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Optimization Procedures in Twin Zygosity 
Diagnosis by Genetic Markers 
A Cost-Effectiveness Analysis 
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More and more genetic markers usable for twin zygosity determination have become avail­
able. A relatively small number of markers is sufficient to achieve a satisfactory probability 
of correctly classifying a twin pair. Previously only the genetic properties of markers have 
been considered when choosing the markers to be determined. A cost-effectiveness analysis, 
which considers both genetic properties and relative determination costs of markers, is 
presented and illustrated with data from the Finnish Twin Registry studies. 
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INTRODUCTION 

The use of multiallelic genetic markers offers the most accurate way of deciding zygosity. 
A twin pair discordant for at least one genetic marker is by definition dizygous (DZ), 
while a twin pair concordant for genetic marker phenotypes is classified monozygous 
(MZ), but with only a certain probability [1]. The determination of a relatively small 
number of markers suffices to achieve a probability of misclassification of a twin pair's 
zygosity [4, 7] , which in most studies is small enough to no longer affect any inferences 
made. The effect of misclassification errors on epidemiologic twin data has been consid­
ered by Friedman [3]. Further increasing the number of markers determined has only a 
minor effect on decreasing the probability of misclassification. 

As more genetic markers are becoming available for routine testing procedures, a choice 
of the markers to be used can be made. One criterion for this choice has been the genotypic 
efficiency of the markers [8], which presupposes that information on genotypes is available. 
Besides considering the genetic efficiency of the markers available, their determination costs 
should also be taken into account, ie, two cheaply determined markers may together be 
more efficient than one highly efficient marker that is expensive to determine. 
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In this paper, a cost-effectiveness analysis for optimizing the choice of markers to be 
used in zygosity determination procedures is presented. The analysis takes into account 
both the genetic properties of the markers and their relative costs of determination. Also, 
a method for determining a priori the minimum sample size necessary to achieve the de­
sired sample accuracy in zygosity diagnosis is presented. 

GENERAL PRINCIPLES 

Suppose that markers M j , . . . , Mk are available. Let M; be any one of these markers and 
Pi the probability that a DZ twin pair is phenotypically concordant in respect to marker 
Mj. In this paper these quantities will be called concordance probabilities and their com­
plementary probabilities, Qj = 1 — Pi, discriminating powers of the markers Mj, i = 1 , . . . , 
k. Let us denote the vectors formed by these quantities with P = ( P i , . . . Pk) and Q = 
( Q i , . . . , Qt). Numerical values for these probabilities in any set of twin pairs can be com­
puted, for example, with the formulas or with the algorithm presented by Sarna [6], 
assuming that the population gene frequencies or their estimates from a sample are known. 

In order to be able to operate easily with combinations of indexes of markers, we will 
define the following sets: lt = {i} \, Ir = { (h , . . . , i r )} , where i t , . . . , ir e I j . The last 
one of these index sets contains all the (j) combinations of the elements of the set I j . The 
probabilities associated with any combination of markers Mi ; . . . , Mi 1S denoted as: 

P ( r ) = II Pj and Q( r ) = 1 - II Pt (1) 
ielr ielr 

The last expression measures the effectiveness of the combination of markers Mj , . . . , 
Mir. 

Let C = (C l 5 . . . , Ck) be a parameter vector that gives the blood group determination 
costs for markers M 1 ( . . . , M^. If N(r) is the number of pairs whose zygosity is determined 
using r markers out of a total of k markers, then the total cost of determination is 

N ( r ) \ S Q (2) 
l<Elr 

Let C i , . . . , i® ) be the index vector of the most effective combination of r markers and 
Q(re) its discriminating power. For comparisons with other (J?) - 1 possible combinations 
of r markers we define a parameter vector Qc = (Qi c , . . . , Qkc)> where Qrc specifies how 
great a difference between the maximum value Q(re) and the value Qj is allowed, when 
comparing alternative combinations with respect to cost. Thus the parameter vector Qc 

defines the range in which the optimization between different combinations occurs. 
If ( i i , . . . , ir) and ( i i , . . . , î ) are two alternative combinations of r markers and N(r) 

and N(r') are their minimum sample sizes needed to obtain the level Q(re) - Qrc in dis­
criminating power, then the combination that minimizes the total costs [Equation (2)] 
will be regarded as the best combination of r markers. 

