https://doi.org/10.1017/age.2025.6 Published online by Cambridge University Press

Agricultural and Resource Economics Review (2025), 1-13
doi:10.1017/age.2025.6

RESEARCH ARTICLE

NORTHEASTERN AGRCLA
RESOURCE ECTHOMICS A5

Additionality of solar tax incentives under
community choice aggregation in Ohio

Michael Liam Smith@), Carson Sean Reeling@® and Michael D. Wilcox

Department of Agricultural Economics, Purdue University College of Agriculture, West Lafayette, IN, USA
Corresponding author: Michael Liam Smith; Email: smit4785@purdue.edu

(Received 22 May 2024; revised 3 December 2024; accepted 10 December 2024)

Abstract

In the State of Ohio, the electric regulatory landscape permits local governments to become
energy suppliers to residents and small businesses through community choice aggregation
(CCA). Some CCAs provide enrollees 100% renewable electricity. Concurrently, the
federal government offers an income tax credit (ITC) for the purchase of a solar array.
With policy incentives, it is important to ensure they encourage behavior beyond the
baseline scenario without the ITC. This is known as “additionality.” Renewable aggregation
programs may crowd out the benefits of the ITC, violating additionality. This paper
assesses additionality of the ITC in the context of Ohio’s CCA programs. The actual
additionality can depend on whether renewable energy is already being supplied to the site
of a solar array. Hence, we study the relationship between CCA and solar adoption
probability to determine whether tax incentives are additional. Using panel data methods
and post-estimation simulations, we discern if additionality is violated where these
programs overlap. We find aggregation programs increase the probability of solar adoption
and that $0.79 of every dollar spent on the income tax credit in Ohio is non-additional.
This will help policymakers determine the efficacy of funds allocated to their programs.

Keywords: Additionality; energy policy; community choice aggregation
JEL codes: Q42; Q48; Q58

Introduction

As the United States grapples with an aging electric grid and the emergence of climate
change, renewable power has become a leader of growth with new energy projects (US EIA
2024). Looking forward, renewables are expected to become the dominant capacity drivers
in electricity generation (US EIA 2023). Part of this effort is to build distributed
photovoltaic (PV) solar arrays. Many of these distributed solar arrays are privately owned
by residents and small businesses. Federal and local authorities have engaged in the
industry with a series of regulations and incentives to proliferate reliable, clean, and
affordable solar generation technology. One such incentive is a federal income tax credit
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(ITC) that subsidizes the purchase of a solar array (Office of Energy Efficiency and
Renewable Energy, US DOE 2023).

As policymakers at various scales contribute to crafting solutions, we must remember to
evaluate the efficacy of these programs and the efficiency of their respective expenditures.
The economic principle of additionality can be an important metric of a program’s cost
effectiveness. An incentive payment for some conservation activity satisfies additionality if
the environmental services for which the payment is received would not be generated absent
the payment (Horowitz and Just 2013). In the case of the federal ITC for the purchase of a
solar array, it should serve to promote the supply of renewable solar energy to the extent that
individuals who claim it would not have supplied that renewable energy if they did not
qualify for the tax incentive. If those who claim the tax credit would have supplied it anyway,
or if the energy they consume already includes some renewable electricity, they risk violating
additionality. The latter scenario is the case in certain jurisdictions in Ohio, where local
officials operate “community choice aggregation” (CCA) programs to purchase electricity on
behalf of their residents and small businesses. These programs are often coupled with
“renewable defaults” that provide a guaranteed supply of 100% renewable electricity.

In this paper, we estimate the additionality of the federal ITC for the purchase of a solar
array in the face of CCA where electricity may already be renewable. To do this, we
estimate the effects of CCA and renewable default aggregation on solar adoption decisions
among Ohio residents and small businesses—hereafter, “sites.” We focus on Ohio as the
prevalence of aggregation is well beyond any of the seven other states that allow it in the US
(Hsu 2022). We use our estimates to calculate the total share of federal ITC dollars that
generate non-additional renewable energy. We find residents and small businesses in CCA
programs are more likely to adopt solar and that, on average, 79% of the expenditures in
the ITC program are non-additional in the context of emissions reduction in Ohio.

Literature review

The subject of additionality has some precedent in solar policy, but it is not widely studied.
We are not aware of economic analyses of additionality of the ITC in the context of
aggregation, but there have been studies of the additionality of ITCs. A study of the
California rebate program found that without the rebate, California would see a 53%
decline in solar adoption (Hughes and Podolefsky 2015). In Europe, members of the EU
created a mechanism to recognize and measure additionality of renewable energy sources
to evaluate progress made towards decarbonization objectives (Acharya 2022).

