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The Influence of Nanoporosity on the Behavior of
Carbon-Bearing Fluids

david cole and alberto striolo

12.1 Introduction

Porosity and permeability are key variables linking the origin, form, movement, and
quantity of carbon-bearing fluids that collectively dictate the physical and chemical
evolution of fluid–gas–rock systems.1 The distribution of pores, pore volume, and their
connectedness vary widely, depending on the Earth material, its geologic context, and its
history. The general tendency is for porosity and permeability to decrease with increasing
depth, along with pore size and/or fracture aperture width. Exceptions involve zones of
deformation (e.g. fault or shear zones), regions bounding magma emplacement and
subduction zones. Pores or fractures display three-dimensional hierarchical structures,
exhibiting variable connectivity defining the pore and/or fracture network.2–5 This network
structure and topology control: (1) internal pore volumes, mineral phases, and potentially
reactive surfaces accessible to fluids, aqueous solutions, volatiles, inclusions, etc.6–8; and
(2) diffusive path lengths, tortuosity, and the predominance of advective or diffusive
transport.9–12 For solids dominated by finer networks, transport is dominated by slow
advection and/or diffusion.13–16

Despite the extensive spatial and temporal scales over which fluid–mineral interactions
can occur in geologic systems, interfacial phenomena including fluids at mineral surfaces
or contained within buried interfaces such as pores, pore throats, grain boundaries, micro-
fractures, and dislocations (Figure 12.1) impact the nature of multiphase flow and reactive
transport in geologic systems.13,17–21 Complexity in fluid–mineral systems takes many
forms, including the interaction of dissolved constituents in water, wetting films on mineral
surfaces, adsorption of dissolved and volatile species, the initiation of reactions, and
transport of mobile species.22–24 Direct observations and modeling of physical (transport)
and chemical properties (reactivity) and associated interactions are challenging when
considering the smallest length scales typical of pore and fracture features and their
extended three-dimensional network structures.25,26

The various void types and their evolution during reaction with fluids are critically
important factors controlling the distribution of the fluid-accessible pore volume, flow
dynamics, fluid retention, chemical reactivity, and contaminant species transport.27–32

While fracture-dominated flow can be volumetrically dominant in shallow crustal settings
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or in zones of deformation,33–38 there is a continuum of coupled reaction–transport
phenomena at length scales from fractures to the smallest nanopores. Nanoscale pores
may interconnect larger volumes, act as pore throats, and play an important role in fracture
initiation. Diffusion of chemical constituents from pore fluids along grain boundaries and
into solids may drive the textural and chemical evolution of geologic media.38–41

There is general agreement that the collective structure and properties of bulk fluids are
altered by solid substrates, confinement between two mineral surfaces, or in narrow pores
due to the interplay of the intrinsic length scales of the fluid molecules and the length scale
of fluid–solid (i.e. confinement) interactions.22,42–45 The combined effect of confinement
and intermolecular forces, which vary among different mineral systems, results in unique
(and poorly constrained) perturbations to a wide range of thermodynamic and transport
parameters, generally different from those observed in the bulk phase.46–51 Also impactful
is the degree of randomness of the matrix, geometry, surface composition (e.g. silicates,
carbonates, organic matter (OM)), fractal nature of the pores, and connectivity of the pore
network.52

It has also been hypothesized that chemical reactions in pores smaller than 100 nm may
be different from those in larger pores because of: (1) confinement-induced changes in
fluid properties and associated solutes (e.g. electrolytes, scCO2, CH4)

53; (2) shifts in
thermodynamic equilibrium composition54–56; and (3) overlapping electric double
layers and surface curvature, distribution of preferential adsorption sites, surface charge,
and counterion behavior.57 The question as to whether surface chemical processes
(e.g. ionization, complexation, adsorption) in nanopores differ from those in macropores
(>100 nm) remains largely unresolved. Compounding this is the formidable challenge in

Figure 12.1 Schematic illustration of the various mass transfer and diffusion processes that can
control the behavior of fluids and dissolved species in a heterogeneous crystalline matrix.
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characterizing the structure and dynamics of fluid species within internal pore or fracture
networks.13 Predictions on the direction and magnitude of changes in chemical reactions
have not been thoroughly explored, despite the fact that the large surface area contributed
by smaller pores can make them extremely significant in fluid–rock interactions.6–8,58

This chapter seeks to show how the structure of nanoconfined fluids is responsible for a
variety of effects relevant to the origin, form, movement, and quantity of carbon-bearing
fluids. “Form” is related to the molecular structure of confined fluids, which includes
segregation of molecular species across the pore. In Section 12.3, we discuss how form is
related to “movement,” which is reflected by the diffusion and transport mechanisms of
confined fluids. In Section 12.4, we discuss how form relates to “quantity” (i.e. the
solubility of gases in confined fluids). In Section 12.5, we discuss how form is related to
“origin,” restricted to the reactivity of nanoconfined fluids.

The richness and complexity of fluid behavior (e.g. phase transitions, molecular orien-
tation and relaxation, diffusion, adsorption, wetting, capillary condensation, etc.) in con-
fined geometries underscores the need to adopt a multidisciplinary approach. In concert
with molecular simulations, there is a robust set of experimental approaches used to
directly or indirectly probe the behavior of fluids at interfaces or in nanopore confinement.
The reader is referred to our previous research22 and to a number of excellent reviews on
molecular dynamics (MD)50,55,59–64 and experimental methods and outcomes.65–71

12.2 Nanopore Earth Materials and Fluids

12.2.1 Nanopore Features

Porosity and permeability are key variables that link the thermal, hydrologic, geomecha-
nical, and geochemical behavior exhibited by most, if not all, fluid–rock systems. In
general, there is a strong positive correlation between porosity and permeability in many
porous and fractured geologic media (see Nelson72 for sedimentary rocks and Ingebritsen
et al.73 for crystalline rocks). What is truly remarkable is the extraordinary range
in measured permeability (some 16 orders of magnitude), from as high as 10–7 m2

