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NOTE ON TD + DCR IMPLYING ADL(R)

SEAN CODY

Abstract. A short core model induction proof of ADL(R) from TD + DCR.

§1. Introduction. There are two known proofs that TD + DCR imply ADL(R) both
due to Woodin. The later proof involves proving the stronger result of Suslin
determinacy from Turing determinacy + DCR directly [1]. Combining that with
Kechris and Woodin’s theorem that Suslin determinacy in L(R) implies ADL(R) [2],
the desired result becomes an immediate corollary.

Woodin’s original proof uses an early version of the core model induction (CMI)
technique. Through the work of many set theorists, the CMI has been developed
into a proper framework for proving determinacy results from non-large cardinal
hypotheses such as generic elementary embeddings, forcing axioms, and the failure
of fine-structural combinatorial principles. The technique as it is understood in
L(R)-like models (i.e., L(Rg) where R

g are the reals of a symmetric collapse) can
be seen as an inductive method by which one proves Jα(R) |= AD for all α. An
introduction to this as well as all terminology used in this paper can be found in
Schindler and Steel’s book [7].

This paper aims to prove that TD + DCR implies ADL(R) using modern
perspectives on the core model induction in L(R). The key lemma is a modification
of a well-known theorem of Kechris and Solovay to work in theTD context. Utilizing
the proof of the witness dichotomy it is sufficient to just prove the J �→M#,J

1 step
of the core model induction.

§2. Rough background.

2.1. Determinacy. Given some A ⊆ �� the Gale–Stewart game G�(A) is defined
to be the perfect information game where two players I and II take turns playing
digits xn ∈ � for � turns as written:

I x0 x2 x4 ···
II x1 x3 ···
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This results in the infinite sequence x = (x0, x1, ...) ∈ �� . We say that I wins if
x ∈ A, otherwise we say II wins. A player is said to have a winning strategy provided
they can ensure themselves a win regardless of how their opponent plays. A game
G�(A) is determined if a player has a winning strategy.

Definition 2.1. The axiom of determinacy AD states that for every A ⊆ �� ,
G�(A) is determined.

One of the earliest remarkable consequences of AD is Martin’s cone theorem. We
say that A ⊆ D is a cone if there is some x ∈ D such that A = {a | a ≥D x}.

Theorem 2.2 [4]. Assume AD. Suppose that A ⊆ D. Then either A or Ac contains
a Turing cone.

Proof. Consider the set A = {x ∈ R | [x]T ∈ A}. As this is a set of reals it’s
determined, so assume that player I has a winning strategy�. Then for anyx ≥T � we
have that x ≡T � ∗ x ∈ A. Therefore, {x | x ≥T �} ⊆ A and {x | x ≥D [�]T } ⊆ A.
If player II has a winning strategy �, then there is an almost identical argument that
Ac contains a Turing cone above [�]T . 	

The axiom of Turing determinacy (TD) is the isolation of the consequence of this
theorem, e.g., that every set of Turing degrees contains or is disjoint from a cone.

2.2. Core model theory. The core model theory required in a core model induction
is largely summarized by the KJ existence dichotomy. This is a straightforward
generalization of the typical K existence dichotomy to a hierarchy of relativized
mice. These relativized mice, called hybrid mice, abstract the use of the rudimentary
closure to take a one step in the constructibility hierarchy to the use of some “model
operator” J with similar enough properties. Examples of model operators include:

• x �→ rud(x ∪ {x});
• Mouse operators, e.g., the sharp operator, the one Woodin cardinal operator;
• Hybrid mouse operators, e.g., term-relation hybrid mouse operators from self-

justifying systems, strategy hybrid mouse operators.

For an exposition of operator mice in the style of this paper one can read either
Chapter 1 of [7] or Sections 2.1–2.3 of [11]. For the sake of this paper, the full
definition of a mouse operator is not that important.

An important property all model operators of interest have is that they “condense
well.” Condensing well is a technical condition ensuring that one can develop a
fine structure for structures built in terms of J, i.e., one can perform background
constructions relativized to J that behave in the same manner as they do with
the rudimentary closure. In particular, J condensing well implies that the models
constructed in a Kc,J construction are J-premice and there is a relativized core
model theory.