While still emergent, drivers of private solar adoption among homeowners and small
businesses in the US is a relatively well-studied subject with the caveat that market
conditions are continually evolving. Many prior studies look at specific locations
examining the effect of different policy treatments and market forces as determinants of
solar adoption. Schulte et al. (2022) provides a useful meta-analysis to summarize the field
of literature which seems to begin in the mid-1980s. Choice experiments, panel, and spatial
data are commonly employed along with techniques including the theory of planned
behavior and diffusion of innovation (Schulte et al. 2022).

Consumer choice experiments have been particularly useful to analyze determinants of
adoption that are intrinsic to the buyer, including consumer preference and preference
heterogeneity. A common hurdle to solar adoption may be the price premium (either
perceived or real) that accompanies the purchase decision. Mamkherzi et al. (2020) find
statistically significant differences in perspectives on renewable and solar energy between
rural and urban communities. Specifically, they find that location and exposure to solar are
factors that influence both respondents’ willingness to pay for solar and support for


https://doi.org/10.1017/age.2025.6

https://doi.org/10.1017/age.2025.6 Published online by Cambridge University Press

Agricultural and Resource Economics Review 3

renewable portfolio mandates on power suppliers. This analysis extends beyond the
narrow perspective of rooftops or privately owned solar arrays. Additionally, they find a
household willingness to pay (WTP) of $27-$30 per month for increased renewable
portfolio standards of about 80% of supply (Mamkhezri et al. 2020) on their electricity bill.

A similar analysis of willingness to pay for a national renewable energy standard finds
support with a household WTP of $162 per year (due to increased cost of electricity) for a
renewable portfolio standard of 80% by 2035 (Aldy et al. 2012). Another inquiry
corroborates respondents are WTP for solar production to substitute fossil fuel sources,
but also finds the WTP cannot offset the financial premium (Heng et al. 2020). As such,
Heng et al. suggest that the government has a clear role in subsidizing the adoption of solar
energy in the private markets.

Inquiry into adoption patterns is also rich in the literature. PV technology has begun to
diffuse through the marketplace; this has allowed researchers to estimate the impact
covariates have on a buyer’s decision to adopt solar, including peer effects. Bollinger and
Gillingham (2012) find evidence that peer effects increase solar adoption in owner-
occupied homes by 0.78 percentage points for every extra installation within that same zip
code (Bollinger and Gillingham 2012). This suggests that visibility of panels and “word-of-
mouth” marketing are useful means of promoting solar adoption (Bollinger and
Gillingham 2012). They suspect this is due to image motivation and information transfer
effects. The power of peer effects is corroborated in spatial analysis of solar adoption,
including in a study in Connecticut where an incremental increase in adoption is found to
promote further adoption by a neighbor in the same 0.5-mile radius block group in the
next six months (Graziano and Gillingham 2014).

Spatial effects also pertain to sunlight exposure (irradiance), weather, and climate. A
study in Germany found that an increase in the level of sunlight by one standard deviation
from the mean yields an increase of 4.7% in PV installations in the same region (Lamp
2023). Another study found solar potential (related to sunlight exposure) increases the
likelihood of adoption, but the tax credit and population of an area are not associated with
adoption (Young and Sarzynski 2009). Sunlight, being the primary input to production of
solar energy, is likely chief among the factors of a decision and may be associated with the
risk perception in a buyer’s mind.

Of course, the risk associated with the project’s feasibility and financial efficacy remain.
Bollinger and Gillingham (2012) also observe that maintenance guarantees and alternative
sales programs, including panel leasing, are effective means of de-risking a project during
the sales process. However, they warn this creates opportunity for moral hazard, where
reduced risk may lead to inflation of the size of installations beyond what a purchaser may
really need (effectively creating a riskier project; Bollinger and Gillingham, 2012). Another
technique used to significantly de-risk a project is community solar subscription programs.
These are not permitted in the State of Ohio (Heeter et al. 2021). With respect to the scope
of our analysis, we will forgo discussion here.

Some of these findings are corroborated in a study employing a difference-in-differences
model with group time effects (O’Shaughnessy et al. 2020). The authors find that income-
specific incentives provided to lower- and middle-income households, including solar
leasing and financing options based on property assessments, are associated with increased
adoption of solar arrays. These findings suggest that these policy interventions could
encourage adoptions beyond those eligible by acting through previously discussed peer
effects to further encourage adoption in these lower- and middle-income communities.

Impacts of local energy management policy options on additionality are not well-
studied. However, there has been some analysis of aggregation programs in current
literature. A study of price performance of Ohio’s aggregation programs found that, while
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savings experienced by the individual are small (2-10% of the alternative offers), the costs
of the programs are far lower (Littlechild 2008). Furthermore, even when the savings are
small, CCA programs are useful at promoting competition in the marketplaces (Littlechild
2008) which will ultimately benefit consumers. These savings are found to fluctuate
according to prevailing market conditions (Littlechild 2008).

