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Abstract

Changes in the distribution of species due to global climate change have a critically significant
impact on the increase in the spread of invasive species. An in-depth study of the distribution
patterns of invasive species and the factors influencing them can help to better predict and
combat invasive alien species. Rhynchophorus ferrugineus Olivier is an invasive species that
primarily harms plants of Trachycarpus H. Wendl. The pest invades trees in three main
ways: by laying eggs and incubating them in the crown of the plant, on roots at the surface
and at the base of the trunk or petiole. Most of the plants in the genus Trachycarpus are taller,
and the damage is concentrated in the middle and upper parts of the plant, making control
more difficult. In this paper, we combine 19 bioclimatic variables based on the MaxEnt model
to project the current and future distributions of R. ferrugineus under three typical emission
scenarios (2.6Wm−2 (SSP1-2.6), 4.5Wm−2 (SSP2-4.5) and 8.5Wm−2 (SSP5-8.5)) in the
2050s and 2090s. Among the 19 bioclimatic variables, five variables were screened out by con-
tribution rates, namely annual mean temperature (BIO 1), precipitation of driest quarter (BIO
17), minimum temperature of coldest month (BIO 6), mean diurnal range (BIO 2) and pre-
cipitation of wettest quarter (BIO 16). These five variables are key environmental variables
that influence habitat suitability for R. ferrugineus and are representative in reflecting its
potential habitat. The results showed that R. ferrugineus is now widely distributed in the
southeastern coastal area of China (high suitability zone), concentrating in the provinces of
Hainan, Guangdong, Fujian, Guangxi and Taiwan. In the future, the area of high and low suit-
ability zones will increase and the area of medium suitability zones will decrease. The area of
low suitability zone will still be in the largest proportion. This study aims to provide a theor-
etical reference for the future control of R. ferrugineus from the perspective of geographic
distribution.

Introduction

Rhynchophorus ferrugineus Olivier, also known as the red palm weevil (RPW), belongs to the
family Coleoptera, Curculionidae (Ahmed and Freed, 2021). The RPW is an invasive pest that
has become fully entrenched in more than 60 countries around the world, and was first dis-
covered in the Arabian Gulf region in the mid-1980s (Kurdi et al., 2021; Yasin et al., 2021).
This pest originated in southern and southeastern Asia, such as India, Indonesia and
Pakistan, and later spread to the Near East and North Africa. Subsequently, the RPW invaded
several Middle Eastern countries, such as Iran, Iraq, Saudi Arabia, the UAE and Egypt
(El-Zoghby et al., 2022). In 1990, RPW was also reported in China. Since the 1980s, its geo-
graphic distribution in China has expanded rapidly. RPW monitoring was conducted in
Taiwan in 1997 and severely damaged ornamental palm saplings were found in central
Taiwan (Kurdi et al., 2021). RPW poses a significant threat to Trachycarpus H. Wendl. plants.
It is worth noting that RPW primarily targets palm trees within this plant category.
Furthermore, the pest exhibits a preference for the economic crops of these plants.