(105 Darcy) for well-sorted gravel to as low as 10–23 m2 (sub-nano Darcy) in crystalline
rocks, mudstones (shale), fault gouges, and halide deposits.38,74 An assortment of meas-
urements (e.g. deep borehole, core-scale flooding, geophysical) indicates that both porosity
and permeability tend to decrease with increasing depth. For example, permeability
measurements of core obtained from the Kola superdeep well (11.4–12.0 km) range from
10–17 to 10–22 m2, depending on the effective confining pressure.75 In a series of seminal
papers, Ingebritsen and Manning76–78 described the permeability of continental crust as a
function of depth in the context of specific geologic settings. They demonstrated that
permeabilities decreased rapidly through the brittle portion of the crust to values between
10–14 and 10–16 m2 at a depth of approximately 10 km. Below this depth through the
brittle–ductile transition zone (~10–15 km) extending to depths of roughly 25 km, the
permeability becomes more constant with depth, ranging between 10–16 and 10–18 m2.
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Norton and Knapp39 documented the porosity of numerous crystalline rocks and
classified pores (fractures) into three broad categories: flow, diffuse, and residual (isolated).
Of these, the first two are relevant to the nature of the permeability regimes, in that the
smaller, sometimes dead-ended diffuse pores and pore throats contribute to the chemistry
of the larger, throughgoing connected pores and fractures (i.e. flow porosity). The diffuse
porosity estimates identified by Norton and Knapp39 for volcanic and crystalline rocks
range from 0.01% to 10%. Bredehoeft and Norton79 expanded on this by providing
estimates of permeability for fractured igneous and metamorphic rocks that range from
10–12 to 10–16 m2, and for unfractured equivalents ranging from 10–17 to 10–20 m2. Anovitz
and Cole80,81 surveyed the many techniques used to quantify pore features (e.g. advanced
electron microscopy, X-ray, and neutron scattering) and indicated that the range in pore
size measured in rocks (sedimentary, igneous, and metamorphic) can vary by approxi-
mately eight orders of magnitude from the nanometer scale to the millimeter scale.

General nanoscale features observed in many rocks include intergranular or interparticle
(Figure 12.2a, c, and d) versus intraparticle porosity (Figure 12.2b, e, and f). The latter pore
type is frequently the result of dissolution–precipitation processes and is typically less well
connected to the flow porosity compared to intergranular porosity involving grain-to-grain
contacts of two different phases known as interphase boundaries or grain boundaries,
defined as the interface of two grains of the same phase. The intergranular pore type is

Figure 12.2 Transmission electron microscopy images of different nanoscale pores. (a) St. Peter
sandstone, Wisconsin; (b) illite from Utica shale, Ohio; (c) basalt clast, Costa Rica; (d) Hueco
limestone, north Mexico; (e) organic embedded in clay, Utica shale, Ohio; (f ) experimental
hydrothermal replacement of adularia by albite, 600�C, 200 MPa.
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thought to control transport in very tight rocks, especially those encountered deeper in the
crust and mantle. As Wark and Watson82 point out, the premise is that rocks below the
brittle–ductile transition (>12 km for continental crust) cannot sustain a fracture network
system, and thus fluids – especially at low-volume fractions – must reside in intergranular
pores. Intergranular fluids, however, will flow only if the pores (i.e. grain boundaries in this
case) are interconnected. Fluid flow may be a misnomer when discussing very deep-seated
rocks. The width of space between grains in very deep crustal and mantle rocks (e.g.
olivine-rich mantle) has been a source of debate for many years. Marquardt and Faul41

provided an excellent summary of the structure and composition of olivine grain boundar-
ies and conclude that the width is on the order of 1 nm or less (Figure 12.3a). At this
reduced dimension, fluid mobility takes the form of grain boundary diffusion, which can be
several orders of magnitude greater than volume (lattice) diffusion through minerals, but
many orders of magnitude slower than advective flow.83–85 Nevertheless, fluids do pene-
trate these spatially restricted domains, as evidenced by dissolution, grain boundary
migration, and phase alteration (e.g. olivine conversion to serpentine) (Figure 12.3b).
High-resolution transmission electron microscopy reveals that some olivine-rich rocks like
the San Carlos olivine also display amorphous films that are 1–2 nm wide between olivine
grains thought to be remnant melt.86

The presence of nanoscale pores and fractures seems to be widespread in Earth mater-
ials and may be extremely significant for controlling fluid accessibility in deep-seated
crustal and upper-mantle rocks depending on the extent of pore network connectivity.

Figure 12.3 (a) High-resolution transmission electron microscopy image of the San Carlos olivine
grain boundary and triple junction (from Marquardt and Faul41). Note the estimated grain boundary
width of ~1 nm. (b) Balsam Gap dunite showing the extent of fluid infiltration and serpentinization
along olivine grain boundaries, hydrothermally treated at 300�C, 200 MPa.
Reprinted with permission from Marquardt K, Faul UH. The structure and composition of olivine grain
boundaries: 40 years of studies, status and current developments. Phys Chem Miner 2018; 45: 139–172.41

Copyright 2018 Physics and Chemistry of Minerals.
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Pores may be either slit-like or cylindrical in shape and can exist along grain boundaries, at
the contact of unlike grains (interphase boundaries), or entirely within a given phase. In
simplest terms, the pore surface compositions are dominated by silica or silicates, oxides,
clay, carbonate, and, where present, OM of varying thermal maturity. As we discuss below,
it is at the dimensions of a few nanometers to tens of nanometers that fluid properties
deviate significantly from those of the bulk fluids.

