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NATURALLY REDUCTIVE HOMOGENEOUS 
RIEMANNIAN MANIFOLDS 

CAROLYN S. GORDON 

1. Introduction. The simple algebraic and geometric properties of 
naturally reductive metrics make them useful as examples in the study of 
homogeneous Riemannian manifolds. (See for example [2], [3], [15] ). The 
existence and abundance of naturally reductive left-invariant metrics on a 
Lie group G or homogeneous space GIL reflect the structure of G itself. 
Such metrics abound on compact groups, exist but are more restricted on 
noncompact semisimple groups, and are relatively rare on solvable groups. 
The goals of this paper are 

(i) to study all naturally reductive homogeneous spaces of G when G is 
either semisimple of noncompact type or nilpotent and 

(ii) to give necessary conditions on a Riemannian homogeneous space of 
an arbitrary Lie group G in order that the metric be naturally reductive 
with respect to some transitive subgroup of G. 

In Sections 2 and 3, we show that every naturally reductive Riemannian 
manifold may be realized as a homogeneous space GIL of a Lie group of 
the form G = GncGcN where Gnc is a noncompact semisimple normal 
subgroup, Gc is compact semisimple, and N is the nilradical of G. N Pi L 
= {e} and the induced metrics on each of Gncl(Gnc n L), GCI(GC n L) 
and N(= NI(N n L) ) are naturally reductive. Thus the study of naturally 
reductive metrics is partially reduced to the cases in which G is semisimple 
of either compact or noncompact type or G is nilpotent. 

D'Atri and Ziller [3] have studied the compact case extensively 
obtaining a complete classification of naturally reductive left-invariant 
metrics on G when G is compact and simple (and L is trivial). Our 
treatment of the noncompact semisimple case in Section 5 is motivated by 
their work. The complete classification is possible in this case without the 
additional assumptions of simplicity of G or triviality of L, due to the 
relative sparcity of naturally reductive metrics on noncompact as opposed 
to compact homogeneous spaces. 

We study the nilpotent case in Section 4. Any Riemannian manifold 
which admits a (necessarily simply) transitive nilpotent group G of 
isometries is called a homogeneous nilmanifold. If M is naturally 
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reductive, we show that G is at most two-step nilpotent. We then give 
necessary and sufficient conditions for a two-step homogeneous nilmani-
fold to be naturally reductive. Our methods generalize those of Kaplan 
[11] who studied a special class of homogeneous nilmanifolds. 

In Section 6 we pull together all the results of the previous sections in 
order to study problem (ii). 

It is a pleasure to thank Professors Joseph D'Atri and Wolfgang Ziller 
for helpful discussions. 

2. Naturally reductive submanifolds of M. Let M be a connected 
homogeneous Riemannian manifold and let G = I0(M) be the connected 
component of the identity in the full isometry group of M. G acts 
transitively and effectively on M, and the isotropy subgroup L of G at 
p G M is compact. If G is any transitive subgroup of G and L = G n L, 
then M is naturally identified with the coset space GIL with a 
left-invariant metric. Recall that I is compactly embedded in g; i.e., g 
admits an inner product relative to which the operators àdQX, X e I, are 
skew-symmetric. (We will always denote the Lie algebra of a Lie group by 
the corresponding gothic letter.) We may choose a complement q of I in g 
with Ad(L)q c q. q is identified with the tangent space Tp(M) via the 
mapping 

and the Riemannian structure induces an Ad(L)-invariant inner product 
(,) on q. 

(2.1) Definition. M is said to be naturally reductive (with respect to G and 
the decomposition g = I + q) if 

([X, Y\,Z) = -(Y,[X, Z]q) 

for all X, Y, Z e q where U{ and Uq denote the I and q components of 
[ / e g . Equivalently for each X G q, the map Y —> [X, Y]q is 
skew-symmetric on (q, (,) ). 

We caution that we will frequently say that a metric on a homogeneous 
space G/L is naturally reductive even though it is not naturally reductive 
with respect to the particular transitive group G (see for example Lemma 
2.3). 