Trachycarpus is mostly used in landscaping because of its adaptable and aesthetically pleas-
ing plant form, as well as its resistance to a variety of toxic gases (Nengjie, 2022). In addition to
this, Trachycarpus has some economic value. Its skin fibres, young leaves and the dark brown
leaf sheaths covering the stems can be made into a variety of fibre products with excellent
properties (Zhu et al., 2019). At the same time, the plants of the genus have some medicinal
value (Zhijun, 1998), and the RPW is one of the most dangerous and destructive of the pests
that afflict Trachycarpus (Alshammari et al., 2022; Montiel et al., 2022). It is most damaging to
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young Trachycarpus plants less than 10 years old, and generally
less damaging to older trees over 30 years old. These include
Phoenix sylvestris (L.) Roxb. (silver date palm), P. canariensis
Chabaud (Canary Island date palm) and Bismarckia nobilis
Hildebr. & H. Wendl. (Bismarck palms) (Kurdi et al., 2021).
RPW is highly adapted to host plants; at least 24 species of
Trachycarpus plants have been reported (Yang et al., 2023),
mainly including coconut, sugar, oil, sago, palmyra, royal,
Washingtonian and date palms (Kurdi et al., 2021). The number
of hosts for the RPW has increased significantly over the past few
decades (Abdel Raheem et al., 2020). This increase in host range
is a result of its rapid geographic expansion, which is likely to con-
tinue in the future due to climate change (Montiel et al., 2022).
This insect has now spread to palm tree plantations in southern
China, causing serious damage to the palm tree industry and
landscape. Special emphasis is placed on the fact that RPW is
characterised by high reproductive capacity, wide range of para-
sitic plants, difficulty in control, high lethality, easy to concentrate
outbreaks, etc., and the damage to plants is often irreversible
(Abdelsalam et al., 2020). The RPW usually invades in the follow-
ing three ways. The first, which is the most common, is the infest-
ation of plants by adults laying eggs that hatch in wounds, fissures
and cracks at the base of the trunk or petiole, and by larvae that
bore into the young tissue at the base of the plant’s petiole and
within the trunk. The affected plants initially show slight cracking
of the bark or petioles, followed by gradual yellowing and wither-
ing of the leaf margins, which then extends towards the middle of
the leaves. As the damage progresses to later stages, the cores and
leaves of the plants will dry up and become brittle, while their
fibrous tissues undergo transformation into humus, resulting in
fragmentation. Some palm plants may expel fibre crumbs or
release a brown viscous liquid (commonly known as tree gum)
from wormholes. When found, the affected plants are often unsal-
vageable, often causing the entire plant to break or die outright.
The second type infiltrates the tree through surface-level roots.
Affected plants exhibit reduced foliage, with certain branches
and leaves wilting or drooping, while other areas appear indistin-
guishable from healthy plants. However, all internal tissues of the
trunk are thoroughly compromised. The third type of invasion is
from the crown of the tree, where the heart and leaves will all die,
and this is the most damaging because the growing points quickly
become necrotic. Regardless of the method of invasion, once
RPW has penetrated the tree, it can usually kill the plant within
5–6 months (Abdel-Raheem et al., 2019).

Due to the robust reproductive capacity of RPW, failure to
control it can lead to substantial ecological, environmental and
economic consequences. Annually, hundreds of thousands of
infected palm trees perish, directly impacting farmers’ income
sources. Furthermore, the demise of palm trees can result in
adverse effects on the local ecological environment, such as soil
erosion and diminished biodiversity, consequently impeding
the development of ecotourism and associated industries
(Alshammari et al., 2022). In China, it is one of the 233 dangerous
pests of forestry announced by the State Forestry Administration
of China in 2003, and is included in China’s list of imported
phytosanitary pests and the list of quarantine pests of agriculture
and forestry (Lijiao and Yihang, 2022). The larvae of RPW are
long-lived, have a strong drilling ability and are adaptable to dif-
ferent environments. The larval stage is the most critical stage for
control, as the destruction of vascular tissues by RPW larvae and
the massive consumption of canopy tissues can lead to the death
of palm trees (Zhang et al., 2020). Biological control, such as the

use of natural enemies like larval parasitic wasps (Scolia erratica)
and adult flies (Sarcophaga fuscicauda), can be considered an
effective means of control. Nevertheless, although natural enemies
of RPW have been reported in several countries, none of them
have been used as biological control due to the protected internal
environment in which RPW larvae live (Yang et al., 2023). As it
stands, the distribution of RPW is primarily concentrated along
the southeastern coastal regions of China. This area also happens
to be the most severely affected by the pest. When contemplating
alterations in species distribution, climate stands out as the pivotal
factor. Existing research has underscored the significant influence
of climate on the distribution of this pest. Specifically, rising tem-
peratures may lead to an expansion of its ecological niche (Fiaboe
et al., 2012; Ge et al., 2015). So predicting the future trend of
RPW’s geographic distribution provides a key intervention point
for preventing its expansion.