12.2.2 Fluid Properties Affected by Nanoconfinement

It has been reported that the collective structure and properties of bulk fluids are altered by
confinement between two surfaces or in narrow pores due to the interplay of the intrinsic
length scales of the fluid and the length scale due to confinement.87–89 For example,
melting/freezing of water is affected by confinement in geomaterials,90,91 and confined
fluids can be liquid at the thermodynamic conditions (pressure and temperature) at which
the correspondent bulk fluids are gaseous. It has also been shown that confinement can
promote new phases that simply do not exist in the bulk.92 This has been an area of
particular interest to those who investigate the properties of water. It has been demonstrated
that confined water can be prevented from freezing at conditions well inside the “no-man’s
land.”93 It is possible that similar effects will also be observed for carbon-bearing fluids,
although perhaps the high temperature in the subsurface will prevent the formation of
exotic phases. In point of fact, almost any fluid property is influenced by nanoconfinement
to a varying degree: thermophysical (e.g. density, phase behavior, dielectric constant,
compressibility), transport (e.g. diffusion, shear), dynamical motion (translational, rota-
tional, vibrational, and librational), and interfacial interactions (e.g. adsorption, wetting,
solubility) are expected to be strongly dependent upon confinement.

12.3 Form and Movement: Transport Mechanisms under Nanoconfinement

The main mechanisms responsible for fluid transport are convective motion and molecular
diffusion. When the pore size becomes of the order of magnitude of fluid molecules (i.e. in
nanopores), diffusion can become the dominant mechanism. Because in the subsurface
many pores are in this size regime, it is important to understand the mechanisms by which
molecular diffusion can take place in nanopores. In this section, we discuss how the structure
of confined fluids (form) affects their transport (movement).We focus on fluidmixtures. The
studies summarized here are selected primarily from the body of work produced by the
authors. Future investigations will stress the wide applicability of our extrapolations.

As a first example, we refer to Chiavazzo et al.,94 who used computer simulation to
investigate water transport in “nanoconfined geometries” (i.e. within nanopores, around
nanoparticles, carbon nanotubes, and proteins). Almost 60 cases were considered, some
being obtained from the literature. The results, reproduced in Figure 12.4, were interpreted
using a general phenomenological relationship:
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D θð Þ ¼ DB 1þ DC=DB

� � 1
� �

θ�: (12.1)

In (12.1), D is the overall self-diffusion coefficient of water calculated in the various
systems and DC and DB are the self-diffusion coefficients estimated for confined and bulk
water, respectively. According to this relationship, D was found to scale linearly with the
ratio θ between “surface” and total water volumes. The “surface” water volume is a
measure of the interfacial region where water molecules are in contact with the confining
material. As the pore width decreases, the amount of “surface” versus total volume
increases.

12.3.1 Steric Effects Enhance Surface versus Pore Diffusion

When fluid molecules are confined within nanopores, they can experience a strong attrac-
tion to the pore surfaces (e.g. via hydrogen bonds). It is possible that the molecules
strongly adsorbed on a surface show very slow diffusion parallel to the surface (i.e. surface
diffusion). This is because to move from one adsorption site to an adjacent one, the fluid
molecules need to be released from one strong interaction. Hopping mechanisms can be
observed, in which one molecule hops from one preferential adsorption site to the next. As
the adsorption energy becomes stronger, the frequency of such hops lowers, and diffusion
is delayed. If the preferential adsorption sites are so close to each other that hopping is not
necessary, it is possible to observe sliding.95 It is generally assumed that surface diffusion
is slower than that near the pore center (i.e. “pore diffusion”). For a pure fluid, as the pore
size decreases, the contribution of surface diffusion increases compared to that of surface
diffusion, as shown in Figure 12.4 in the case of water.

However, we also know that the opposite situation can also arise. Phan et al.44 con-
sidered a fluid mixture composed of ethanol and water inside a slit-shaped alumina

Figure 12.4 (Left) Self-diffusion coefficient for nanoconfined water as a function of the ratio θ
between “surface” and total water volumes. The image contains simulation results for many systems.
(Right) Schematic illustrating the region of influence of a solid substrate on an interfacial fluid.
Figure reproduced from Chiavazzo E, Fasano M, Asinari P, Decuzzi P. Scaling behaviour for the water transport
in nanoconfined geometries. Nat Commun 2014; 5: 3565.94 Permission granted from Creative Commons https://
creativecommons.org/licenses/by/3.0.
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nanopore of width 1 nm. The pore surface exposed a high density of –OH groups.
Equilibrium studies on a flat surface43 showed that water preferentially adsorbs on the
alumina substrate and displaces ethanol molecules, should these be present on the surface.
When the pore is of 1 nm, the physical state of the system, depending on composition, can
present one layer of water on each of the two pore surfaces, with ethanol near the pore
center. The pore width is so narrow that steric effects hinder the diffusion of ethanol near
the pore center, while water surface diffusion is possible. This effect disappears when the
pore width increases. A detailed analysis of the trajectories of the confined water molecules
showed that the diffusion of water is characterized by hops. Such hops are from one
adsorption site to another one on the surface across the pore volume. This mechanism
becomes hindered as the pore width increases because the water molecules would have to
transport across a large region filled with ethanol. In this example, increasing pore width
delays water surface diffusion while allowing faster ethanol pore diffusion.

Complementary experimental investigations are difficult because it is hard to differen-
tiate between molecules that are adsorbed on the surface from those that accumulate near
the pore center. Some experimental results, however, suggest that, in some cases, surface
diffusion can be the dominant transport mechanism. For example, Kim et al.96 synthesized
“silylated” mesoporous silica membranes. The chemical functionalization made the pore
surfaces more attractive for ethanol than for water. Once exposed to water–ethanol liquid
mixtures, ethanol permeated the membranes much faster than water, suggesting that surface
diffusion became an important mechanism of transport. Ge et al.97 used zeolites to enhance
polymer-based composite membranes. The zeolites preferentially attracted water, and separ-
ation factors of ~10,000 were achieved in water-removal pervaporation processes (i.e. water
permeated these membranes much faster than ethanol). For completeness, it should be
remembered that the permeability of a membrane is equal to the product of the diffusion
coefficient of the fluid through the membrane and the amount adsorbed. Thus, enhanced
diffusion might not be the only mechanism responsible for the results just discussed.