MINIMUM SAMPLE SIZE 

A method is given for deriving the minimum sample size satisfying the desired accuracy of 
zygosity diagnosis, when estimates for the marker concordance probabilities are available. 
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Suppose that the mean concordance probabilities P l s . . . , P^ are estimated on the basis 
of a sample with N observations. Then, according to the binomial distribution, 

EA(P0 = Pi and Var (Pj) = P;(l - Pj)/N 

In the case of one marker M,, an approximate minimum sample size N (pairs) can be de­
rived from the inequality 

• / 

Pi + t a ( N - l ) - t / P i ( 1
N

 P i ) <P? (3) 

where ta(N - 1) is the value of Student's t distribution, with degrees of freedom N — 1 
and risk level a, and P; c is the minimum concordance probability set for the marker Mj. 
The inequality (3) for N is solved: 

N > t a
 2(N-1) • (Pi(l - Pi))/(Pi -Pj c ) 2 (4) 

Correspondingly, when considering a combination of r markers Mj , . . . , Mr, it can be 
shown [5] that the upper confidence limit of the cumulative concordance probability of 
these markers is 

exp i ("^ - ^y ^ - »ja ^4°A-i)j (5) 

By requiring that formula (5) be less than or equal to Pc, the critical predetermined mini­
mum value set for the cumulative concordance probability, and by taking logarithms, we 
obtain: 

hJFs 2 [log Pj - ! ?i
A ] + ttt(N - 1) • 4 - J 2 (1/Pi - 1) < logePc (6) 

The minimum sample size N that fulfills this inequality cannot be explicitly solved. We 
obtain, however, aArough estimate for N by considering ta(N - 1) as fixed and by leaving 
off the term (1 - Pj)/2NPi from the left-hand side of inequality (6) and by solving with re­
spect to N. In order to obtain a more accurate estimate for the minimum sample size we 
must use an iterative method. 

The iterative algorithm NMIN given in Appendix I computes the minimum N that ful­
fills inequality (6) with the given accuracy. After determination of minimum sample size, 
other factors can be considered. In the following, data on the determination costs of the 
markers are used as well to obtain the optimal set of markers. 

COST-EFFECTIVENESS ALGORITHM 

The following algorithm presents a stepped method for determination of the cost-effec­
tive combinations of blood markers. 
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Inpiit parameter vectors: 
P[l :k] = concordance probabilities of markers M 1 ; . . . , Mk 
C [1 :k] = marker costs per sample 
Qc [1 :k] = critical values of comparisons between the combinations of markers 
Pc[l:k] = critical values of concordance probabilities 

Output parameter vectors: 
Indexes of the optimum combinations of markers 
I* = ( i*) ,I | = ( i*, i*) , . . . , l f = (i*) . . . , ig) 
It [1 :k] = Total costs of combinations I*, . . . , l£ 
N£[l:k] = Number of pairs corresponding to the solutions I f , . . . , Ij* and the given 

accuracy level 

Step 1. [Input of parameters] 
Read values for vectors P, C, and Qc. 

Step 2. [Most cost-effective combinations] 
Determine with the procedure COSTBENEFIT (Appendix II) the index vec­

tors \\, I 2 , . . . , Ik corresponding to the most cost-effective combinations of 
markers. 

Step 3. [Minimum value for sample size] 
Determine with the procedure NMIN (Appendix I) for the optimum combina­

tions of markers the minimum sample sizes N* [i], i = 1,. . . , k corresponding to 
the accuracy level determined by Pc. 