Since the 1980s, a variety of species distribution models
(SDMs), also known as ecological niche models (ENMs), have
been developed, which are an important tool for studying the fit-
ness of species (Booth et al., 2014). The main models used for
developmental prediction work include Domain Model,
Ecological Niche Factor Analysis (ENFA), the Bioclimatic
Prediction System (Bioclim), genetic algorithm for rule set pro-
duction (GARP) and maximum entropy models (MaxEnt)
(Harte et al., 2021; Wang et al., 2021; Losada et al., 2022;
Ahmadi et al., 2023). The principle of SDM is to relate known
locations of species to the environmental characteristics of those
locations in order to estimate the response function and contribu-
tion of environmental variables, and to estimate the ecological
niche of the species according to a specific algorithm (Zhou
et al., 2021). Insights into ecological or evolutionary drivers in
this way can help predict habitat suitability at large scales
(Fourcade et al., 2014). It is worth mentioning that MaxEnt
in SDMs has been increasingly adopted (Korbel, 2021).
When MaxEnt is used to estimate the ecological niche and poten-
tial geographic distribution of a species, only species occurrence
records and background samples of the environmental conditions
in the area of interest are required. This type of data is referred to
as ‘presence background’ (PB) data. MaxEnt applies the principle
of ‘maximum entropy’ to fit the model to estimate the minimum
extent to which the distribution of species deviates from a
uniform distribution in order to explain the observations
(Guillera-Arroita et al., 2014). MaxEnt is the most widely used
SDM algorithm due to its ease of use and is believed to produce
robust results with sparse data, irregular sampling and small local-
isation errors (Harte et al., 2021). The advantage of MaxEnt is
that it requires the use of only a small amount of existing data,
so there is no reliance on or need for specific regions to identify
data that do not exist (West et al., 2016). Overall, these features
have led MaxEnt to be considered one of the best models for
predicting species distributions, especially for species that are diffi-
cult to systematically enumerate or have limited ranges (Kramer-
Schadt et al., 2013).

In this paper, the geographic distribution of the species was
collected based on the MaxEnt model and linked to 19 bioclimatic
variables, analysing the importance of each variable. Several key
variables that are decisive for predicting the future distribution
of the species were identified. The aim was to assess the current
and potential future distribution of the pest in its Chinese range
and to explore the key environmental factors influencing the dis-
tribution of the pest. This will provide some references for future
control of this pest.
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Material and methods

Collection of occurrence data

RPW distribution point data were obtained by querying the data-
bases of the European and Mediterranean Plant Protection
Organization (EPPO, https://gd.eppo.int, accessed on 21 March
2023) and the Global Biodiversity Information Facility (GBIF,
http://www.gbif.org, accessed on 22 March 2023). In addition to
the online databases, distribution point data for the actual survey
were obtained from relevant literature in CNKI and Web of
Science. The latitude and longitude information was obtained
from the geographic coordinate information provided in the lit-
erature. For records missing latitude and longitude information,
Google Earth (http://ditu.google.cn) was used to obtain latitude
and longitude using county location descriptions. Occurrence
records without accurate location information were excluded
from the database. All records are scrutinised to remove duplicate
points and points without correct information. For the MaxEnt
model, the distribution point data were saved in ‘CSV’ format.
To prevent overfitting, this study employed ENMTools version
1.0.4 on the R platform to spatially filter the data based on longi-
tude, ensuring the presence of only one distribution point per grid
cell. The spatial resolution was set at 2.5 arc minutes (approxi-
mately 4.5 km). In the end, a total of 222 RPW distribution points
were acquired, and their distribution is depicted in fig. S1.

Environmental variables and data processing

The environmental variables are current and future data obtained
from the WorldClim Global Climate Database (http://www.
worldclim.org/) and include 19 bioclimatic variables as well as 48
monthly climate variables. Current climate conditions are expressed
using monthly average data from 1950 to 2000. Three representative
gas emission scenarios of 2.6Wm−2 (SSP1-2.6), 4.5Wm−2

(SSP2-4.5) and 8.5Wm−2 (SSP5-8.5) from the Shared Economy
Pathway of the Sixth International Coupled Models
Intercomparison Program (CMIP6) model were selected for the
future climate scenario data. These scenarios were proposed by the
IPCC, and respectively they represent a stabilisation of radiative for-
cing by 2100 in these scenarios. Future climate data were downloaded
from the International Center for Tropical Agriculture (CIAT)
and generated from the second generation of the National
Climate Center Moderate Resolution Climate System Model
(BCC-CSM2-MR). This model is more reliable in simulating precipi-
tation and temperature in China, and it is the latest medium-
resolution climate system model developed by the National Climate
Center of China (Fredriksen et al., 2023). The above data, with a spa-
tial resolution of 2.5 arc-minutes (approximately 4.5 km2), were used
to predict the distribution of potential suitability of the RPW for two
periods: the 2050s (2041–2060) and the 2090s (2081–2100).

