 2 and 5.
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Figure 8.3. The left-hand picture shows the orbifold fan Σi+k directly after Step E3 in the first
iteration of the main loop in Algorithm E for the input described in Example 8.11. The table to
the right shows the corresponding blow-up tree. The weights are in the group C6 × C2 and the
divisors Ei and Di correspond to the rays ρi and δi respectively from the fan in the left-hand
picture.

Figure 8.4. The blow-up tree produced by Steps E2–E4 of Algorithm E for the input described
in Example 8.11. The weights are in the group C6 × C2. The last two columns contain the
independency index and the toroidal index, respectively. Note that the distinguished divisors
D1, D2 and D3 are divisorially independent (Definition 7.15) at charts 3, 4, 6 and 7.
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Appendix A. Tame stacks

This appendix may be viewed as a supplement to § 3 of the article [AOV08]. We start by recalling

some of the main concepts. Let S be a scheme and let X be an algebraic stack which is quasi-
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separated and locally of finite presentation over S. If X has finite inertia, there exists a coarse
space π : X → Xcs with the map π being proper. Following [AOV08], we say that X is tame
if the functor π∗QCohX → QCohXcs is exact. We call a group scheme G → S finite, linearly
reductive if G is finite, flat, locally of finite presentation and the fibres are linearly reductive. We
say that an algebraic stack X has linearly reductive stabiliser at a point ξ ∈ |X| if the stabiliser
at one of, or equivalently any of, the k-points representing ξ is linearly reductive.

The following theorem is an extension of the main theorem of [AOV08].

Theorem A.1. Let S be a scheme, and let X be an algebraic stack which is quasi-separated
and locally of finite presentation over S. Assume that X has finite inertia. Then the following
conditions are equivalent.

(a) The stack X is tame.

(b) The stabilisers of X are linearly reductive.

(c) There exist a covering Y → Xcs of the coarse space, which is faithfully flat and locally of
finite presentation, a finite, linearly reductive group scheme G → Y and a G-space U → Y ,
which is finite and finitely presented, together with an isomorphism

[U/G] ' Y ×Xcs X.

(d) The same as (c), but Y → Xcs can be assumed to be étale.

If, in addition, the morphismX → S is assumed to be smooth, the above conditions are equivalent
to the following condition.

(e) The same as (d), but U can be assumed to be smooth over S.

The equivalence of the conditions (a)–(d) is [AOV08, Theorem 3.2]. Here we will prove that
(e) is equivalent to the other conditions under the extra hypothesis, and give a simplification of
the proof that (b) implies (d).

In [AOV08], it is proven that tame gerbes admit sections étale locally. The argument given
is based on rigidification and the structure theory of linearly reductive groups. But, rather
interestingly, the existence of an étale local section is a consequence of a much more elementary
fact regarding gerbes in general.

Proposition A.2. Let S be a scheme and let X be an algebraic stack which is an fppf gerbe
over S. Then the structure morphism π : X → S is smooth.

Proof. The question is local on the base in the fppf topology, so we may assume that X is
a classifying stack BSG for some group algebraic space G which is flat and locally of finite
presentation over S. In particular, we have an atlas S → X. Let U → X be a smooth atlas.
Then the fibre product U ′ = S ×X U is an algebraic space which is smooth over S, and the
projection U ′ → U is faithfully flat and locally of finite presentation. Hence, U is also smooth
over S by [EGAIV, Proposition 17.7.7], and it follows that X is smooth over S. 2

In fact, from the proof we see that the structure morphism of a gerbe has all properties which
are fppf local on the base and which descend fppf locally on the source. Note, however, that
although for instance being étale is such a property when we restrict to morphisms of schemes,
this is not the case when we consider morphisms of algebraic stacks. Indeed, the classifying stack
Bµp is not étale over the base if the base is a field of characteristic p.
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One of the fundamental properties of finite linearly reductive groups acting on algebraic
spaces is that taking quotients of invariant closed subspaces coincides with taking schematic
images. We give a formulation of this property in terms of tame stacks.