12.3.2 Molecular Lubrication Enhances Pore Diffusion

Even in the absence of preferential adsorption sites where nonspecific attractive inter-
actions lead to an accumulation of fluids near pore surfaces, it is generally expected that the
diffusion of the fluid molecules in a nano- to meso-pore is slower than that in the bulk. For
example, the enhanced fluid density near the pore walls leads to more frequent fluid–fluid
and fluid–pore collisions, which reduce the mean free path and the diffusion coefficient.
This expectation is demonstrated, for example, by quasielastic neutron scattering (QENS)
experiments conducted for ethane in the gas phase. When ethane was confined in two SiO2

pore-glass materials with pore sizes 11.1 and 41.5 nm, the self-diffusion coefficient was
found to be a factor of ~4 slower compared to that measured for bulk ethane at similar
temperature–pressure conditions.98

If these results are due to the fluid accumulation near the pore interface, then it might be
possible to enhance the fluid diffusion by adding small amounts of another fluid that
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preferentially adsorbs on the solid substrate. For example, Le et al.99,100 simulated systems
containing a hydrocarbon (either butane or octane) and CO2 in a silica slit-shaped pore of
width ~2 nm. CO2 formedmolecularly thin layers on the pore surfaces, while the hydrocarbon
filled the pore. At low dosages, CO2 enhanced hydrocarbon diffusion. These computational
results were confirmed by Gautam et al.101 and Patankar et al.,98 who used QENS to study the
diffusion of propane and ethane inmesoporous SiO2, respectively, in the presence of CO2. The
ethane experiments, conducted at different temperatures, showed that the activation energy of
diffusion decreased in the presence ofCO2 by a factor of ~2 compared to data obtained for pure
ethane, which was consistent with the simulations. Others also reported that CO2 enhanced the
diffusion of hydrocarbons through different porous materials.99,101,102

12.3.3 Molecular Hurdles Due to Strong Fluid–Fluid Interactions

The enhanced diffusion discussed in Section 12.3.2 is due to the preferential adsorption of
CO2 to the pore surface, but one can ask whether similar observations are possible when a
fluid other than CO2, also strongly attracted to the pore surface, is used. One such fluid could
be water. Gautam et al.103 used QENS to probe whether this was the case. The system used
contained propane and D2O in silica-based, cylindrical pores of diameter ~1.5 nm. The
experimental results showed that the propane diffusion was depressed, rather than enhanced,
by D2O. Le et al.

104 conductedMD simulations for a systemmimicking the experimental one.
The results showed that although water molecules are strongly adsorbed on the pore surface,
the pores have such a narrowdiameter and thewater–water interactions are so strong thatwater
molecules form molecular bridges across the pore volume. These bridges hinder propane
diffusion. Simulation snapshots illustrating the phenomenon are shown in Figure 12.5.

The formation of water bridges was also found to delay methane transport across slit-
shaped muscovite pores. Ho and Striolo105 found that methane convective transport within
slit-shaped pores carved out of muscovite and partially filled with water is strongly
dependent on the relative orientation of the water bridges and that of imposed motion.
When the water bridges are perpendicular to the direction of motion, methane transport is
regulated by the movement of water, which adheres to the pore surface. When the water
bridges are parallel to the direction of motion, fast methane transport is observed.

Phenomena such as those just described are expected to be important when low-
solubility or immiscible fluids are simultaneously present within a pore, and they are
relevant for the production of shale gas, in which water is often used as the fracturing
fluid. Many studies have addressed how methane could escape kerogen. These studies
could be relevant for systems in which pores are extremely heterogeneous in geometry and
of comparable size to the fluid molecules.

12.3.4 Transport of Guest Molecules in Confined Fluids

It is worth discussing the relation between the structure of fluids in confined water and
their transport. Phan et al.106 simulated the transport of a mixture mimicking natural gas
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(ethane, methane, and H2S) through nanopores filled with water. The results show that
H2S permeates the pores much faster than the other compounds and that ethane is too large
to permeate the hydrated pores. Bui et al.107 extended the study to consider different porous
materials. In the left-hand panel of Figure 12.6, we report the self-diffusion coefficient
estimated for water in various nanopores: confinement reduces the self-diffusion of water,
consistent with Figure 12.4. For reference, MD simulations yield a self-diffusion coeffi-
cient for bulk liquid water of ~28� 10–10 m2/s.108 The results in Figure 12.6 also show that
the chemical properties of the minerals are important: all the pores considered have the
same width and the simulation temperature is constant, yet the water self-diffusion coeffi-
cient varies by a factor of ~2. In the right-hand panel of Figure 12.6, we report the self-
diffusion coefficients estimated for aqueous methane confined in the water-bearing pores
considered in the left-hand panel of Figure 12.6. There is a correlation between the self-
diffusion coefficient of water and that of aqueous methane, but there are also deviations.
Bui et al.107 highlighted the fact that the diffusion of aqueous methane in calcite nanopores
can be anisotropic (the diffusion along the x-axis of the pore is about three times faster than
that along the y-axis). For completeness, it is worth pointing out that anisotropic diffusion
of hydrocarbons had been previously reported in nanopores carved out of calcite by Franco
et al.,109 suggesting that the surface structure of this solid material indeed affects the
transport of the guest molecules.