This study utilises the Jackknife test in MaxEnt to determine
the extent to which each environmental variable contributes
to the model construction, thereby eliminating variables that con-
tribute less. Pearson’s correlation coefficient is commonly used to
determine the correlation between each pair of variables (|r|≥0.8).
There are some effects on ENM predictions due to correlation and
multicollinearity between climate factors. Highly correlated vari-
ables (|r|≥0.8) were removed in order to increase the accuracy
of the model and minimise the effects of overfitting.
Multicollinearity was detected using ENMTools (version 1.0.40).
Finally, five key environment variables (BIO 1, BIO 2, BIO 6,
BIO 16, BIO 17) were kept.

MaxEnt model optimisation and accuracy evaluation

In the MaxEnt model, improper selection of optimal parameters
can negatively affect the prediction results, and the complexity
of MaxEnt has a significant impact on the transferability of
species predictions in the model (Alsamadisi et al., 2020).
There are two key parameters present in MaxEnt model to opti-
mise the final model viz: feature combination (FC) and regulation
multiplier (RM). These two key parameters are crucial for effect-
ively avoiding overfitting and significantly improving the model’s
prediction accuracy (Barber et al., 2022). Consequently, in this
paper, the complexity of the model is controlled by adding
parameters to the ENMTools function to regularise the model.
We imported the distribution data of RPW and 19 environmental
variables into MaxEnt and set the parameters to the optimal
combination. Meanwhile, the receiver operating characteristic
curve (ROC) is plotted to evaluate the model fit. Refer to fig. S2
for the above process.

The area under curve (AUC) of the ROC curve is used to
evaluate the quality of the model results. The AUC values are
independent of the critical values in the model and can be used
to assess the accuracy of the model. AUC ranges from 0 to 1,
with 0–0.6 indicating very poor predictive performance, 0.7–0.8
indicating fair predictive performance, 0.8–0.9 indicating good
predictive performance and 0.9–1.0 indicating excellent predictive
performance (Wang et al., 2023). Overall, the closer the value is
to 1, the better the model fit.

Delineation of potentially suitable areas

In this study, the ASC file output from MaxEnt is imported into
GIS, converted into grid data and superimposed on a map of
Chinese administrative divisions for visualisation. Seventy-five
per cent of the distribution records were used as a randomised
training dataset to build the predictive model, and 25% of the
remaining distribution records were used as a test dataset, repeat-
ing this operation ten times. On this basis, the reclassification
function of GIS was utilised to classify the RPW fitness zones
into different areas, and the corresponding area calculations
were carried out using the grid calculation tool. In this work,
the distribution values were classified according to the method
of assessing probability in the IPCC report, and based on the suit-
ability index P, the suitability areas were categorised into four
classes: high suitability areas (P≥ 0.66), medium suitability
areas (0.33≤ P < 0.66), low suitability areas (0.05 ≤ P < 0.33) and
unsuitable areas (P < 0.05) (Wang et al., 2023).

Results

MaxEnt performance and the importance of environment
variables

Figure 1 shows AUC with ten replications of the model. The mean
test AUC value for its repeated runs was as high as 0.965 with a
standard deviation of 0.012. The training AUC and test AUC were
0.967 and 0.964, respectively (table S1). Based on the previously
mentioned evaluation criteria, it indicates that the model exhibits
excellent predictive performance. AUC values exceeding 0.9
suggest that the model possesses high predictive accuracy.

The potential distribution of RPW under current climatic con-
ditions was analysed using MaxEnt to model the variables selected
for the study. This study was conducted by taking 19 climatic
variables into account and then filtering out a few variables that
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are determinative of the impact of RPW. Jackknife test is shown in
fig. 2. Minimum temperature of coldest month (BIO 6) provides
the highest gain when used independently. The next largest con-
tribution to the model is the annual mean temperature (BIO 1).
The values shown in the graph are the average of repeated runs.
Under current climatic conditions, these two environmental fac-
tors had the greatest effect on RPW growth suitability, suggesting
that these factors themselves contain more useful information
than the other variables. As can be seen from table 1, among
the five environmental variables screened by MaxEnt, BIO 1
and BIO 17 have the highest contributions of 51.3% and 31.5%,
respectively. The cumulative contribution of these two environ-
mental factors to the RPW was 82.8%. The top three contributing
bioclimatic variables were BIO 1, BIO 17 and BIO 6, with
the cumulative value of the three reaching 93.80%. Therefore,
BIO 1, BIO 17 and BIO 6 are the primary environmental variables
that influence habitat suitability for RPW and respond well to
potential habitat for RPW.