This paper’s contribution builds on studies of aggregation to determine the additionality
of the federal ITC as it interacts with aggregation programs offering renewable defaults. We
are the first to estimate additionality in the context of CCA solar adoption in the State of
Ohio. CCA is a unique feature of the Ohio policy landscape, and we integrate data on the
existence of aggregation programs (as well as their renewable energy composition) with data
on the existence of privately owned solar generation sites from Ohio’s solar renewable energy
credit (REC) market. Integrating these datasets helps us determine which solar arrays were
purchased in areas that benefited from such programs and which did not. This inquiry will
help inform policymakers at multiple scales how their policies interact with other features of
the policy landscape. The conclusions drawn here will help policymakers to better
understand how these policies encourage solar adoption.

Data

The Public Utilities Commission of Ohio (PUCO) maintains a Renewable Power Siting
Board (RPSB) which provides public access to a dataset on certified renewable generators
across Ohio, Indiana, Kentucky, Michigan, and Pennsylvania.! This dataset includes
information on the size, location, and certification dates of the solar arrays, which is assumed
to correlate to the actual period of installation. This dataset is motivated by the State of
Ohio’s renewable energy portfolio standard (PUCO 2023). A mandate on utility companies
requires 8.5% of electricity sold in the state to be sourced from renewable generators by 2026,
a benchmark which will gradually increase (PUCO 2023). State law includes an enforcement
mechanism to subject utilities to a financial penalty should the standard not be met (PUCO
2023). By certifying with the RPSB, generators can enter the local REC market and sell their
REC:s to utility providers or other consumers in that market.

Many of the generators certified with the RPSB are small and privately owned by
businesses and residents. While many arrays are not owned by utility companies, they
maintain interconnection agreements providing a net-metering price tariff. Net metering
establishes the price utilities will pay for excess electricity produced by the generator.? To
certify with the State’s electric portfolio, generators may voluntarily opt in and register
their site with the RPSB. Certification with the RPSB allows individuals to enter the REC
market. The process does not significantly belabor an individual beyond what is already
required to purchase a solar array. As such, this dataset reflects a sample of the true
population of solar array owners in the region. We aim to model the probability of solar
adoption as a function of aggregation, local incentives, net-metering tariff rates, and fixed
effects. Array data includes the address of the site and longitude and latitude data for
mapping purposes. Figure 1 visualizes the array sample.

Our dependent variable is Adoption Time, equal to one in the period a site adopts a
solar array and zero otherwise. We generated data on CCA programs from an ARCGIS
dataset provided by PUCO (2024). There are roughly 480 different aggregation programs
within Ohio. Five percent of these programs currently offer 100% renewable energy by

1Of these states, only Ohio law permits CCA.
2Market research suggests there is usually a limit to production around 120% annual billed usage before
the interconnection agreement is void in the State of Ohio (Solar United Neighbors 2024).
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Figure 1. A map showing the location of each solar array in the dataset.

default. Using the PUCO Docketing Information System, we manually sorted each of the
aggregation programs to determine when they began and if they offer 100% renewable
electricity by default (PUCO DIS 2023). We then paired each solar array to its appropriate
aggregation program and generated dummy variables to denote if the program existed
when the array was purchased, and if the program was offering 100% renewable electricity
at that time.

In an attempt to obtain time-varying information on income levels in the regions studied,
we obtained annual aggregated income tax reports from the State of Ohio Department of
Taxation (Ohio Department of Taxation 2023). Dividing total county reported income by
number of individuals filing tax returns yields county average income by year.

The price of PV components and installation is difficult to determine for each array
because certification data from the RPSB does not include this information and publicly
available price data germane to the location and time of study is non-existent. To
accommodate this, we use the global price of PV in the year they are adopted (Oxford
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Figure 2. Photovoltaic price and federal income tax credit rate history.

Martin School 2023). Use of a global price reduces the effect of local demand shocks,
effectively making our results more robust to account for exogenous shifts to factor
market. We calculate the net PV price as the interaction between PV price and the quantity
(1 - federal ITC) to subsume incentives offered in the observed year. Figure 2 shows the
history of solar PV prices and the ITC.

The US Energy Information Administration compiles data on retail SSO electric prices
by utility provider annually. Actual prices may differ from these rates because of variation
due to short-run purchasing programs (Lendel and Thomas 2014), but are considered to
be highly correlated to SSO prices. We are limited in determining the proper utility
company for each site due to a lack of historic data on utility service areas. As such, in any
given year the corresponding price is assigned to the utility service area of the site location
in 2022. Electric prices were linearly interpolated to account for missing data (<5 entries)
and linearly extrapolated to account for market entry and exit as well as missing data (<15
entries). Altogether, these estimations account for 6.9% of the total electric dataset.