Figure 12.5 Simulation snapshots representing the effect of water molecular bridges (red and white
spheres) on the transport of propane (cyan spheres) diffusing through a cylindrical pore carved out of
amorphous silica (red and yellow spheres connected by lines). In (a), the water bridges hinder the
transport at higher water/gas ratios (�17), while in (b), the bridges are dissociated and propane
diffusion is faster at lower water/gas ratios (�12).
Reprinted with permission from Le TTB, Striolo A, Gautam S, Cole DR. Propane–water mixtures confined within
cylindrical silica nanopores: structural and dynamical properties probed by molecular dynamics. Langmuir 2017;
33: 11310–11320.104 Copyright 2017 American Chemical Society.
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12.3.5 Transport of Aqueous Electrolytes in Narrow Pores

Argyris et al.110 and Ho et al.111 attempted to quantify the mobility of aqueous electrolytes at
low concentration within narrow slit-shaped pores. The goal was to quantify potential
differences in themobility of Cs+ andNa+ ions, which have the same valence but significantly
different size. The aqueous solutions were electrostatically balanced by Cl– ions. These MD
simulations were conducted at similar conditions (1 M ionic strength, ambient temperature).
The cristobalite silica pores were slit-shaped, with widths of ~1.2 nm. The surface chemistry
was manipulated to replicate different pH scenarios. The results were quantified in terms of
the self-diffusion coefficients of the electrolytes in the direction parallel to the pore surface.
A strong correlation was observed between the preferential position of an ion in the direction
perpendicular to the pore surface and its mobility. This correlation was interpreted based on
prior results112,113 that revealed that the mobility of interfacial water strongly depends on the
distance from the solid substrate, as well as on the protonation state of the surface. The results
concerning ion mobility are summarized in Figure 12.7.

It is worth stressing that the results depend strongly on the properties of the pore
surface. In fact, MD simulations by Rotenberg et al.114 have shown how Cs+ ions tend
to accumulate near clay surfaces, presumably because of the difference in surface charge.
Because of the importance of preferential adsorption sites (e.g. see the recent contribution
by Loganathan and Kalinichev115), which include pore edges, and because of the practical
importance of quantifying ion migrations in the subsurface, advanced force fields are being
developed to enhance the reliability of atomistic simulations,116–118 and various
approaches are being developed to include hydrodynamics and multiscale properties in
the calculations.119–122

Figure 12.6 (Left) Self-diffusion coefficient for water in slit-shaped pores of width 1 nm carved out
of different minerals at the same temperature. (Right) Self-diffusion coefficient for methane
molecules dissolved in confined water. The results distinguish the diffusion coefficients along two
perpendicular directions. While the self-diffusion coefficient for water is for the most part isotropic,
that of aqueous methane in calcite pores is highly anisotropic, with transport along the x-axis being
much faster than that along the y-axis.
Reprinted with permission from Bui T, Phan A, Cole DR, Striolo A. Transport mechanism of guest methane in
water-filled nanopores. J Phys Chem C 2017; 121: 15675–15686.107 Copyright 2017 American Chemical Society.
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12.4 Form and Quantity: Confinement Effects on Solubility

To estimate the amounts of fluids present in the subsurface, one approach could be first to
estimate the volume available (i.e. the accessible pore space) and then to use our under-
standing of bulk fluids to estimate the amount of fluids in such a volume at the subsurface
pressure–temperature conditions. This approach is reasonable as long as the fluid behavior

Figure 12.7 (Top) Self-diffusion coefficient estimated for different aqueous electrolytes and water in
slit-shaped pores as a function of the degree of protonation D (D=0 in panel (a); D=0.2 in (b); D=0.47
in (c); D=0.73 in (d); and (D=1 in (e)). In all systems, Cs+ ions are more mobile than Na+ ions.
(Bottom) Density profiles in the direction perpendicular to the solid substrate, with the same degree
of protonation as in Top panels (panels f-j). The density profiles discriminate NaCl and CsCl systems.
In general, the Cs+ ions accumulate near the centers of the pores, while Na+ ions are more closely
associated with the pore surfaces. Because the molecular mobility depends on the distance from the
surface, slower near the surface, the preferential distribution correlates with the ionic mobility.
Reprinted with permission from Ho TA, Argyris D, Cole DR, Striolo A. Aqueous NaCl and CsCl solutions
confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir 2012; 28:
1256–1266.111 Copyright 2012 American Chemical Society.
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in the bulk is consistent with that in the subsurface, which it is for larger pores (>100 nm).
In this section, we discuss the effects nanopores have on the structure of fluids (“form”)
that deviate markedly from the bulk. One property affected strongly by nanoconfinement is
solubility. Another property of importance concerns the behavior of aqueous electrolytes in
confinement. Because confinement alters the dynamics of water molecules, could it be that
the dielectric constant of water in the deep subsurface differs strongly from that known in
the bulk? Should this be the case, what are the implications regarding our still limited
understanding of aqueous electrolytes in the subsurface?

12.4.1 Volatile Gas Solubility in Confined Liquids

Several studies reported an enhanced solubility of gases in liquids confined in small
pores,123,124 a phenomenon referred to as “oversolubility.” Luzar and Bratko125 reported
5–10-fold enhancements of N2 and O2 solubility in water in 38–43‑Å hydrophobic pores.
Experiments support these estimates. Pera-Titus et al.126 studied the solubility of H2 in
CHCl3, CCl4, n-hexane, ethanol, and water within γ-alumina, silica, and MCM-41 and
found that H2 solubility was enhanced by up to 15 times when the pore size was <15 nm.
Rakotovao et al.127 confirmed these results using 1H nuclear magnetic resonance (NMR).

According to Ho et al.,123 oversolubility could be due to: (1) more favorable interactions
between solute and solid than between solvent and solid, favoring solute adsorption close
to the pore walls; (2) the pore being partially filled, resulting in a gas–solvent interface; and
(3) adsorption of the gas being favored in regions of low solvent densities due to layering.
Gadikota et al.128 showed that solute size and the presence of salt in confined water are also
important in modulating the dissolution of various gases in confined water. Using both
experiments and simulations, these authors demonstrated greater solubility for CO2 and Ar
in Na-montmorillonite compared to bulk water, whereas confinement reduced CH4. Gadi-
kota et al.128 analyzed the contributions to the free energy of solvation due to cavity
formation and affinity to the water-filled pore. The free energy change due to cavity
formation was found to be generally positive (i.e. it introduces a barrier to solubility),
while the enthalpic contribution is generally favorable to solubilization. Both effects
depend on the size of the gas molecule.