Species response and potential habitat suitability distribution

Figure 3 shows the response curves for the relationship between
the probability of RPW presence and the five bioclimatic vari-
ables. The figure reflects the dependence of predictive appropri-
ateness on the selected variables, as well as the dependence
caused by correlations between the selected variables and other
variables. The values shown in the graph are the average of ten
repetitive runs. Based on the BIO 1 curve, it can be concluded
that the interval of the yearly average temperature (BIO 1) is
most suitable for the survival of RPW when it ranges from 24.6
to 29.4°C. In terms of the mean diurnal temperature difference
(BIO 2), there was a consistently high response between 2.80
and 5.50°C, with a sharp downward trend starting at temperatures
above 5.5°C, and the insect was no longer likely to survive once
above 12°C. The minimum temperature of the coldest month
(BIO 6) shows an increasing trend from −3.0°C, and stabilises
to reach the optimal value after reaching 15.8°C, with its optimal

Figure 1. AUC result of MaxEnt modelling.

Figure 2. Jackknife plot of the training gain for R. ferrugineus.
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interval ranging from 15.8 to 23.2°C. From fig. 3d, it can be seen
that the suitability of RPW firstly shows an increasing trend with
the increase of the amount of precipitation (BIO 16) in the wettest
season, and then starts to decrease after the peak at 755 mm, and
then the suitability tends to stabilise when it reaches 2200 mm.
Precipitation in the driest quarter (BIO 17) peaks at 80 mm.
It shows that RPW is positively correlated with suitability for pre-
cipitation in the driest quarter (BIO 17) below 80 mm, but nega-
tively correlated with suitability above 80 mm. It is worth noting
that it stops falling at 550 mm and shows a flat trend. The results
showed that the suitability of RPW was greatest when the average
annual temperature (BIO 1) ranged from 24.6 to 29.4°C, the
average diurnal temperature difference (BIO 2) ranged from
2.80 to 5.50°C, the minimum temperature of the coldest month
(BIO 6) ranged from 15.8 to 23.2°C, and the precipitation of
the wettest season (BIO 16) was 755 mm, and the precipitation
of the driest season (BIO 17) was 80 mm.

Figure 4 shows the distribution of the suitability zones of the
contemporary RPW. The insect is distributed throughout the
southeastern region, but the high suitability zone is mainly con-
centrated in the southeastern coastal region. The conditions for
the formation of a monsoon climate are provided by the com-
bined effect of warm and humid air currents from the oceans
and dry and cold air currents from the continents; and because
the southeastern part of China is in the tropics and subtropics,
the climate type is mainly tropical monsoon climate or subtrop-
ical monsoon climate. Tropical monsoon climates have high tem-
peratures throughout the year with distinct dry and rainy seasons
for precipitation, while subtropical monsoon climates are at lower
latitudes, and winters are milder rather than colder. Such climatic
conditions are also exactly what the RPW needs.

Highly suitable areas are mainly located in Hainan,
Guangdong, Fujian, Zhejiang, Guangxi, Taiwan and Yunnan pro-
vinces. Tables 2 and 3 show that the total area of highly suitable
areas for RPW is currently 9.12 × 104 km2, accounting for 1.0% of
the area of China. Guangdong has the largest area of highly suit-
able areas, 3.06 × 104 km2, accounting for 33.6% of the total area
of highly suitable areas in the country. Overall, the proportionate
area of high suitability zones is relatively small, with more areas in
medium and low suitability zones.

Current and future distribution projections and changes

This paper focuses on the distributional trends of RPW from two
future periods, the 2050s and the 2090s, and three scenarios,