The dataset is assembled assigning relevant characteristics to each unique solar site
and then expanded to iterate regular observations for each site, beginning when
observation begins on January 1, 2001, and ending when the solar array is certified
with PUCO.

There are factors to the adoption decision which are excluded from our dataset. For
example, net-metering tariff rates (as determined by the utility company) are seldom
disclosed publicly with respect to time and lack spatial variation across utility
companies. Other factors we cannot measure on our sites are climate and weather
factors including irradiance, a site’s presence in rural, metro, or micropolitan areas,
and peer effects.

Table 1 shows descriptive statistics of our dataset. Figure 3 summarizes our
dependent variable by showing differences in adoption behavior among sites with and
without 100% renewable defaults using Kaplan-Meier (1958) survivor functions.’
The survivor function for sites in renewable default aggregation programs is nearly
everywhere below the function for those in nonrenewable aggregation programs. This
motivates our more detailed analysis later by providing prima facie evidence that

3The survivor function is the reverse cumulative distribution function of the time to some event T—here,
adoption of PV at a given site—defined as S(t) = 1 - F(t) = Pr(T > t). In this context, S(f) can be interpreted
as the probability that the time some site purchases a PV is at least ¢.
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Table 1. Summary statistics of solar arrays

Variable Obs Mean St dev Min Max
System size (kw) 2,635 16.39 22.45 0.87 249.68
Aggregated electric price (¢/kwh) 1,648 7.74 2.90 0 15.16
Aggregator=1 2,635 0.65 0.48 0 1
Renewable Aggregator (opt-in) =1 2,635 0.07 0.25 0 1
Default renewable aggregator=1 2,635 0.12 0.33 0 1
Federal income tax credit at purchase (rate) 2,634 0.296 0.02 0.22 0.3
PV price at purchase ($/watt) 2,635 1.23 1.02 0.27 4.56
Price of electric at purchase (¢/kwh) 2,110 10.33 2.66 5.29 16.13
County Income ($000) 2,635 66.82 14.61 41.74 143.67
Adoption Time (Years since 2001) 2,635 15.50 4,01 8.75 22.67
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Figure 3. Kaplan-Meier Survivor Curve pooled according to existence of a renewable aggregation
program at the time of purchasing a solar array for those inside (red solid line) and outside (blue dashed
lien) aggregation areas with renewable defaults.

individuals in renewable aggregation programs are likely to adopt earlier than their
counterparts in non-renewable aggregation programs. This is important as the tax
credits received by this group are likely non-additional.

Methods

We estimate the effect of CCA using a linear probability model of adoption with one-way
site fixed effects. The linear probability model will estimate the effect each of our covariates
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has on the probability of adopting a solar array while accommodating site-specific fixed
effects. Using these estimates, we can perform a post-estimation simulation and measure
the additionality of the income tax credit.

The fixed effects model is attractive here because the observations are in the form of a
panel dataset. Further, there are both observable and unobservable qualities to each site
that drive adoption. For example, prior literature suggests that a rented house or business
place are less likely to have a solar array installed than an owner-occupied site (Darghouth
et al. 2022). The setting of a site may have an impact including its placement in rural or
urban locations as well as the level of sunlight received (irradiance). Additional site-specific
factors include the age of the homeowner or business operator or the presence of a
homeowners’” association (which may levy rules promoting or deterring rooftop solar
generation). Fixed effects allow us to control for these impacts.

The linear probability model takes the form:

Yy = yXyu +ui + ey, (1)

where Y}; equals 1 if site i adopted a solar array in time ¢ and zero otherwise; X, is a vector
of site- and time-specific predictors, including the presence of aggregation, nominal
county income (in thousands of dollars), the nominal SSO price of electricity at the site’s
given utility company, the net PV price (equal to the global average price of PV solar
panels per watt of capacity times the quantity (1 — federal ITC rate for solar adopters)); y is
a conformable vector of parameters to be estimated; u; is the site fixed effect, and e;; is the
overall error specific to site and time. Our data on PV price, electricity price, tax credit
rates, and income is all recorded on an annual basis. Hence, we assume ¢ denotes years.

The linear probability model is attractive due to ease of interpretation of coefficients on
our predictor terms. Interpretation of our fixed effects model calls for focus on the
coefficient of our predictors, y. For each site, as a predictor variable changes along its
margin, the effect is an increase or decrease in the probability of adoption at time ¢ by y x
100 percentage points. Furthermore, intra-site correlation is controlled for by clustering
the standard errors on sites.