Step 4. [Total costs] 
Determine the total costs T*[i], i = 1, . . . , k for each combination of markers 

corresponding to the sample sizes N*[i]. 
Step 5. [End of the algorithm] 

AN APPLICATION OF THE COST-EFFECTIVENESS ALGORITHM 

To illustrate the function of the optimizing algorithm, data from a study of the Finnish 
Twin Registry is used. Zygosity determination was based on a questionnaire method and 
verified using blood marker determinations on a sample chosen at random [7]. As the 
order of the markers with respect to the discriminating power was not the same as the 
order with respect to costs of determining the marker in a blood sample, the method de­
scribed was applied to study which combination of markers in the Finnish population 
would be the most cost-effective. 

A 

The order of markers with respect to their discriminating power Qj and the estimated 
cost per DZ pair tested are given in Table 1. The actual costs for each marker were esti­
mated on the basis of the official price of the comprehensive Finnish paternity testing 
battery. Since only the relative costs are significant, the actual monetary unit used (Fmk) 
is not necessary but is included to illustrate the scale of costs. Because costs per individual 
marker were not available, they were estimated using reagent costs and labor time per 
sample. The share of reagent costs in the total cost of each marker varied greatly as seen 
in the last column of Table 1. The labor cost was the same per unit work time in all 
markers, though in estimating the work time per sample the possibility of simultaneous 
analysis of samples was taken into account. 

Table 2 summarizes the results given using the cost-effectiveness algorithms for the 
blood markers used in zygosity testing. The indexes of the most cost-effective combina-
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TABLE 1. Order of Markers With Respect to Their Discriminating Power and the Estimated 
Costs per DZ Pair 

Marker (No.) 
Discriminating 
power Qj 

Costs/sample Cj 
(Fmk) 

Share of reagent costs of 
total cost per sample (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

MNSs 
Rh 
Gm 
A ^ B O 
AP 
A1AT 
HP 

PGM 
Gc 
Fya 

AK 

(2) 
(3) 
(7) 
(1) 

(10) 
(11) 
(5) 
(9) 
(6) 
(4) 
(8) 

0.5579 
0.5215 
0.4535 
0.4397 
0.4411 
0.4062 
0.3882 
0.3244 
0.2864 
0.2326 
0.0843 

4.71 
13.19 
26.27 

1.31 
17.08 
17.08 
18.60 
34.16 
27.77 

7.07 
35.41 

78.6 
38.7 

7.6 
22.9 

5.3 
.5.3 
2.1 
5.3 

12.6 
14.1 

8.6 

Total 202.65 11.2 

tions of markers are given in column 2 for an increasing number of combinations r shown 
in column 1. The indexes of the combination of markers are listed in decreasing order of 
discriminating power. Column 3 shows the cumulative discriminating power of the corre­
sponding combination in column 2. This naturally increases as the number of markers in­
creases. After eight markers the increase in cumulative discriminating power is very slight. 

As previously indicated the cost-effectiveness algorithm includes a parameter vector Qc 

that controls the selection procedure of the combination of markers in each phase. The 
parameter determines the range in which comparisons between different combinations of 
markers in respect to the costs will be done. The selection order can be weighted in favor 
of either costs or effectiveness with this parameter vector. If the values of Qc are chosen 
small compared to the values 1 - max{Q(t)) in each phase, then more weight will be given 
to effectiveness and in opposite case to costs. Therefore, in the extreme case, when all the 
elements of Qc are chosen as zero, we obtain the order in respect of effectiveness, mea­
sured by discriminating power. As an example about the meaning of parameter Qc let us 
consider the first element of Qc in our numerical example, that was chosen to be 0.15 
(column 4). It means that when we are selecting the most cost-effective single marker we 
allow into the scope of comparison of costs all those markers that are inside the range 
max{Q(i)}—0.15. In our numerical example the values of Qc were chosen by giving more 
weight to effectiveness and simultaneously aiming at sample sizes of the same magnitude 
as the samples actually tested. 