Proposition A.3. Let X → S be a tame stack over a scheme S and let π : X →Xcs be its coarse
space. Let Z ⊂ X be a closed substack. Then the canonical map Z → π(Z) to the schematic
image of Z under π is the coarse space of Z.

Proof. The question may be verified after a faithfully flat base change of the coarse space. Thus,
we may use Theorem A.1(c) to reduce to the case when Xcs = SpecA for some ring A and
X = [U/G], where G is a linearly reductive group scheme over SpecA, and U = SpecB, where
B is a finite A-algebra. Let I ⊂ B be the G-invariant ideal defining Z. Then the coarse space of
Z is Spec (A/I)G and the schematic image is given by SpecAG/IG. But the functor −G is exact
since the group G is linearly reductive, so (A/I)G = AG/IG, as desired. 2

Propositions A.2 and A.3 together imply the following corollary, which is a reformulation
of [AOV08, Proposition 3.7]. This gives the simplification of the proof, that (b) implies (d) in
Theorem A.1, that was promised earlier.

Corollary A.4. Let X → S be a tame stack over a scheme S and let π : X → Xcs be the
coarse space. Then the residual field at each point ξ ∈ |X| coincides with the residual field of the
point π(ξ). In particular, every k-point in Xcs, with k a field, lifts to a K-point of X for some
separable field extension K/k.

Proof. Let k = κ(π(ξ)) be the residue field of π(ξ). Let Xk → Spec k be the pull-back of π along
Spec k ↪→ Xcs. Then Xk → Spec k is a coarse space by [AOV08, Corollary 3.3(a)]. Furthermore,
the induced map Xred

k → Spec k from the reduction of Xk is a coarse space by Proposition A.3,
since the schematic image of Xred

k in Spec k must be Spec k itself. But the monomorphism
Xred
k ↪→ X, being a monomorphism from a reduced, locally noetherian singleton, is the residual

gerbe at ξ. Hence, k is indeed the residue field at ξ. By Proposition A.2, the map Xred
k → Spec k

is smooth, so it admits a section étale locally on Spec k. From this, the last statement of the
proposition follows. 2

Before turning to condition (e) of Theorem A.1, we review what is meant by a fixed point
for an action by an algebraic group G. Note that it is insufficient to just study the action of the
topological group |G|, as is illustrated by the following basic example.

Example A.5. The group µ2 has a natural action on SpecC over SpecR. Topologically, the space
SpecC has a single point, but it is not accurate to say that the point is fixed under the µ2-action.
Rather, we wish to think of µ2 as acting freely on SpecC, making SpecC a µ2-torsor over SpecR.
In this case, we can think of SpecC having two different geometric points SpecC → SpecC over
SpecR, neither of which is fixed under the µ2-action.

If we are working with non-reduced group schemes, even this point of view does not work. This
can be seen by instead considering the corresponding example over the function field k = Fp(X),
and the group µp acting on Spec k[Y ]/(Y p −X) over Spec k.

Instead we consider the correct, sheaf-theoretic definition based on the following proposition.
We omit the proof, since it is an easy diagram chase.
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Proposition A.6. Let R ⇒ U be a groupoid of sheaves on a site and let ξ : T → U be a
generalised point. Then the following statements are equivalent.

(i) For any morphism T ′ → T , the restriction of ξ to T ′ is the unique representative of its
isomorphism class in the groupoid R(T ′)⇒ U(T ′) viewed as a small category.

(ii) The graph Γξ : T ↪→ U × T is invariant with respect to the groupoid R× T ⇒ U × T .

If the groupoid R⇒ U is an action groupoid for a group action G×U → U , then the above two
statements are equivalent to the following statement.

(iii) The canonical monomorphism Stab (ξ) → G× T of groups over T is an isomorphism.