SSP1-2.6, SSP2-4.5 and SSP5-8.5. The potential distribution hier-
archy of RPW under the corresponding scenarios is also plotted
(fig. 5), which clearly presents the future potential distribution
changes of the beetle. For the high suitability area, the overall
trend shows the same direction in both the 2050s and 2090s per-
iods. The area decreases to varying degrees in both the SSP1-2.6
and SSP2-4.5 scenarios, while the increase is relatively large in
both the SSP5-8.5 scenario. Under the 2050s SSP1-2.6, SSP2-4.5
and SSP5-8.5 scenarios, the RPW high suitability zones were
8.90 × 104, 8.66 × 104 and 13.51 × 104 km2 respectively; under
the 2090s SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, the RPW
high suitability zones were 7.51 × 104, 8.75 × 104 and 11.05 ×
104 km2 respectively. The results show that the area of the high
suitability zone shows an overall increasing trend. However,
there is a general decrease in the area of medium suitability
zones. The most significant decrease is −24.3% for the SSP5-8.5
scenario in the 2050s. In the future, the area of low suitability
zones will continue to increase. Only in the 2090s did the
SSP1-2.6 scenario show a small reduction in the area of low suit-
ability zones. It is worth noting that while the high suitability dis-
trict had the largest increase, the district originally had a relatively
small overall area. So the high suitability zone is still much smaller
than the low suitability zone, which is itself the largest. Overall, in
the future, there will be an increase in the area of high and low
suitability zones and a decrease in the area of medium suitability
zones. The low suitability zone will continue to occupy the largest
area.

Discussion

Predicting suitable habitats through SDMs has become an effect-
ive tool for invasive pest habitat suitability evaluation and pest
control (Costa et al., 2015). Hence, using climate change under
different scenarios as an entry point to explore the possibility of
future distribution of RPW is crucial for the control of this
pest. In this study, MaxEnt was used to simulate a suitable
habitat for RPW under current and future climate scenarios.
Environmental variables have an impact on the accuracy of the
model during the modelling process (Bowler, 2014). So, in this
paper, the environmental variables are filtered. In parallel, the
sample size of the species occurrence data also has an impact
on the predictive performance of the model during the analysis
process (Halvorsen et al., 2016). It is shown that the analysis of
different training samples regarding the reliability of the results
leads to the conclusion that when the number of training samples
reaches 20, the accuracy of the model basically meets the require-
ments. When the number of samples is greater than 30, MaxEnt
will provide stable prediction results (Gao et al., 2023). In this
study, a total of 222 training samples of RPW occurrence were
used after screening, which provided a base guarantee for the
accuracy of the prediction results (AUC = 0.965). Due to the
greater significance of climate change in influencing species distri-
bution, this article primarily focuses on discussing the current
and future distribution of the pest from a climatic perspective.
However, the distribution of a species is not solely dictated by cli-
mate; rather, it is shaped by the interplay of abiotic and biotic fac-
tors. Incorporating more factors into modelling considerations
can enhance the accuracy of predictive outcomes. This direction
is worth emphasising in future forecasting efforts.

Most of the highly suitable habitats for RPW are located in the
hilly areas along the southeast coast of China. Among them,
Taiwan Island and Hainan Island are the first and second largest

Table 1. Environmental variables used in this study and their percentage
contribution (%) to variation in the data

The contribution of each environmental variable in MaxEnt modelling

Code
Per cent

contribution/%

BIO 1 (annual mean temperature) 51.3

BIO 17 (precipitation of driest quarter (mm)) 31.5

BIO 6 (minimum temperature of coldest month (°C)) 11

BIO 2 mean diurnal range (mean of monthly (max
temp–min temp) (°C))

3.6

BIO 16 precipitation of wettest quarter (mm) 2.7
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islands in China, respectively, and the four sides of the sea as well
as the distribution of hills are the main reasons why the whole
island of these two islands belongs to the medium- and high-
suitable habitats. It is worth noting that Hainan Island, with
76% of the island’s highly suitable habitat area, should be a prior-
ity control area. The plains of the middle and lower reaches of the

Yangtze River are the northernmost boundary between the
unsuitable area and the low, medium and high suitable habitat
areas. To the north of this boundary are the North China Plain,
the second largest plain in China, and the Northeast China
Plain, the first largest plain in China, both of which are in unsuit-
able areas. The insect prefers to survive in hilly areas. This

Figure 3. Response curves of the environmental variables that contributed the most to the MaxEnt models. (A) Annual mean temperature (BIO 1). (B) Mean diurnal
range (mean of monthly (max temp–min temp) (°C)) (BIO 2). (C) Minimum temperature of coldest month (BIO 6). (D) Precipitation of wettest quarter (mm) (BIO 16).
(E) Precipitation of driest quarter (mm) (BIO 17). The red line is the average response of the MaxEnt run. The blue part is the average±one standard deviation.