Phan et al.129 revealed approximately one order of magnitude higher solubility of
methane in water confined in a partially filled 1 nm-wide silica pore. Methane molecules
accumulated in narrow regions within the pores, where water molecular density was low. It
was found that water molecules surrounding the guest methane were organized in
hydrogen-bonded structures resembling gas hydrates. However, because of steric con-
straints, these clathrates were not stable. Phan et al.130 also considered other 1‑nm slit-pore
systems (MgO, Al2O3). The results demonstrated that methane solubility in confined water
strongly depends on the confining material (Figure 12.8) because the molecular structure of
confined water differs markedly within the three pore types. A direct correlation was
observed between methane diffusion coefficients and water molecular density fluctuations.
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These observations are in contrast to those by Badmos et al.,132 who estimated, using
molecular dynamics, the solubility of H2S in water confined in silica nanopores at 313 K.
The simulation results suggested that confinement reduces the H2S solubility in water
and that the solubility increases with increasing pore size. These results are due to
perturbations on the coordination of water molecules around H2S due to confinement.
The perturbations are stronger in the narrowest pores considered. These results are
qualitatively consistent with those reported for aqueous NaCl reported by Malani
et al.133 This group reported a lower NaCl solubility in water confined within graphene
nanopores. However, NaCl is a salt, and therefore it is likely that the mechanisms respon-
sible for the reduced solubility of H2S and NaCl in confined water are due to different
interfacial processes.

The interest in geologic CO2 sequestration resulted in numerous studies on the form and
movement of CO2 through porous networks, chiefly focusing on montmorillonite. Bowers
et al.134 studied the incorporation of supercritical CO2 in smectite by in situ 13C and 23Na
magic angle spinning NMR. They observed line broadening in the 13CO2 resonance at
90�C and 50 bar CO2 pressure for Na-hectorite, consistent with CO2 pressure in the
interlayers. Kirkpatrick et al.135 reviewed efforts using NMR and molecular modeling to
explore mineral surfaces and interlayer filling by H2O, cations, anions, CO2, and natural
OM in swelling clays. In addition to entering the interlayer, there is evidence that CO2

dissolves in the confined water. Schaef et al.136 used NMR, x-ray diffraction and Monte
Carlo simulation to explore the intercalation of dry supercritical CO2 into three swelling

Figure 12.8 (Left) Methane solubility in confined water as a function of bulk pressure in MPa – SiO2

blue, Al2O3 red, MgO green. Simulated bulk solubility of methane in liquid water at 298 K from
Sakamaki et al.131 (Right) Variability for in-plane density distributions of water oxygen in layers
parallel to the x–z plane at several locations along the y-axis within (a) SiO2, (b) Al2O3, and (c) MgO.
The results are for pores containing only water. Densities are expressed in number of molecules per
cubic Å.
Reprinted with permission from Phan A, Cole DR, Striolo A. Factors governing the behaviour of aqueous methane
in narrow pores. Philos Trans A Math Phys Eng Sci 2015; 374: 20150019.130 Copyright and usage: the authors.
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clays in which Na, NH4, or Cs occupied the interlayer. In the absence of water, CO2 did
enter the NH4 and Cs clays, but was excluded from the Na clay. A weak intercalation of
CH4 has been observed for smectites,137 but is more pronounced for 4‑nm weakly hydrated
silica pores, as demonstrated by Ok et al.138

12.4.2 Aqueous Electrolytes in Confinement

The effect of nanoconfinement on the transport of aqueous electrolytes has been briefly
summarized in Section 12.3.5. It is possible that, because confinement affects the structure
and dynamics of confined water, it indirectly affects the solubility of electrolytes. For
molecular simulations to reliably predict the properties of confined electrolytes, it is
important that adequate force fields describe the interactions between water, electrolytes,
and pore constituents, as well as all the cross-interactions between these components.139,140

The reliability of the force fields used to describe the electrolytes depends on the model
chosen to simulate water, and it is essential to tune the ion–ion interactions if one seeks to
replicate the experimental salt solubility.141,142 Svoboda and Lísal140 recently employed
the grand canonical Monte Carlo algorithm to predict the solubility of NaCl in montmoril-
lonite pores. The simulations were conducted at 365 K and 275 bar. At these conditions,
the simulation models implemented (SPC/E model for water) predict a saturation NaCl
concentration in water of 3.14 mol/kg,139 which underestimates the experimental value of
6.1 mol/kg.143 The pore widths considered ranged from 1.0 to 3.2 nm, and they were
simulated in equilibrium with saturated bulk aqueous NaCl solutions. The results show that
the concentrations of the adsorbed ions in the nanopores are lower than in the bulk aqueous
system and decrease as the pore width narrows. Moucka et al.139 used simulations to
compare the aqueous solubility of NaCl in Na-montmorillonite and pyrophyllite pores of
the same width. They were able to distinguish the ionic solubility near the center of the
pore, where the properties are similar to those found in bulk water, and those near the pore
surfaces, where the properties are significantly different from those found in bulk water. As
the pore width decreases, the contribution of the region near to the pore surface increases
compared to that of the fluids near the pore center, and consequently the NaCl solubility
strongly decreases compared to that observed in bulk water. In addition to structural
effects, one could attempt to explain these observations based on the changes in the
dielectric constant of water due to confinement, discussed below.

12.4.3 Dielectric Constant of Nanoconfined Water

The dielectric properties of water and electrolytes in nanopores are still poorly constrained
for most substrates relevant to the subsurface. According to Renou et al.,144 the static
dielectric constant (ε) characterizes the capacity of a material to transmit an electric field
and controls the charge migration and dipole reorientation. Compared to other fluids types,
bulk water has a high ε due to the strong bonds between hydrogen and oxygen as well as
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hydrogen bonding between water molecules. This large ε means that ionic substances tend
to dissociate in water, yielding ionic solutions. Thus, the water ε is essential to understand-
ing the solvation of ions and their transport. For example, Sverjensky et al.145 extracted
from the research of Pan et al.146 the theoretical estimates of the water dielectric constant at
extreme pressures and temperatures to calculate the solubility of quartz and corundum to
600 MPa and 1200�C. This effort indicates that ε ranges from as low as ~2 at 1200�C and
100 PMa to ~80 for ambient conditions.