Given the binary nature of our dependent variable, we include a logit model as a
robustness check. Let Y} be a latent variable denoting the utility from adoption of a solar
array. If the net gains to utility from adoption are positive, then Y; = 1. The model is

Yi=6Xy +ni+ vy, Yy = 1[Y; > 0], (2

where X, is defined as before; § is a parameter vector; 7; is a site fixed effect, and v;, is a
logistic error term. Fixed effects panel logit models are available to estimate (2) but are
inappropriate in this scenario because these do not estimate fixed effects directly, and
hence the estimates cannot be used to calculate adoption probability. Additionally, due to
the nature of the dataset, a fixed effects logit will not converge. A random effects model
avoids having to estimate site-level fixed effects but assumes mean independence,
E[n;]X;] = n, such that the unobserved individual effects are uncorrelated with X,. This is
unlikely to hold. As such, we estimate a correlated random effects logit model (Mundlak
1978) which assumes E[n;|X;;] = 0X,,,, where X;,, is a vector of the averages of time-
varying variables. Adding and subtracting this relationship in (2) yields

Yi = 8X; + 0Xip + vie + (; — E[ni| Xi,]) @)
= 80X + 0Xjpy + vie + &5, Y, = I[Y; > 0]

where ¢; is uncorrelated with Xj,.
We calculate the share of tax rebate expenditures that is nonadditional with estimates
from the linear probability model. We simulate the adoption choices of different average
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individuals distinguished by different policy contexts: sites in non-aggregation areas
(“group 17), sites in aggregation areas without renewable electricity (“group 2”), and sites
in aggregation areas that provide 100% renewable electricity by default (“group 3”). For
each group, the probability of adoption is calculated with and without an ITC equal to 30%
of the PV purchase cost. The current rate of the federal ITC is 30% and this has been the
rate for most of the existence of the program (Figure 2). All other model variables are set to
their sample means. Let 0 and o, be the adoption rate among group-g sites without and
with the incentive, respectively. oy, is the adoption rate for individuals who purchase even
without the tax credit; in other words, these are infra-marginal adopters whose renewable
energy supply is nonadditional. The share of each dollar spent on incentives for group
g=1.2 sites that is non-additional is then oy /0,. The share of each dollar spent on
incentives for group 3 sites that is non-additional is 1 since these sites would have received
100% renewable energy regardless of whether they adopt PVs.

Results

Next, we turn to the linear probability model with one-way site-specific fixed effects
described in equation (1) to estimate the effect of aggregation and renewable defaults more
precisely on PV adoption decisions. Table 2 shows parameter estimates.

The positive coefficient on the aggregation dummy variable shows that aggregation
programs increase the probability of adopting a solar array, all else equal, by 5.8% at a 1%
level of statistical significance. Aggregation programs with a renewable default are also
found to have a positive effect which is statistically significant at the 10% level. Increasing
the net price of solar reduces adoption probability by 1% with every $1/watt. Recalling that
the net PV price variable is PV price interacted with one minus the value of the ITC, it
stands to reason that adoption will increase with the presence of the tax rebate. Increasing
the price of electricity results in a similarly sized, albeit positive effect. This relationship is
intuitive because electricity from the grid and solar generators can be thought of as
substitute goods. Curiously, the coefficients of these two price variables have a similar
absolute value. Upon reflection, this seems to be a coincidence as the respective units of
these variables are not the same. Lastly, as county income rises, we see a small increase in
the probability of adoption. Table 3 shows estimates from the correlated random effects
logistic regression. Using a logistic regression, the interpretation of each parameter will
change. In this form, coefficient estimates reflect the log-odds of the outcome. To aid
interpretation, we also present marginal effects calculated at the mean of each covariate.
For binary variables, the marginal effects represent a discrete change from the base level.
These marginal effects are more similar to the linear model.

The logit results have many similarities in its estimated coefficients to the linear
probability model with fixed effects. The presence of aggregation here increases the
adoption of solar. Solar prices have a negative impact on adoption, which remains
intuitive. Increases in the SSO price of electricity and in average county income also
promote adoption of a solar array. One difference between the robustness check and the
linear probability model is that the robustness check suggests that presence of a renewable
aggregation program reduces the odds of adopting a solar array. This output invites some
consideration as Figure 3 and the linear probability model would lead us to believe that
individuals in the renewable default aggregation program should adopt earlier than those
not in the program. However, the linear probability model finds the effect of the existence
of a renewable default program on the probability of adoption is weak; within two standard
deviations, the probability is negative. As such, we are inclined to believe the linear
probability model, but with only a modest endorsement.


https://doi.org/10.1017/age.2025.6

https://doi.org/10.1017/age.2025.6 Published online by Cambridge University Press

10 Michael Liam Smith et al.

Table 2. Parameter estimates from the linear probability model of solar adoption

Dependent variable: adoption time

Variable Estimate! Robust std error
Aggregation =1 0.058*** 0.006
Aggregation x renewable default =1 0.02* 0.011

Net Solar PV price ($/watt) -0.010*** 0.001
Electricity price (¢/kwh) 0.010*** 0.001
County income ($000) 7 0.005*** 4.5E-4
Constant -0.321*** 0.028
Observations 40,012

Superscripts *** and * denote estimates that are significant at the 1 and 10% levels, respectively.