Definition A.7. Let R ⇒ U and ξ : T → U be as in Proposition A.6. If the conditions given
in the proposition are satisfied, we say that ξ is a fixed point for the groupoid R ⇒ U . If the
groupoid is algebraic and ξ ∈ |U | is a point in U , we say that ξ is a fixed point if it may be
represented by a morphism Spec k → U which is a fixed point in the above sense. It is easily
verified that the choice of representative is irrelevant.

That condition (b) implies condition (d) of Theorem A.1 follows from the sharper [AOV08,
Proposition 3.6]. In order to see that it also implies (e), we need to sharpen the formulation of
the proposition somewhat more.

Proposition A.8. Let S be a scheme and let X be an algebraic stack having finite inertia
and being quasi-separated and locally of finite presentation over S. Denote the coarse space by
π : X → Xcs and let ξ ∈ |X| be a point. If the stabiliser at ξ is linearly reductive, then there
exist an étale neighbourhood Y → Xcs of π(ξ), a finite, linearly reductive group scheme G → Y
acting on a finite scheme U → Y of finite presentation and an isomorphism [U/G] ' Y ×Xcs X of
algebraic stacks. Furthermore, the point ξ lifts to a point ξ′ ∈ U which is fixed under the action
of G.

All but the last sentence comes from the original statement, and although the last sentence
is not explicitly stated, it follows from the proof. Indeed, the scheme U → Y is constructed in a
way such that the diagram

Spec k
ξ′ //

��

U

��
BkGξ // Y ×Xcs X

becomes cartesian. Here ξ : Spec k → X is a morphism representing ξ, the vertical maps are
G-torsors and Gξ denotes the stabiliser at ξ. In particular, the point ξ′ becomes the desired
lifting according to the third condition of Proposition A.6 characterising fixed points. Finally,
to see that this implies (e) in the case when X is smooth over the base, we apply the following
proposition.

Proposition A.9. Let U be an algebraic space which is flat, locally of finite presentation and
quasi-separated over a scheme S. Assume that R ⇒ U is a groupoid which is flat and locally
of finite presentation, and assume that the stack quotient [U/R] is smooth over S. Then U is
smooth over S at any point ξ ∈ |U | which is a fixed point with respect to the groupoid R⇒ U .
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Proof. Let ξ : Spec k → U be a geometric point representing ξ, and let Rk ⇒ Uk denote the
pull-back of the groupoid along the morphism Spec k → U → S. Since ξ is a fixed point, the
graph Γξ : Spec k → Uk is invariant in the groupoid. Hence, the diagram

Spec k
Γξ //

��

Uk

��
BkStab (ξ) ι

// [Uk/Rk]

is 2-cartesian. The graph Γξ : Spec k → Uk is a closed immersion since it is a rational point. Since
the vertical maps in the diagram are faithfully flat and locally of finite presentation, it follows
that also ι is a closed immersion, by descent. The stack [Uk/Rk] is smooth over k since it is
isomorphic to the pull-back [U/R] ×S Spec k and smoothness is stable under base change. The
stack BkStab (ξ) is smooth over k since it is a gerbe. It follows that ι is a regular immersion, so
the same holds for the graph Γξ, since the property of being a regular immersion is stable under
flat base change. But then Uk must be regular at Γξ. Since U is flat and of finite presentation
over S, it follows that U → S is smooth at ξ. 2

We conclude the section with a technical lemma, which is not related to tame stacks, about
closed points on stacks. In general, rational points on algebraic stacks need not be closed. For
instance, the stack [A1

k/Gm] has an open rational point. But stacks with finite stabilisers are
better behaved.

Lemma A.10. Let k be a field and X an algebraic stack which is locally of finite type and
quasi-separated over Spec k. If X has point-wise finite stabilisers, then every point of finite type
in X is closed. In particular, all rational points of X are closed.

Proof. Let ξ ∈ |X| be a point of finite type in X, and let f : Gξ ↪→ X be the inclusion of the
residual gerbe at ξ. By the assumption that ξ is a point of finite type, the monomorphism f is
locally of finite type. We want to show that f is a closed immersion.