Figure 4. Current suitable climatic distribution of R. ferrugineus in China. The probability of R. ferrugineus is shown by the colour scale in the area. Red indicates a
highly suitable area with a probability of higher than 0.66, orange indicates a moderately suitable area with a probability of 0.33–0.66, yellow indicates a poorly
suitable area with a probability ranging from 0.05 to 0.33, and white represents unsuitable areas.
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coincides with the actual distribution of RPW, indicating that the
MaxEnt prediction has some reference value.

As global warming continues, the area of distribution of RPW
in low and high suitable habitat is likely to increase further,
although the extent of variation in low and high suitable habitat
for the insect varies under different climate scenarios.
Fortunately, the overall distribution of RPW will continue to be
concentrated in the southern regions without significant expan-
sion towards the north. However, there is a more noticeable
trend towards an increase in the proportion of high suitable
areas in each province. There are many factors that influence
the geographical distribution of species, and climate is
among the most important. The key environmental variables
affecting the distribution, namely BIO 1, BIO 2, BIO 6, BIO 16
and BIO 17, were screened based on the insect’s contribution to
the probability of occurrence, with BIO 1 having the greatest
impact on the distribution; and the dividing line between the
unsuitable areas and the low, medium and high suitable habitat
areas mentioned above, as a whole, roughly coincides with the
Qinling-Huaihe River line. This line is the 0°C isotherm in
January in China, and also the demarcation line between the
warm temperate zone and the subtropical zone (Xu et al.,
2021). This suggests that temperature may be a more important
factor limiting the distribution of RPW in climatic conditions.
BIO 1 represents the annual mean temperature. RPW demon-
strates a higher suitability within the range of 24.6–29.4°C.
However, the annual mean temperature in China typically ranges

between 10 and 15°C (Chaoli et al., 2023), indicating that the
preferred temperature range of the insect exceeds the country’s
average. This is also one of the reasons why the RPW is not dis-
tributed in most parts of China. However, Hainan Province has
the largest distribution of RPW. This province falls under a trop-
ical monsoon climate, with an annual average temperature
ranging from approximately 25 to 28°C (Xinyue et al., 2023),
which creates favourable conditions for the survival of RPW. It
is worth emphasising that in northern China, during the coldest
months, the lowest temperature can drop to as low as −20°C or
even lower (Yu et al., 2023). Due to the generally colder climate
characteristics in the north, RPW tends to be concentrated in
the southern regions. In China, the diurnal temperature variation
decreases from northeast to southwest (Kebiao et al., 2023). Based
on the preference of this pest for diurnal temperature variation, a
range of 2.80–5.50°C is considered suitable. Overall, RPW tends
to favour environments with small diurnal temperature variations.
The southern coastal regions of China happen to fall into this cat-
egory. This coincides with the current concentrated distribution
area, thus confirming the predictions of this study.

Based on the previous description of the harmful potential of
RPW pests, the prevention and control of this insect are particu-
larly important. In the final analysis, the future distribution pre-
diction of RPW in this paper also aims to provide a reliable
reference for better control of the insect as well as future control
efforts in terms of geographic distribution. For farmers, more
convenient chemical control is preferred when dealing with pest

Table 2. Analysis of the main suitable distributions of R. ferrugineus in China

Province
High-suitable
area (104 km2)

Moderate-suitable
area (104 km2)

Low-suitable
area (104 km2)

Total (104

km2)a

Percentage of
high-suitable area in
the province (%)

Percentage of
high-suitable area in

China (%)