Table 3. Parameter estimates from the correlated random effects logistic regression

Dependent variable: adoption time

Robust std Marginal Std
Variable Estimate! error effects error
Aggregation =1 0.96*** 0.10 0.02*** 0.002
Aggregation x renewable default =1 -0.79*** 0.16 -0.02*** 0.003
Net Solar PV Price ($/watt) -6.27*** 0.11 -0.15*** 0.002
Electricity Price (cents/kwh) 0.13* 0.04 o*** 0.001
County Income ($0000) 0.31*** 0.01 0.01*** 3.04E-4
Mean Aggregation -0.88*** 0.14 -0.02*** 0.003
Mean Aggregation x renewable 0.69 0.45 0.02 0.010

default =1

Mean Net Solar PV Price ($/watt) 8.58*** 0.15 0.2*** 0.002
Mean Electricity Price (¢/kwh) -0.06 0.05 0 0.001
Mean County Income ($000) -0.36*** 0.02 -0.01*** .337E-4
Constant -21.13 0.47
Observations 40,012

ISuperscripts *** and * denote statistical significance at the 1% and 10% levels, respectively.

Table 4 shows estimates of o, and oy, for each group calculated from the linear
probability model. For each group, potential buyers are more likely to purchase a solar
array with the tax credit than without the tax credit. However, the share of non-additional
expenditure estimated herein is significant: using the share of the sample that corresponds
to each group as weights, the average total share of nonadditional expenditures is $0.79 out

of every dollar spent.
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Table 4. Simulated probability of PV adoption by group (standard errors are included in parentheses)

1 2 3
Non-aggrega-  Aggregation area with- Aggregation area with
Group tion areas out renewable default 100% renewable default
(35% of
Description sample) (52% of sample) (12% of sample)
No ITC (og1) 0.0224 0.0806 0.101
(0.0024) (0.0044) (0.0096)
30% ITC (0g,) 0.0341 0.0923 0.1127
(0.0019) (0.004) (0.0097)
Nonadditional $0.66 $0.87 $0.90
expenditures per rebate
dollar
(0.049) (0.019) (0.016)

Discussion and conclusion

This paper contributes to a nexus of literature on drivers of solar adoption, which is well
studied, and the sparse field studying the effect of tax incentives for private renewable
energy supply in the context of CCA with 100% renewable energy defaults. Our findings
suggest that renewable aggregation purchasing programs generate an additionality concern
in the context of the ITC and carbon emissions reduction goals. Specifically, we find that
residences and small businesses under CCA are 6 percentage points more likely to adopt
solar PV than sites outside CCA areas. These sites are 8 percentage points more likely to
adopt if the CCA offers 100% renewable energy by default. Since these latter sites would
have received renewable energy with or without PV adoption, any ITC meant to support
adoption is necessarily nonadditional. Overall, we calculate the share of nonadditional tax
incentives to be $0.79 per dollar spent.

While a policymaker might hope for more “bang for our buck,” there are numerous
secondary and tertiary benefits from the tax credit. To the extent that it increased solar
adoption (even marginally), it is successful at increasing the number of distributed
generators while also promoting decarbonization and insulating individual sites from
exogenous shocks in the electric markets. This is important because increasing distributed
generation capacity is considered a strong step towards increasing the resilience of the
electric grid across the nation (Solar Energy Technologies Office, US DOE 2023). From the
point of view of residents or small businesses, the lifetime of a solar array is roughly 20
years, possibly longer. This is greater than the lifetime of a bilateral energy purchasing
agreement that an aggregator would enter. Recalling our survivorship curves, which clearly
show adoption rates in renewable default aggregator areas are higher than non-aggregator
areas, this difference between system lifespan and aggregation contract lifespan may be
impactful at the decision point for individuals installing solar. More specifically, they may
not consider the fact that they currently have 100% renewable electricity when deciding to
construct a solar array. Alternatively, they may lack confidence (not to mention awareness
of the program itself) in the long-term survival of the 100% renewable aggregation
program. While a few aggregators have terminated programs (McDonnell 2022), many of
these were quickly restored (NOPEC 2023). Nonetheless, the horizon upon which a solar
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array can guarantee to provide a supply of decarbonized energy is far greater than the
horizon that an aggregator can guarantee. As such, even in a case where the aggregation
program provides 100% renewable electricity, the solar array is a useful device to ensure a
supply of renewables to the site.

However, the results lead us to the conclusion that solar incentive money may be better
spent elsewhere. This could include more direct means of incentivizing production of
renewable energy generators, along with efficiency incentives including those that the
Inflation Reduction Act have instituted (The White House 2023).