Of interest to this chapter is how much of an effect nanoconfinement might have on ε,
and further, how this change might impact mineral solubility. In confinement or near
interfaces, ε is no longer a simple scalar quantity, but it becomes tensorial. The radial
component of water ε⊥ is fundamentally important to the solvation and transport of ions, in
contrast to the axial component (εll), which is important for transport behavior along the
pore wall. However, there are conflicting results with respect to the magnitude of the ε
values. For example, a number of MD studies have demonstrated a local interfacial
increase in the axial (tangential) component of the dielectric constant (εll) relative to the
bulk water value and to values exhibited by the radial ε⊥.

147–149 An enhanced εll was also
predicted in other studies that addressed the role of cylindrical silica and carbon nano-
pores.144,149–151 Conversely, values for the radial ε⊥ tend to be equal to or much less than
the bulk ε. This anisotropy is most pronounced in hydrophobic pores.

Unlike the increase of the axial dielectric permittivity near the pore wall noted above,
Renou et al.144 observed a significant decrease in εll relative to the ambient bulk water
value with increasing surface charge density using MD. More recently, Fumagalli et al.152

observed anomalously low ε (approaching 1) of confined water that was two to three
molecules thick in dielectric imaging experiments involving graphene and boron nitrite.
Similarly, Zhu et al.153 reported on the anomalous behavior of ε for aqueous solutions of
NaCl of varying concentration (0–1.5 M) confined in a 2.4‑nm diameter cylindrical silica
pore (Figure 12.9). They noted that the dielectric constant profile near the surface correlates
with that of the water density. Using classical MD simulations, Zhu et al.153 demonstrated:
(1) a marked anisotropy between εll and ε⊥; (2) that the values for εll decrease relative to
those of pure water, but show enhancement near the pore wall; and (3) that ε⊥ shows a
nonlinear NaCl concentration dependency. Renou et al.154 addressed the structural and
dielectric behavior of confined NaCl, NaI, MgCl2, and Na2SO4 (1 M concentration) in
nanoporous hydrophilic 1.2‑nm silica pores. They also reported a dielectric anisotropy of
confined water and an unusual increase in the radial component of permittivity (ε⊥) of
confined solutions.

It is notable that the range of dielectric constant values reported for water confined in
nanopores encompasses the range of ε values estimated for bulk water from ambient to
extreme conditions. This suggests the distinct possibility that the bulk values for ε currently
used to estimate fluid properties in the subsurface might not be appropriate, especially for
pores such as those illustrated in Figures 12.2 and 12.3. We lack a comprehensive
assessment of ε for nanoconfined environments relevant to subsurface conditions (i.e.
at elevated pressure and temperature with widely varying solution compositions) and
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a quantification of whether these “local” effects yield important consequences on, for
example, salt solubility and other important observables.

12.5 Form and Origin: Confinement Effects on Reactivity

12.5.1 General Concept

In this section, we address the reactivity of carbon-bearing fluids and how confinement can
affect their behavior. Based on thermodynamic arguments, Shock155 predicted that, in the
subsurface, the most common form of fluid carbon would be that of CO2, not CH4. This
prediction was based on the analysis of the thermodynamic equilibrium of the reaction:

CO2 þ 4H2 $ CH4 þ 2H2O: (12.2)

The equilibrium was assessed based on the expected pH as buffered by the rocks.
However, nanoconfinement could potentially affect fluid reactivity via three main mech-
anisms: (1) the closeness of the rock surfaces provides catalytic sites that speed up some
reaction pathways, thus affecting the kinetics of the reactions; (2) the confinement is so

Figure 12.9 Profiles of the ratios of εll (a) and ε⊥ (b) for NaCl solutions of varying concentrations
confined in 2.4‑nm diameter cylindrical SiO2 pores to the dielectric constant of bulk water (εbw).
Reprinted with permission from Zhu H, Ghoufi A, Szymczyk A, Balannec B, Morineau D. Anomalous dielectric
behavior of nanoconfined electrolytic solutions. Phys Rev Lett 2012; 109: 107801.153 Copyright 2012 American
Physical Society.
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restrictive that some of the reactants or the products are either not able to react or are not
allowed to escape from the porous matrix; and (3) the preferential adsorption of some of
the fluid components onto the rock surface can affect the overall equilibrium composition
via a molecular-level application of Le Chatelier’s principle. The first of these three
scenarios concerns kinetic effects. We only note that some olivines contain Ni, Co, and/
or Cr, which could act as catalysts to increase the rate of chemical reactions, including the
oxidation of CH4 to CO2.

156

12.5.2 Methanation of Carbon Dioxide

Using reactive ensemble Monte Carlo simulation, Le et al.157 explored whether confine-
ment could alter the bulk expectations regarding reaction (12.2). In particular, they tested
whether the preferential adsorption of either CO2 or H2O on the pore surface could affect
the equilibrium conversion of CO2 to CH4. The system simulated represented a nanopor-
ous matrix in contact with a larger microfracture occupied by the bulk fluid. Water,
hydrogen, carbon dioxide, and methane were free to exchange between the nanopores
and the microfracture and to react within the various environments. The microfracture was
large enough to provide a “bulk” system. The conceptual framework is summarized in
Figure 12.10.