Theorem 2.3. (KJ existence dichotomy) Let Ω be a measurable cardinal. Let J
be a model operator with real parameter z on HΩ which condenses well. Let P be
countable model with parameter z and let Kc,J (P) = Kc,J (P)|Ω. Then the following
statements are true:

1. If the Kc,J (P) construction reaches M#,J
1 (P), then M#,J

1 (P) is (�,Ω,Ω + 1)-
iterable via the unique strategy guided by J#, i.e., the sharp for LJ .
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2. If the Kc,J (P) construction does not reach M#,J
1 (P), then Kc,J (P) is (�,Ω,

Ω + 1)-iterable. This implies that KJ (P) exists and is (�,Ω,Ω + 1)-iterable via
the unique strategy guided by J#.

In this case, the “true” KJ (P) is defined as in [9], the only real change being that
one has to relativize all notions considered there to the model operator J.

All model operators encountered in the core model induction condense well.
Additional properties possessed by all model operators encountered in the core
model induction are that they relativize well and determine themselves on generic
extensions.

Definition 2.4. We say that a model operator J relativizes well if there is a
formula ϕ(x, y, z) such that for any N ,N ′ models such that N ∈ |N ′| and M a
J-premouse with base model N ′ such that M |= ZFC–, then J (N ) ∈ M and J (N )
is the unique x ∈ |M| such that ϕ(x,N , J (N ′)).

Definition 2.5. We say that J determines itself on generic extensions if there
is a formula φ(x, y, z) and some parameter c ∈ HC such that for any countable
transitive structure M satisfying ZFC– containing c and closed under J, for any
generic extension M[g] of M in V, J ∩M[g] ∈M [g] and is definable via b = J (a)
iff M[g] |= φ(c, a, b).

§3. Kechris–Solovay theorem. The following is our primary lemma which is a
modification on a theorem of Kechris and Solovay [3]. Given a set of ordinals S,
ODS -Turing determinacy (i.e., ODS -TD) is the assertion that every set of Turing
degrees ordinal definable with S as an additional parameter contains or is disjoint
from a Turing cone.

Lemma 3.1. Assume TD. For any set of ordinals S, on a Turing cone C the following
holds for x ∈ C:

L[S, x] |= ODS -TD.

Proof. Assume for a contradiction that there is no cone of reals on which
L[S, x] |= ODS -TD. Then we can define, on a cone C, the map x �→ Ax where Ax
is the least ODL[S,x]

S ≡T -invariant subset of R which doesn’t contain a Turing cone
and whose complement does not contain a Turing cone in L[S, x]. Notice that Ax
only depends on the S-constructibility degree of x.

It is clear from the last observation that the set {x ∈ R | x ∈ Ax} is ≡T -invariant
and is well-defined on C. Suppose that this set contains a Turing cone C′. Consider
some arbitrary y ∈ C ∩ C′, if w ≥T z ≥T y and w ∈ L[S, z] then we have that
w ∈ Aw = Az . SoAz contains a Turing cone inL[S, z]. We reach a similar conclusion
if we assume that {x ∈ R | x �∈ Ax} contains a Turing cone. Contradiction. 	

Ordinal (Turing) determinacy has the following well-known consequence:

Corollary 3.2. HODL[S,x]
S |= “ �L[S,x]

1 is measurable” for a cone of x.

Proof outline. This proof is standard, but for the sake of completeness it
will be sketched. We work inside L[S, x] and assume that ODS -TD holds. Let
f be the function f : x �→ �x1 which maps x to the least x-admissible ordinal,
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then we can define � as the pushforward of the cone filter under f, i.e., A ∈ � iff
f–1(A) contains a Turing cone. Clearly � is countably closed and, by assumption, �
restricts to an ultrafilter onP(�1) ∩ ODS . The cone measure and the map f are both
definable, so HODS ∩ � ∈ HODS witnesses that �V1 is measurable in HODS . 	

Note 3.3. The proofs of Theorem 3.1 and Corollary 3.2 don’t actually rely on
any essential property of L that is not shared by LJ where J is some (hybrid ) model
operator. Strictly speaking, the LJ variants are what are used in Section 4.

