SIX AND SEVEN DIMENSIONAL NON-LATTICE SPHERE PACKINGS
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The densest lattice packings of equal spheres in Euclidean spaces
E of n dimensions are known for n g 8. However, it is not known
n

for any n > 3 whether there can be any non-lattice sphere packing
with density exceeding that of the densest lattice packing. W. Barlow
described [1] a non-lattice packing in E3 with the same density as the

densest lattice packing, and I described [6] three non-lattice packings
in E5 which also have this property. In this note I describe a non-

lattice packing in E() and two in E7 which are also as dense as the

densest lattice packings; these packings are all obtained by a uniform
construction.

Consider a lattice packing in E , not necessarily the densest
n
possible, and define a layer of spheres in E " to be a set of spheres
n
whose centres form a lattice in E , so that their cross section in the
n

flat containing their centres is the chosen lattice packing in E . We
n

consider packings in E made by stacking such layers. To make
n

+1
these as dense as possible, we require to have the centre flats of the
layers as close together as possible, so we place the spheres of each
layer opposite to the points of the adjacent layer most distant from the
centres of spheres, unless this would result in the spheres of two layers
adjacent to an intermediate layer overlapping each other. However,

the spheres may not be opposite to all the points at this maximum
distance, and when they are not, it may be possible to construct non-
lattice packings by suitably stacking the layers. Since the layers are
always lattice packed, if one sphere is opposite to a point at maximum
distance from centres in the adjacent layer, so are all spheres in its
layer.

This construction is clearly illustrated in the case n = 2.
First we consider layers packed in square lattices. The points most
distant from the vertices of the lattice are the centres of squares, so

we place each layer with its spheres opposite to the squares of the
adjacent layer. As the spheres and the squares are equally numerous,
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there is no choice here, and we obtain the densest lattice packing in
E3 . Now consider layers packed in triangular lattices. For maximum

density we place the spheres of each layer opposite to the centres of
triangles of the adjacent layer, but now we have a choice, as the triangles
are twice as numszrous as the spheres. If we regard the triangles as
coloured black and white alternately, the spheres of each layer can be
placed opposite to either all the black triangles or all the white triangles
of the adjacent layer. If the layers are so stacked that the spheres in
the two layers adjacent to any layer are opposite to triangles of different
colours, then the densest lattice packing is obtained. But if the adjacent
spheres on both sides of each layer are opposite to triangles of the same
colour, then the uniform non-Jlattice packing is obtained. Clearly these
packings are of the same density. If we require our packings to be
uniform, there is no further choice, as all layers have to be fitted alike,
and this construction gives precisely these two packings.

We now consider packings in E 1 made by stacking layers whose
n
n+1

centres form the lattice hd in E , 1i.e. the alternate vertices of
n

the regular cubic lattice & (For details and bibliography see

n+1’

[2, pp. 395,414] and [3, pp. 236-238].) These themselves give the

densest lattice packings in E for n = 3, 4, 5, but not for other values
n

of n. For all values of n, each sphere touches 2n(n - 1) others in each
layer. For n > 3 the cells of the lattice are of two kinds: each omitted
vertex of the cubic lattice is the centre of a cell B , while inscribed in

n

each cube of the lattice is a cell h¥ . The latter cells are twice as
n

numerous as the former, since they are inscribed in all the cubes while the
former are centred in only half of the equally numerous vertices of the
cubic lattice. We shall regard the cells hv as being coloured black

n

and white alternately, corresponding to ''chessboard' colouring of the cubes.

For n = 3 the cells [33 (octahedra) are larger than the cells
h'y3 = a3 (tetrahedra), so to stack such layers for maximum density

we place the spheres of each layer opposite to octahedra of the adjacent
layer. As the octahedra and spheres are equally numerous, there is
no choice here, and we arrive uniquely at the densest lattice packing

in E .
in E,

For n = 4, the cells [34 and h'y4 are the same, the lattice
h65 being the regular honeycomb {3, 3, 4, 3} . So in this case we
have a threefold choice for placing each layer: relatively to h§ 5 the

spheres of each layer may be placed opposite to the omitted vertices
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or the black cells or the white cells. I have analysed this case in [6],
finding three distinct uniform non-lattice packings of the same density
as the densest lattice packing. In each of these, each sphere touches
40 others.

For n > 4, the cells h’yn are larger than the cells {Sn, so for
maximum density in En+1 we stack the layers with the spheres of
each layer opposite to the cubes of the adjacent layers. As these cubes
are twice as numerous as the spheres, we have a choice at each stage
whether we place the spheres opposite to black or white cubes. Thus
the centres of the spheres in any one layer may or may not lie on the
joins of centres of spheres in the layers adjacent to it. If every layer
is such that they do so, a lattice packing will be obtained, but if they
are such that this is not so, a non-lattice packing will be obtained. In
a uniform packing, all layers must be alike in this respect, so we have
uniquely determined a lattice packing and a uniform non-lattice packing.