Tibet 0.00 0.00 0.44 122.84 / /

Henan 0.00 0.00 0.78 16.70 / /

Jiangsu 0.00 0.00 4.57 10.72 / /

Anhui 0.00 0.00 8.14 14.01 / /

Sichuan 0.00 0.11 4.06 48.60 / /

Hubei 0.00 0.05 7.81 18.59 / /

Chongqing 0.00 0.00 3.87 8.24 / /

Shanghai 0.00 0.18 0.40 0.63 / /

Zhejiang 0.90 1.72 6.77 10.55 8.0 9.9

Hunan 0.00 6.01 12.15 21.18 / /

Jiangxi 0.00 0.77 14.40 16.69 / /

Yunnan 0.02 0.82 17.49 39.41 0.1 0.2

Guizhou 0.00 0.00 5.99 17.62 / /

Fujian 1.30 2.85 6.70 12.40 10.5 14.3

Guangxi 0.59 8.51 11.52 23.76 2.4 6.5

Taiwan 0.56 0.64 1.12 3.60 15.6 6.1

Guangdong 3.06 8.36 4.14 17.97 17.0 33.6

Hong Kong 0.00 0.09 0.00 0.11 / /

Hainan 2.69 0.2 0.02 3.54 76.0 29.5

China 9.12 30.31 110.37 / / 1.0

aIndicates the total area of the corresponding province.
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and disease problems. However, chemical control brings both the
environmental pollution of pesticides, the resistance of RPW to
pesticides and the health problems of workers, which cannot be
avoided at present. In comparison, biological control appears to
be safer. Some studies have shown that Entomopathogenic nema-
todes (EPNs) are an effective biocontrol agent against the insect.
It can feed on and attack target pests without harming the envir-
onment and other non-target organisms. ENPs and their symbi-
otic bacteria have a reciprocal interaction that can kill the host in a
short period of time and is a method of control worth considering
(Nurashikin-Khairuddin et al., 2022).

In this work, 19 bioclimatic variables were combined and
modelled using the MaxEnt model to explore the geographic dis-
tribution of the RPW in China. At the same time, a hierarchical
assessment of the insect’s suitable distribution area was carried

out. The 19 bioclimatic variables characterise the climate mainly
in terms of indicators of both temperature and precipitation.
Although it is already a relatively well-established indicator for cli-
mate, the survival of a species will also be affected by topography,
terrain, elevation, species competition, human activities, etc.
(Morales and Fernández, 2020). As a result, there are limitations
in the breadth of data collection, and the predicted potentially
suitable area will deviate somewhat from the actual suitable area
(Convertino et al., 2014). In future prediction efforts, additional
research should obtain richer data as the modelling technology
continues to mature and to expand the biotic and abiotic variables
in the model to produce more accurate predictions. Although
there is some room for improvement, this study successfully pre-
dicted the potential suitable distribution area of RPW within
China based on the MaxEnt model with high reliability.

Table 3. Prediction of the suitable areas for R. ferrugineus under current and future climatic conditions

Decade Scenarios

Predicted area (104 km2) Comparison with current distribution (%)

High-suitable
area

Moderate-suitable
area

Low-suitable
area

High-suitable
area

Moderate-suitable
area

Low-suitable
area

Current 9.11 30.31 110.38

2050s SSP1-2.6 8.90 34.00 121.09 −2.3 12.2 9.7

SSP2-4.5 8.66 28.58 121.34 −4.9 −5.7 9.9

SSP5-8.5 13.51 22.93 152.42 48.3 −24.3 38.1

2090s SSP1-2.6 7.51 32.20 108.38 −17.6 6.2 −1.8

SSP2-4.5 8.75 34.40 124.75 −4.0 13.5 13.0

SSP5-8.5 11.05 27.57 129.68 21.3 −9.0 17.5

Figure 5. Potential distribution of suitable areas for R. ferrugineus based on different climate change scenarios in China. The probability of R. ferrugineus is shown
by the colour scale in the area. Red indicates a highly suitable area with a probability higher than 0.66, orange indicates a moderately suitable area with a prob-
ability of 0.33–0.66, yellow indicates a poorly suitable area with a probability ranging from 0.05 to 0.33, and white represents unsuitable areas.
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Conclusion

In this study, the potential geographic distribution areas of the
RPW under three climate change scenarios (SSP1-2.6,
SSP2-4.5 and SSP5-8.5) were successfully simulated based on
the MaxEnt model for the current and two future periods
(2050s and 2090s). Under the current climatic conditions,
these southeastern coastal areas, such as Hainan, Guangdong,
Fujian, Guangxi and Taiwan, are the main regions of the high
suitability zones, which cover a total area of 9.12 × 104 km2.
The most significant factors (thresholds) affecting their distribu-
tion were temperature followed by precipitation, including
annual mean temperature (24.6–29.4°C), mean diurnal range
(2.80–5.50°C), minimum temperature of coldest month (15.8–
23.2°C), precipitation of wettest quarter (=755 mm) and precipi-
tation of driest quarter (=80 mm). The predicted potentially
suitable distribution areas for RPW are in excellent agreement
with actual occurrences. In order to more accurately model
changes in the suitable geographic distribution of the pest
under future climate change scenarios and to better control
the pest, the combined effects of biotic and abiotic factors
need to be fully considered in future research. This work aims
to provide some theoretical references for the prediction and
forecasting work of RPW as well as in the area of pest and dis-
ease control.
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