We may assume that X is of finite type over k. Since X is quasi-separated and has finite
stabilisers, we can choose a quasi-finite, flat covering U →X with U affine [Ryd11, Theorem 7.1].
Let Uξ = U ×X Gξ. Since Uξ is quasi-finite over the field k, it must also be finite over k. Since we
assume that U is affine, also the projection Uξ → U must be finite. It follows that f is a finite
monomorphism and therefore a closed immersion. 2

Appendix B. The cotangent complex of toric stacks

We wish to compute the cotangent complex for a basic toric stack X without torus factors
over a scheme S. Assume that X has homogeneous coordinates (OS [x1, . . . , xn], A,a), where
A = Z/q1Z× · · · × Z/qsZ and ai = (a1i, . . . , asi) for 1 6 i 6 n.

The quasi-coherent OX -modules are in canonical one-to-one correspondence with the quasi-
coherent A-graded OS [x1, . . . , xn]-modules. Given a ∈ A, we denote by OX(−a) the line bundle
corresponding to the free OS [x1, . . . , xn]-module of rank 1 generated in degree a.

Proposition B.1. Let X be a basic toric stack over a scheme S, and assume that X has
homogeneous coordinates as described above. Then the cotangent complex LX/S is quasi-
isomorphic to the perfect complex

OX(−a1)⊕ · · · ⊕ OX(−an)⊕OsX → OsX
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concentrated in cohomological degrees [0, 1] and with differential given by the matrixa11x1 · · · a1nxn q1 0
...

. . .
...

. . .
as1x1 · · · asnxn 0 qs

 .

Proof. Due to the base-change properties of the cotangent complex, we may just as well assume
that S = SpecZ. Consider the Zs-graded coordinate ring OAn×Gsm = Z[x1, . . . , xn, t

±1
1 , . . . , t±1

s ] of
the space An×Gs

m, with xi having degree ai, viewed as a vector of integers, and tj having degree
qj . The grading corresponds to an action of the torus Gs

m. The stack quotient [An ×Gs
m/Gs

m] is
equivalent to X, with the equivalence induced by slicing the action groupoid An ×Gs

m ×Gs
m ⇒

An×Gs
m at the closed subscheme V (tj = 1 | 1 6 j 6 s) of An×Gs

m. Indeed, then we get the Morita
equivalent groupoid An ×∆⇒ An, with ∆ = A∨, which is the presentation of X corresponding
to the original A-grading.

The atlas introduced above gives us a cartesian square

An ×Gs
m ×Gs

m

π

��

α // An ×Gs
m

q

��
An ×Gs

m q
// X

of smooth morphisms. Here π denotes the projection on the first two factors and α denotes the
action map. Choose coordinates OAn×Gsm×Gsm = Z[xi, t

±1
j , u±1

k ]. Then the action map corresponds

to the ring homomorphism ϕ taking xi to xiu
a1i
1 · · ·uasis and ti to tiu

qi
i . We get an induced map

of differentials
dϕ : α∗ΩAn×Gsm → ΩAn×Gsm×Gsm/An×Gsm

given by

dxi 7→ a1iϕ(xi)u
−1
1 du1 + · · ·+ asiϕ(xi)u

−1
s dus, dtj 7→ qjϕ(tj)u

−1
j duj .

Since the above square is cartesian and α is flat, this descends to a map ΩAn×Gm → ΩAn×Gm/X .
We choose (dxi, dtj) as a basis for the left-hand side. An easy calculation gives that the elements
u−1
i du descend to elements of ΩAn×Gm/X , which we also denote by u−1

i du. These elements form
a basis for the right-hand side. With respect to these choices, the map is described by the matrixa11x1 · · · a1nxn t1q1 0

...
. . .

...
. . .

as1x1 · · · asnxn 0 tsqs

 .

Now we may compute the cotangent complex with help of the distinguished triangle

ΩAn×Gsm → ΩAn×Gsm/X → Lq∗LX [1].