Column 7 gives the minimum sample size needed to reach the lower confidence limit 
of the cumulative discriminating power. The lower and upper confidence limits of the 
cumulative discriminating power for the sample size of column 7 are given in columns 5 
and 6 respectively. 

The last column gives the total cost of determining the blood markers for the sample 
size with the combination of markers of column 2. In this example the effect of high rel­
ative cost of a marker can be seen for the marker 7 (Gm serum group). Though the dis­
criminating power of this marker is the third-best after markers 2 and 3, it is included in 
the most cost-effective combination only when five markers are considered. 
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N(DZ-pa ir i ) 

2 3 2 3 2 3 
4 7 4 7 4 7 

_ 3 1_ 3 1 3 1 
C E 10 10 10 10 

11 11 11 11 
C E 5 5 

7 9 —c T~ 

Figure. Family of graphs demonstrating the cost-effectiveness analysis: E) most effective combination 
of markers; Cj cheapest combinations of markers. Markers listed in order of effectiveness or costs. See 
Table 1 for names of markers. 

The Figure presents for different combinations of markers the sample size needed to 
reach a set discriminating power (with either 1% or 5% risks), at different levels of total 
costs. Both most cost-effective and cheapest combinations of markers are presented. 

As an example of the use of the Figure, let us consider a situation where 15,000 Fmk are 
available for zygosity testing. Two different sample sizes are obtained using two different 
combinations at different levels of discriminating power. Using eight markers (1, 2,4, 3, 
10, 11,5,7) with a discriminating power of 0.97 at 5% risk level, the zygosity of 72 pairs 
can be determined. Using six markers (2, 3, 7 ,1 , 10,11) with a discriminating power of 
0.96 at 1% risk level, the zygosity of 94 pairs can be determined. Thus it can be seen that, 
for the same total cost, a greater number of pairs can be studied by accepting a slight de­
crease in discriminating power. 

DISCUSSION 

In recent years, an increasing number of multiallelic marker determination methods have 
become commonly available. It is generally unnecessary to have the laboratory determine 
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all available markers, for, as shown, a smaller set of markers will suffice for achieving ade­
quate zygosity diagnosis. 

Selvin [8] compared the efficiency of markers when all genotypes in a system were 
known. This, however, restricts the use of the markers to those where genotypic identifica­
tion is possible. In this analysis only phenotypic identification and knowledge of popula­
tion gene frequencies is required. In addition, determination costs are taken into account, 
as genetic marker determinations are expensive and may often form a substantial propor­
tion of the total study costs. Optimization of these costs without significant loss in genetic 
efficiency is possible as presented in this paper. The parameter Qc used defines the range 
of effectiveness values permitted, and optimization will occur within this range. The 
values chosen for the parameters Qc depend on the purposes of the study, but in every 
case several runs with different values of Qc will generally be needed before the final de­
cision can be made. 

The possibility of simultaneous analysis of several samples or of different markers will 
vary from laboratory to laboratory. This, however, can be taken into account in the ap­
plication of the described algorithm. In some studies (eg [2]), some markers were deter­
mined only if the twin pair was concordant for all those previously determined. This will 
naturally have to be done for all MZ pairs, and for varying numbers of DZ pairs. The total 
costs of such a procedure were found for our material to be slightly greater than the costs 
estimated by the cost-effectiveness analysis. 

Acknowledgments. This study has been supported by a grant from the Council for Tobacco Research, 
USA, Inc. 
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APPENDIX I: ALGORITHM NMIN 

Determines the minimum sample size N m m for the specified concordance probability Pc. 

Step 1. [Values for the parameters] 
Give ta and AN (the accuracy wanted for N). 

Step 2. [Initial approximation] 

Set N = |~ta(N - 1) £ (1/Pj - l)/(log Pc - 2 log Pj)! 
L >/i=l i=l J 
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Step 3. [Computation of the corrected N] 
Compute 

NC=ita(N -1 )J i (i/p - D/ [iog pc - £ (log Pi T- - i ~ m 
(. >»i=l L i - l V 2NPj '1) 

Step 4. [Termination criterion of the iteration process] 
If IN - Ncl < AN then go to step 6 else go to step 5 

Step 5. [Corrected estimate] 
Replace N by N c and go to step 3. 