This research provides a novel assessment of the intersection between the federal
income tax credit for solar and local electric aggregation programs in the State of Ohio.
Using a linear probability model, our findings are robust to individual unobserved site-
specific fixed effects. Furthermore, use of the correlated fixed effects logit model is used as a
robustness check. Limitations in our study arise from difficulty obtaining site-specific,
time-varying data including the true PV price, and validation of the data on the price of
electric. However, collecting this information would likely require use of a survey.
Furthermore, the dynamic nature of the residential and small business PV installation
industry makes capturing spatially and temporally accurate price data challenging (Fu et al.
2017). As such, future research could emphasize precision in site-specific market data
through an alternative data collection technique.

Data availability statement. All data used in this research is publicly available from sources cited within
the text. The collection of datasets used for this research is available upon request from the corresponding
author.

Acknowledgements. Acknowledgements to Michael Delgado and the Sustainable Ohio Public Energy
Council.

Funding statement. This research received no specific grant from any funding agency, commercial or not-
for-profit sectors.

Competing interests. No author has competing interests associated with this research.

References

Acharya, Abhijeet. 2022. “Scaling-up Green Hydrogen Development with Effective Policy Interventions.”
Journal of Sustainable Development 15(5): 1-15.

Aldy, Joseph E, Matthew ] Kotchen, and Anthony A Leiserowitz. 2012. “Willingness to Pay and Political
Support for a US.” Nature Climate Change 2: 596-599.

Bollinger, Bryan, and Kenneth Gillingham. 2012. “Peer Effects in the Diffusion of Solar Photovoltaic
Panels.” Marketing Science 31: 900-912.

Darghouth, Naim, O’Shaughnessy Eric, Sydney Forrester, and Galen Barbose. 2022. “Characterizing
Local Rooftop Solar Adoption Inequity in the US.” Environmental Research Letters 17: 034028.

Fu, R, D. Feldman, R. Margolis, M. Woodhouse, and K. Ardani. 2017. U.S. Solar Photovoltaic System Cost
Benchmark: QI 2017 (No. NREL/TP-6A20-68925). Golden, CO: National Renewable Energy Laboratory.

Graziano, Marcello, and Kenneth Gillingham. 2014. “Spatial Patterns of Solar Photovoltaic System
Adoption: The Influence of Neighbors and the Built Environment.” Journal of Economic Geography 15:
815-839.

Heeter, Jenny, Kaifeng Xu, and Gabriel Chan. 2021. Sharing the Sun: Community Solar Deployment,
Subscription Savings, and Energy Burden Reduction. Golden, CO: NREL.

Heng, Yan, Chao-Lin Lu, Luqing Yu, and Zhifeng Gao. 2020. “The Heterogeneous Preferences for Solar
Energy Policies Among.” Energy Policy 137: 111187.

Horowitz, J.K., and R.E. Just. 2013. “Economics of Additionality for Environmental Services from
Agriculture.” Journal of Environmental Economics and Management 66: 105-122.


https://doi.org/10.1017/age.2025.6

https://doi.org/10.1017/age.2025.6 Published online by Cambridge University Press

Agricultural and Resource Economics Review 13

Hsu, David. 2022. “Straight Out of Cape Cod: The Origin of Community Choice Aggregation and Its Spread
to Other States.” Energy Research ¢ Social Science 86: 102393.

Hughes, Jonathan E., and Molly Podolefsky. 2015. “Getting Green with Solar Subsidies.” Journal of the
Association of Environmental and Resource Economists 2: 235-275

Kaplan, E.L., and Paul Meier. 1958. “Nonparametric Estimation from Incomplete Observations.” Journal of
the American Statistical Association 53: 457-481.

Lamp, Stefan. 2023. “Sunspots That Matter: The Effect of Weather on Solar Technology Adoption.”
Environmental and Resource Economics 84: 1179-1219.

Lendel, Iryna, and Andrew R Thomas. 2014. Understanding Ohio’s Electricity Markets: Characteristics.
Cleveland, Ohio: Maxine Goodman Levin School of Urban Affairs Publications.

Littlechild, Stephen. 2008. “Municipal Aggregation and Retail Competition in the Ohio Energy Sector.”
Journal of Regulatory Economics 34: 164-194.

Mambkhezri, Jamal, Jennifer Thacher, and Janie Chermak. 2020. “Consumer Preferences for Solar Energy:
A Choice Experiment Study.” The Energy Journal 41: 157-184.

McDonnell, Sean. 2022. “cleveland.com.” cleveland.com. September 29. https://www.cleveland.com/
business/2022/09/nopec-defends-its-decision-to-drop-550000-customers-explains-rate-hikes-in-filing-
to-state-regulators.html.

Mundlak, Yair. 1978. “On the Pooling of Time Series and Cross Section Data.” Econometrica 46: 69-85.