§4. The existence of M#
1 . The following consequences of Δ1

2-TD are proven by
modifying the analogous arguments from Δ1

2-Det in a similar fashion to the core
argument of Theorem 3.1 then verifying that nothing breaks. As the modifications
are relatively straightforward the proofs will not be included.

• (Martin) Assume Δ1
2-TD + DC, then Π1

2-TD.
• (Kechris–Solovay) Assume Δ1

2-TD + DC, then for any real y, on a Turing cone
x ∈ C the following holds for x ∈ C:

L[x, y] |= ODy-TD.

• (Consequence of Kechris–Woodin [2]) Assume Δ1
2-TD+DC and (∀x ∈R)

x# exists, then Th(L[x]) is fixed on a Turing cone.
We can utilize these three observations to prove the first step in our induction from
a weaker hypothesis.

Theorem 4.1. Assume Δ1
2-TD + DC and (∀x ∈ R) x# exists, thenM#

1 exists and
is �1-iterable.

Proof. Utilizing lemma 3.1 we have that L[x] |= OD-TD on a Turing cone. Let
x be the base of such a cone and fix the least x-indiscernible ix0 < �

V
1 . The measure

U on ix0 given by x# is sufficient for the construction of the Steel core model K (as
described in CMIP [9]) in L[x] below ix0 . Suppose that the Kc construction below
ix0 in L[x] does not reach anM1-like premouse, then there is a U-measure one set of
α < i0 we have thatL[x] |= (α+)K = α+. Select such anα and let z = 〈x, g〉 where g
isL[x]-generic forColl(�,α). Working inL[z], K exists, is inductively definable, and
�1 is a successor cardinal in K. As z ≥T x we have that L[z] |= OD-TD; therefore,
HODL[z] |= �1 is measurable. But as KL[z] ⊆ HODL[z] we have a contradiction.
Therefore we have that the Kc construction of L[x] below ix0 reaches an M1-like
premouse on a cone.

Utilizing the limit branch construction described in Theorem 4.16 of HOD as a
Core Model [10] there is an �1-iterableM#

1 . 	
Note that by [5], the �1-iterability ofM#

1 is enough to prove Δ1
2-determinacy. So

in fact we get an equivalence of Δ1
2-TD and Δ1

2-determinacy under ZF + DC.

§5. The J �→M#,J
1 step. Following this point on the argument is identical to that

of Steel and Schindler. But I will rewrite it (practically verbatim) for the sake of
completeness. For the rest of this argument we will assume ZF + TD + DC + V =
L(R). Recall that every (hybrid) model operator considered in the core model
induction relativizes well and determines itself on generic extensions.
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Theorem 5.1. Let a ∈ R and let J be a (hybrid ) model operator that condenses
well, relativizes well, and determines itself on generic extensions, and suppose that

Wx =
(
Kc,J (a)

)HOD
LJ

#
[x]

a

constructed with height �V1 exists for a cone of x. Then there is a cone of x such that

Wx cannot be �V1 + 1 iterable above a inside HODL
J#

[x]
a .

Proof. Assume for a contradiction that this is not the case. Then there is a cone
C such that for all x ∈ C we have LJ

#
[a, x] = LJ

#
[x] and

�L
J#

[x]
1 is measurable in HODL

J#
[x]

a

and so we can isolate KJx =
(
KJ (a)

)HOD
LJ

#
[x]

a . Furthermore, we can assume that
any element of C can compute the code for the parameter c which witnesses that J
determines itself on generic extensions. Fixing some x ∈ C we will writeKJ forKJx .

Claim 5.2. The universe of LJ
#
[x] is a size <�V1 forcing extension of HODL

J#
[x]

a .

Proof. The observation we want to make is that LJ
#
[x] is the result of adding x

to HODL
J#

[x]
a via Vopenka forcing. Suppose that V is the Vopenka forcing and � is a

name for x, then as HODL
J#

[x]
a is J#-closed and contains the parameter c, it contains

LJ
#
(V, �, c) as an inner model. Letting g ∈ LJ#

[x] be generic such that �g = x, we

have that x ∈ LJ#
(V, �, a)[g]. Using that J# determines itself on generic extensions

and relativizes well, we can then reconstruct LJ
#
[x] inside LJ

#
(V, �, a)[g]. So the

universe of HODL
J#

[x]
a,x and LJ

#
[x] are identical. The Vopenka forcing to add a real

over HODL
J#

[x]
a is of size < �V1 as �V1 is inaccessible in LJ

#
[x]. 	

By cheapo covering and the claim we can choose some 	 < �V1 above the size of
the forcing such that

	+KJ = 	+HOD
LJ

#
[x]

a = 	+LJ
#

[x].