Le et al.157 generated slit-shaped pores (1 and 2 nm) carved out of β-cristobalite silica.
The results showed that the thermodynamic equilibrium composition shifted toward
methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal

Figure 12.10 Schematic for a possible carbon dioxide methanation process. Within oceanic crust,
mantle-derived melt is emplaced at shallow depths and heats the ultramafic ocean crust driving
seawater circulation along natural fractures and microfractures where serpentinization reactions take
place. The H2 produced could come into contact with carbon dioxide derived from the mantle.
Reprinted with permission from Le T, Striolo A, Turner CH, Cole DR. Confinement effects on carbon dioxide
methanation: a novel mechanism for abiotic methane formation. Sci Rep 2017; 7: 9021.157
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vents and deeper in the magma-hydrothermal system is possible. The results showed strong
dependency of the reaction equilibrium conversions, XCO2 , on nanopore size, nanopore
chemistry, and nanopore morphology. All conditions that enhance water adsorption (i.e.
increasing pore hydrophilicity or surface roughness) resulted in an enhancement of reac-
tion yield. Representative results for 1‑nm pores are shown in Figure 12.11, where the
composition in the bulk phase (left-hand panels) is compared to that within the pores
(right-hand panels). In situations in which the pore space is dominant compared to the bulk
space, it is conceivable that the overall system composition strongly deviates from bulk
expectations.

These results could contribute to an important scientific debate focusing on the possi-
bility of the abiotic synthesis of hydrocarbons during oceanic crust–seawater interactions,
which could reshape the core hypotheses of the origin of life.158,159

Figure 12.11 Product fraction of CO2 methanation (reaction (12.1)) for the (a, d, and g) bulk phase
and (c, f, and i) pore phase in equilibrium with each other at different temperatures and pressures. (b),
(e), and (h) show total molecular fractions.
Reprinted with permission from Le T, Striolo A, Turner CH, Cole DR. Confinement effects on carbon dioxide
methanation: a novel mechanism for abiotic methane formation. Sci Rep 2017; 7: 9021.157
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12.6 Summary and Opportunities

Exploring the behavior of complex geofluids confined in micro- and meso-porous net-
works provides the foundation for quantifying geologically relevant systems where mass
and energy exchange occur. Nanoconfinement in porous systems gives rise to rich behavior
that results from the interplay of geometrical restriction imposed by different pore features
(size, geometry, chemical composition, etc.), the interaction between the porous material
and the fluid, and the nature of the confined fluid itself. Fluid structure (or “form”) affects
most if not all fundamental properties of interest. Since nanopores affect structure, they
impact movement, reactivity (“origin”), and quantity. While in relatively large mesopores
fluid “movement” might occur at different timescales as a function of location in the pore,
greater geometric confinement can lead to severely constrained motion, such as the
molecular diffusion mechanisms discussed in Section 12.3. Within a given porous matrix,
timescales of motion of confined fluids can exhibit interesting dependencies on the
molecular size and concentration of the confining fluid, such as the levitation effect of
confined hydrocarbons or anomalous pressure dependence on gas dynamics in
mesoporous media.

Water and associated dissolved constituents, as a confined fluid, exhibit very rich
structural and dynamical behavior due to the effects of hydrogen bonding, compounded
by the other effects identified above. All of these effects lead to a wide variety of length
and time scales relevant to the study of confined fluids and as such require a variety of
experimental and computational tools for a thorough study of the behavior of geologically
relevant confined fluids. The techniques that probe the behavior of confined fluids at the
molecular level depend heavily on the interpretation of the measured data and as such can
be prone to subjective bias. Therefore, if possible, it is advantageous to look at each solid–
fluid system from different perspectives, both experimental and computational. Much
progress is expected when synergistic approaches are implemented. For example, one
obvious next step would be the detailed experimental and computational investigation of
the structural properties of fluid mixtures in increasingly realistic systems. This includes
complex fluid mixtures, as well as porous materials that are heterogeneous and better
representative of the subsurface. Once these analyses are obtained, one should challenge
the mechanisms discussed in Sections 12.3 and 12.4. A second target of opportunity
pertains to whether the presence of ions and associated hydration affect the transport and
accumulation of hydrocarbons in nanoporous matrices. The presence of concentrated salts
disrupts water structure, slows down its dynamics, and alters the water free energy
landscape, which impacts transport of guest molecules.106,130 Clearly, how one fluid
component invades and displaces and/or competes with another for surface sites will have
a profound effect on these types of transport mechanisms. The dielectric properties of water
and aqueous systems under nanoconfinement are poorly constrained for Earth-relevant
systems. Recent studies have exhibited a wide range of values that are not always in
agreement.
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Finally, we point to the effects of confinement on the equilibrium composition of
reactive systems. The results summarized in Section 12.5 suggest that thermogenic
methane production could be enhanced by nanoconfinement, albeit within a specific
window of pressure–temperature–composition conditions. To quantify whether those
simulation results are relevant across a broader temperature and pressure landscape, a
few research questions remain to be addressed, in particular:

1. Will the CO2 methanation reaction encounter kinetic barriers within the pores or will
the pore surfaces provide active sites for catalyzing the reaction?

2. How much nanopore volume in the subsurface is needed for achieving levels of
methane production that are relevant for hydrocarbons synthesis?

3. Can these insights be reproduced by experiments?

Future studies could be implemented to address these and related questions and to quantify
how these phenomena affect the carbon cycle.
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Questions for the Classroom

1. Are nanopores observed in all Earth materials? How are these observed? What are
their shapes, sizes, and distributions? Is there a correlation between these properties
and depth?

2. Discuss quantitatively how confinement affects the thermophysical properties of a
fluid, whether pure or a mixture. Discuss the effects due to strong pore–fluid
interactions and how changing the pore width affects these outcomes. Discuss in
particular such effects with respect to solubility, reactivity, phase equilibria, and
melting.

3. Discuss the differences between surface and pore diffusion. What are the mechan-
isms responsible for each and when is surface diffusion expected to dominate over
pore diffusion in determining the overall fluid transport across a porous material?
What mechanisms become dominant as the pore size becomes comparable to the size
of a fluid molecule?

4. How does the presence of a pore affect the reactivity of a fluid? Distinguish between
kinetic and thermodynamic effects.
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