Step 6. [Final estimate] 
Set N = N c as an output value and stop the procedure. 

For most cases it is sufficient to demand that AN = 1, because in practice N is an integer. It is reason­
able, however, to consider N as a real number. In most cases the convergence of this algorithm is rapid 
and only two or three iterations will be needed to obtain the accuracy corresponding to the paramete 
value AN = 1. 

APPENDIX II: PROCEDURE COSTBENEFIT 

Notations 
k Number of available markers M,, . . . , M^. 
r Number of markers under consideration. 
cprob [ l :k] Probabilities of concordance (P). 
costs [ 1 :k] Costs per sample of blood group determinations (C). 
critp The critical value for comparisons between alternative combinations of r 

markers (Qc). 
indexes [ l : r ] The vector of indexes of the resulting combination of markers, 
nmin (t a , AN, P, Pc) Iterative procedure that determines the minimum sample size, 
sort (Q, i) Procedure that sorts the index vector ( 1 , . . . , k) into the order ( i l , . . . , ik) 

so tha tQ[ i l ] > Q [ i 2 ] > • • • Q[ ik] . 
comb (Q, i, k, r, t, iout) Procedure that selects the combinations of indexes for a given number r 

out of possible markers for testing against the best combination formed 
in the main program. 

The combinations are selected in decreasing order with respect to the dis­
criminating power vector Q. 

Parameter t indicates the number of trials; so that with t = 1 the second 
most cost-effective combination is chosen for comparison; with t = 2, 
the third most cost-effective combination is chosen; etc. 

The vector "iout" gives the indexes of the combination to be tested. 
procedure costbenefit(k,r,cprob,costs,critp,indexes); 
real array cprob,costs; 
integer array indexes; 
real critp,tcosts; 
integer k,r; 
begin 

real array dpower[ 1 :k] ; 
integer array ivector,icomb[ 1 :k] ; 
real cvalue,ccosts,qvalue,qcosts,clevel,nc,nq; 
real tcostsc,tcostsq;/aZ>e/ loop; 
integer trial,i; 
comment talfa and deltan are global variables; 
comment sort.comb and nmin are procedures; 
for i:=l step 1 until k do dpower[i] := l -cprob[ i ] ; 
sort(dpower,ivector); 
cvalue:=l;ccosts:=0; 
for i:=l step 1 until r do 
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begin 
comment discriminating power and costs of the most effective combination of r markers; 
cvalue:=cvalue * cprob[ivector[i]]; 
ccosts:=ccosts+costs[ivector[i]] 

end; 
cvalue:=l-cvalue; clevel:=cvalue-critp; 
for i:=l step 1 until r do indexes[i] :=ivector[i]; 
trial:=l; 

loop:comb(dpower,ivector,k,r,trial,icomb); 
qvalue:=l;qcosts:=0; 
for i:=l step 1 until r do begin 
comment discriminating power and costs of the new combination; 

qvalue:=qvalue * cprob[icomb[i]]; 
qcosts:=qcosts+costs[icomb[i]] end;qvalue:=l-qvalue; 

?/qvalue>clevel then begin 
comment comparisons of the total costs; 
nc:=nmin(talfa,deltan,l-cvalue,1-clevel); 
nq :=nmin(talf a,deltan, 1 -qvalue,l -clevel); 
tcostsc:=nc * ccosts; 
tcostsq:=nq * qcosts; 
;/tcostsq<tcostsc then begin 

comment change of comparison and output values; 
cvalue :=qvalue; 
ccosts:=qcosts; 
for i:=l step 1 until r do 

indexes[i] :=icomb[i]; 
end; 

trial :=trial+l go to loop 
end; 

end of costbenefit; 
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