Let g ∈ V be Col(�, 	)-generic over LJ
#
[x] and let y ∈ V be a real coding (g, x).

As J determines itself on generic extensions we have that LJ
#
[y] = LJ

#
[x][g].

Therefore,

�L
J#

[y]
1 = 	+KJ = 	+LJ

#
[x].

As y ∈ C we have that

�L
J#

[y]
1 is measurable in HODL

J#
[y]

a .

We reach a contradiction if we can demonstrate the following claim:

Claim 5.3. KJ ∈ HODL
J#

[y]
a .
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Proof. This claim is a verification that the proofs in Chapter 5 of CMIP [9]
work given that J condenses well. KJ is still fully iterable inside LJ

#
[y] because it

has no Woodin cardinals (above a) and J condenses well so its strategy is guided
by J#. This implies that KJ is still the core model above a of LJ

#
[y], i.e., it is

the common transitive collapse of Def(W,S) for anyW,S such that W is an �V1 -
iterable J -weasel and �V1 is S-thick. Using this characterization we can conclude

that KJ ∈ HODL
J#

[y]
a . 	

	

Utilizing this theorem we wish to show ∀α W ∗
α . Suppose that for some fixed

critical α,W ∗
α holds, we wish to show thatW ∗

α+1 holds. By the witness dichotomy
(Theorem 3.6.1 of [7]) this means that we need to see that for all n < �, Jnα is total
on R. Suppose that R is closed under J = Jnα . To utilize Theorem 5.1 we first need
to close R under J#. As we’re assuming DC the Martin measure ultrapower is well-
founded, so as J relativizes well we have that Ult(LJ , �Tu) = LJ and J# exists (a
full proof along these lines can be found in Theorem 28 of [8]). One could avoid the

use of DC by instead working inside HODL
J [x] and utilizing the measurable cardinal

on �L
J [x]

1 .
Now we can show that R is closed under Jn+1

α . Let us fix a ∈ R. By Theorem
5.1, for any (hybrid) model operator J which relatives well and determines itself on
generic extensions there is a cone of b on which

Wb =
(
Kc,J (a)

)HOD
LJ

#
[b]

a

cannot be �V1 + 1 iterable inside HODL
J#

[b]
a . Let b lie in this cone, by applying

the KJ existence dichotomy internal to HODL
J#

[b]
a we must have that the Kc,J (a)

construction reaches MJ,#1 (a) and MJ,#1 (a) is �1 + 1 iterable in HODL
J#

[b]
a . In

summary, we can define the following map on a cone:

b �→ (MJ,#1 (a))HOD
LJ

#
[b]

a .

Consider the map f : D → R given by

[b] �→ the master code for (MJ,#1 (a))HOD
LJ

#
[b]

a .

By TD, for each n < � the set {b ∈ R : n ∈ f([b])} either contains a cone or is
disjoint from a cone. Let n ∈ P iff n ∈ f([b]) on a cone, then by countable choice
for the reals f([b]) = P on a cone.

One can see that P is�1 iterable in V : if T is a countable tree on P of limit length,

then the good branch through T is the one picked by the strategies of HODL
J#

[b]
a on

a cone. Turing determinacy allows us to extend this to an �1 + 1-iteration strategy
using the measurability of�1; therefore, P is the actualMJ,#1 (a). From this, the map
a �→ Jn+1

α (a) :=MJ,#1 (a) can be defined.
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Note 5.4. Given a model operator J, in The Core Model Induction [7] the operators
Jn are defined asMJ,#n . This is not literally equal but intertranslatable with the hierarchy
where Jn+1 =MJ

n,#
1 as utilized above.

Note 5.5. The strongest choice principle necessary in the above argument is
CCR (which follows from TD [6]); however, the assumption L(R) |= DC seems to
be necessary for the guts of the core model induction. In particular, it’s used in both
the Kechris–Woodin transfer theorem and in the A-iterability proof.
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