Hence, the derived pull-back Lq∗LX is given by a two-term complex ΩAn×Gsm → ΩAn×Gsm/X [−1]
with differential as in the matrix above. This is graded by Zs, with |dxi| = ai, |dtj | = qj
and |u−1

k duk| = 0, which reflects that the complex lives over [An/∆]. We obtain the original
homogeneous coordinates by slicing at V (tj = 1 | 1 6 j 6 s) as described before, which gives the
result stated in the proposition. 2
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Note that if the product q1 · · · qs is invertible in OS , then this complex is quasi-isomorphic
to the OX -module

H 0(LX/S) = OX(−a1)⊕ · · · ⊕ OX(−an).

The fibre of this module in a point ξ, together with the natural action of the stabiliser, coincides
with the conormal representation at ξ. If q1 · · · qs is not invertible, this need not be true. Consider,
for instance, X = [A1

S/µq], where S = Spec k with k a field of characteristic p and q = 0 in k. If
µq is acting with weight a, we have

H 0(LX/S) =

{
OX(−a)⊕OX if a = 0 in k,

OX otherwise.

We see that, in general, the information about the weight is lost. If one wishes to preserve this
information, it is better to look at [LX/S ] or, equivalently, the alternating sum [H 0(LX/S)] −
[H 1(LX/S)] in the K-group.

Appendix C. Cotangent complex interpretation

In this appendix, we take a brief look at an alternative way to look at the conormal representation
in terms of the cotangent complex. An advantage with this point of view is that we can use various
distinguished triangles for the cotangent complex in our computations.

Given an algebraic stack X, we consider the triangulated category Perf(X). This is the full
subcategory of the derived category of X whose objects are represented by perfect complexes.
Its associated Grothendieck group is denoted by K0(Perf(X)). A morphism f : X → Y gives a
morphism f∗K0(Perf(Y )) → K0(Perf(X)) induced by the derived pull-back. If X is smooth over
a field, then K0(Perf(X)) is canonically isomorphic to the Grothendieck group K0(Coh(X)) of
coherent OX -modules.

In the particular situation described in the beginning of § 6, we have a 2-commutative diagram

B∆ξ
ι //

##

Xk̄

f //

��

X

��
Spec k̄ // S

where the square is 2-cartesian. Denote the composition f ◦ ι by g. By using the distinguished
triangle for composition and the base-change property for cotangent complexes, we get the
identities

ι∗[LXk̄/k̄]− [LB∆ξ/k̄
] + [LB∆ξ/Xk̄

] = 0, [LXk̄/k̄] = f∗[LX/S ]

in K0(Perf(B∆ξ)). Since the immersion B∆ξ ↪→ Xk̄ is regular, the cotangent complex LB∆ξ/Xk̄
is quasi-isomorphic to the complex having NB∆ξ/Xk̄

concentrated in degree −1. Together with
the identities above, this implies that

[NB∆ξ/Xk̄
] = −[LB∆ξ/Xk̄

] = g∗[LX/S ]− [LB∆ξ/k̄
]

in K0(Perf(B∆ξ)). If k̄ has characteristic 0, the complex LB∆ξ/k̄
vanishes since B∆ξ is étale over k̄.

In positive characteristic, the complex LB∆ξ/k̄
need not vanish, but its class in the Grothendieck

group always vanishes. This can be seen from the explicit formula derived in Appendix B. In
particular, we have the identity [NB∆ξ/Xk̄

] = g∗[LX/S ]. We summarise the result in the following
proposition.
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Proposition C.1. Let (X,E)/S be a standard pair with diagonalisable stabilisers. Furthermore,
let ξ : Spec k̄ → X be a geometric point, ∆ξ the stabiliser at ξ and g : B∆ξ → X the induced
morphism. Then we have the identity

[NB∆ξ/Xk̄
] = g∗[LX/S ]

in the group K0(Perf(B∆ξ)), which we have identified with K0(Coh(B∆ξ)).
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