For n =5 we obtain the densest lattice packing in E, when the

6
spheres of the two layers adjacent to each layer are opposite to cubes
of different colours, and the uniform non-lattice packing when they are
opposite to cubes of the same colour. In both cases each sphere touches
40 others in its own layer and 16 in each adjacent layer, a total of 72.

For n = 6 the roles are reversed: the lattice packing is that in
which the spheres of the two layers adjacent to each layer are opposite
to cubes of the same colour. This has a remarkable consequence. In
this case the spheres of each layer touch the flats of centres of adjacent
layers, and consequently in the lattice packing, but not in the non-lattice
packing, the spheres in the two layers adjacent to a given layer touch
each other in the flat of centres of the given layer. Thus although in
both packings each sphere touches 60 others in its own layer and 32 others
in each adjacent layer, a total of 124, in the lattice packing each sphere
also touches one in each of the two layers two away from it, bringing the
total to 126.

It is also possible to stack the layers so that each sphere touches
125 others, each sphere touching one in a layer two away on one side
only. This packing, however, is not uniform. Half of the layers are
such that their flats of centres contain points of contact of spheres of
adjacent layers, while the others contain no such points, and the spheres
in layers of opposite kinds are not equivalent.

For n =7, the spheres of each layer cut the flats of centres of
the adjacent layers, so we can obtain a high density packing in E8 only

by placing the two layers adjacent to a given layer with the spheres
opposite to cubes of different colours. We thus arrive uniquely at the
densest lattice packing. Each sphere is opposite to a {57 cell in the
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layer two away from it, and so it touches 84 others in its own layer,
64 in each adjacent layer, and 14 in each layer two away from it, a
total of 240.

For n = 8, the spheres of a layer can be fitted exactly into the
interstices between the spheres of an '"adjacent' layer, producing the
densest lattice in E8 again instead of a packing in E_. Clearly such

layers will not produce dense packings for any n > 8.

As remarked above, the lattice packing h 6 +1 is not the densest
n
in E for any n > 6, and we now examine the use of layers of spheres
n

based on the densest lattice packings. It happens thatin E as in E_,

6’ 2
the cells of the densest lattice are all the same and are twice as numerous
as the vertices, so there are two ways of stacking such layers in E7, as

in E_. This may be seen as follows. Basing our coordinates for the
densest lattice in Eé on its construction from layers based on hé

in E5, we may take the vertices of the lattice to have coordinates

(x1, x2, x3, x4, x5, X6 \/—3), where x1,...,x6 are integers, all even

or all odd, with their sum divisible by 4. Thus the 72 vertices adjacent

to the origin comprise 40 with two of Kyperes Xg being t2 and the

others and x6 being 0, and 32 with x1,...,x6

odd number of each sign. The cells each have 27 vertices, and the
centres of the cells are points which have the same coordinates as the
vertices except for adding or subtracting 4/~ 3 to the last coordinate.
The two sets of cells correspond to whether 4/~ 3 was added or
subtracted. Deeming these to be black and white respectively, we
obtain the lattice packing when the adjacent layers have their spheres
opposite to cells of different colours, otherwise the uniform non-lattice
packing. In this case the spheres do not cut or touch the flats of centres
of adjacent layers, so in both packings each sphere touches 72 in its
own layer and 27 in each adjacent layer, a total of 126. We thus have
two uniform non-lattice packings in E7 of the same density as the

being 11 with an

densest lattice packing, each sphere of one touching 126 others while
each sphere of the other touches only 124 others.

The densest lattice in E7 has cells of two kinds, the larger of

which have 56 vertices, and these cells are as numerous as the vertices.
So the densest packing in E8 which can be made from these layers is

uniquely determined, and is the densest lattice packing in ES again.

Each sphere touches the flats of centres of the adjacent layers, and so
each sphere touches 126 others in its own layer, 56 in each adjacent
layer, and one in each layer two away from it, totalling 240.
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The cells of the densest lattice in E8 are a8's and P 8'5,

both of which are more numerous than vertices, so lattice and non-
lattice packings of equal density can be constructed in E9 from layers

of this type. These are the densest known, but have not been proved
to be the densest possible even for lattice packings. Similarly the

densest known packings in E10 can be obtained from these E9 layers,

but the densest known packing in E“ is not obtainable from the densest

known in E10 in this way. These and other packings for 9 & n £ 24
m . .
and for n =2 are discussed in [4;5].

It is only for n £ 8 that the densest lattice packings are known,
and we have now constructed equally dense non-lattice packings for
n=3,5 6,7, i.e. whenever n is not a power of 2. It remains an
interesting field for speculation and study whether these are possible
for n = 4 or 8, and whether denser non-lattice packings are possible
for any of these values of n.
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