NOPEC. 2023. nopec.org. https://www.nopec.org/electric-program-update-resume-2023.

O’Shaughnessy, Eric, Galen Barbose, Ryan Wiser, Sydney Forrester, and Naim Darghouth. 2020. “The
Impact of Policies and Business Models on Income Equity in Rooftop Solar Adoption.” Nature 6: 84-91.

Office of Energy Efficiency and Renewable Energy, US DOE. 2023. Homeowner’s Guide to the Federal Tax
Credit for Solar Photovoltaics. Washington, DC: Office of Energy Efficiency and Renewable Energy, US DOE.

Ohio Department of Taxation. 2023. Taxation Resources for Researchers. Ohio: Ohio Department of
Taxation.

Oxford Martin School. 2023. Our World in Data: Solar (Photovoltaic) Panel Prices. Oxford: Oxford Martin
School.

PUCO. 2023. Ohio’s Renewable Energy Portfolio Standard. Columbus, OH: PUCO.

PUCO. 2024. Electric Government Aggregator Mapping Application. January. https://maps.puco.ohio.gov/
portal/home/webmap/viewer.html?webmap=89b783fa0d2f49a197becce6b9978d0e.

PUCO DIS. 2023. Docketing Information System (DIS). Columbus, OH: PUCO.

Schulte, Emily, Fabian Scheller, Daniel Sloot, and Thomas Bruckner. 2022. “A Meta-Analysis of
Residential PV Adoption: The Important Role of Perceived Benefits, Intentions and Antecedents in Solar
Energy Acceptance.” Energy Research & Social Science 84: 102339.

Solar Energy Technologies Office, US DOE. 2023. Solar and Resilience Basics. Washington, DC: Solar
Energy Technologies Office, US DOE.

Solar United Neighbors. 2024. “What is net metering?” solarunitedneighbors.org/resources/net-metering-in-ohio.
~https://solarunitedneighbors.org/resources/net-metering-in-ohio/#:~:text=Municipalities%20and%
20electric%20cooperatives%20are,Public%20Utility%20C.ommission%200f%200hio (Accessed April 2024).

The White House. 2023. Inflation Reduction Act Guidebook. Washington, DC: The White House.

US EIA. 2023. U.S. Electric Capacity Mix Shifts from Fossil Fuels to Renewables in AEO2023. Washington,
DC: US EIA.

US EIA. 2024. Solar and Wind to Lead Growth of U.S. Power Generation for the Next Two Years.
Washington, DC: US EIA.

Young, Gary, and Andrea Sarzynski. 2009. Assessing the Design, Adoption, and Impact of State Solar
Financial Incentives. Washington, DC: George Washington Institute of Public Policy.

Cite this article: Smith, M.L,, C. S. Reeling, and M. D. Wilcox. 2025. “Additionality of solar tax incentives under
community choice aggregation in Ohio.” Agricultural and Resource Economics Review. https://doi.org/10.1017/
age.2025.6


https://www.cleveland.com/business/2022/09/nopec-defends-its-decision-to-drop-550000-customers-explains-rate-hikes-in-filing-to-state-regulators.html
https://www.cleveland.com/business/2022/09/nopec-defends-its-decision-to-drop-550000-customers-explains-rate-hikes-in-filing-to-state-regulators.html
https://www.cleveland.com/business/2022/09/nopec-defends-its-decision-to-drop-550000-customers-explains-rate-hikes-in-filing-to-state-regulators.html
https://www.nopec.org/electric-program-update-resume-2023
https://maps.puco.ohio.gov/portal/home/webmap/viewer.html?webmap=89b783fa0d2f49a197becce6b9978d0e
https://maps.puco.ohio.gov/portal/home/webmap/viewer.html?webmap=89b783fa0d2f49a197becce6b9978d0e
https://maps.puco.ohio.gov/portal/home/webmap/viewer.html?webmap=89b783fa0d2f49a197becce6b9978d0e
https://solarunitedneighbors.org/resources/net-metering-in-ohio/#::text=Municipalities%20and%20electric%20cooperatives%20are,Public%20Utility%20C.ommission%20of%20Ohio
https://solarunitedneighbors.org/resources/net-metering-in-ohio/#::text=Municipalities%20and%20electric%20cooperatives%20are,Public%20Utility%20C.ommission%20of%20Ohio
https://solarunitedneighbors.org/resources/net-metering-in-ohio/#::text=Municipalities%20and%20electric%20cooperatives%20are,Public%20Utility%20C.ommission%20of%20Ohio
https://doi.org/10.1017/age.2025.6
https://doi.org/10.1017/age.2025.6
https://doi.org/10.1017/age.2025.6

	Additionality of solar tax incentives under community choice aggregation in Ohio
	Introduction
	Literature review
	Data
	Methods
	Results
	Discussion and conclusion
	References