(2.2) Remark. By a theorem of Kostant (see [3], p. 4), if M is naturally 
reductive with respect to g = I + q, then g = q + [q, q] is a g-ideal, the 
corresponding connected subgroup G c Gi s transitive on M, and there 
exists a unique Ad(G)-invariant symmetric non-degenerate bilinear form 
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Q on g such that 

6(8 n I, q) = 0 

and <2|q is the inner product induced by the Riemannian metric. 
Conversely if M = GIL with G connected, then for an Ad(G)-in variant, 
symmetric, bilinear form g o n g , which is non-degenerate on both g and I 
and positive-definite on q = l 1 , the metric on M defined by (,) = Q\q is 
naturally reductive. (Kostant actually stated this theorem for M compact; 
D'Atri and Ziller pointed out that compactness is not needed.) 

(2.3) Notation. For any connected Lie group G, we will denote by 
G = GXG2 a Levi decomposition of G. i.e., Gx is a maximal connected 
semisimple subgroup of G, unique up to conjugacy, and G2 is the solvable 
radical of G. Gx can be further decomposed Gx = GncGc where Gnc and Gc, 
the noncompact and compact parts of Gx, are the products of all 
noncompact, respectively compact, simple connected normal subgroups of 
Gx. Thus Gnc and Gc are maximal connected semisimple subgroups of 
noncompact and compact type in G. 

(2.4) Definition. Let G be a connected transitive group of isometries of a 
Riemannian manifold M and let L be the isotropy subgroup at p e M. A 
semisimple Levi factor Gx is said to be compatible with L if GXL is a 
reductive subgroup of G. (Recall that a Lie group H is said to be reductive 
if the radical H2 is central in H. Equivalently, [ï), Ij] is semisimple and 
§ = [fy> fy] © 3 where 3 is the center of Ï). Note that the semisimple 
Levi factor of H is unique and has Lie algebra [ï), i)].) In particular if Gx is 
compatible with L, then Gl5 being a maximal semisimple subgroup of G 
and hence of GXL, is the unique semisimple Levi factor of GXL. QX + I = 
QX © t for some abelian subalgebra commuting with QX. t is compactly 
embedded in q. (See [8].) 

(2.5) LEMMA. Let G be a transitive connected group of isometries of a 
Riemannian manifold M'. Given p G M, there exists a semisimple Levi factor 
Gx of G compatible with the isotropy subgroup of G at p. Conversely, given 
any semisimple Levi factor Gj, there exists p G M such that Gx is compatible 
with the isotropy subgroup at p. 

Proof The first statement is proved in [8]. For the second, choose 
q e M and a Levi factor G\ compatible with the isotropy subgroup Lq of 
G at q. There exists g G G such that/? = g • q. Lp = gLqg~\ and hence the 
Levi factor Gx = gG\g~x is compatible with Lp. 

(2.6) Remark. Suppose Gx is compatible with L and define t as in 2.4. 
Let §> be the orthogonal complement of QX + I relative to the Killing form 
B of q. Then 

nilrad (q) c ê c q2. 
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Since t is compactly embedded in g, B is negative semi-definite on t and 
g2 = t + ê with t n ê central in g. 

(2.7) LEMMA. Suppose M = GIL is naturally reductive with respect to a 
transitive subgroup of G. Let H be a subgroup of G containing L. Then the 
submanifold H/L of M with the induced Riemannian structure is naturally 
reductive and totally geodesic. 

Proof. First assume M is naturally reductive with respect to G and the 
decomposition g = 1 + q. Let L0 be the largest normal subgroup of H 
contained in L. H/L0 is a transitive effective group of isometries of 
N = H/L with Lie algebra £)/I0. Denote elements of £)/I0 by X with I G [ ) . 
Set p = q n_£). Then ï) = I + t> and [X, Y]q e p whenever X, Y e £). The 
map X —> X is injective on p, p = T (N) under identification and the 
Riemannian metric on p is given by (X, Y) = (X, Y) where (,) is the 
Riemannian metric on q. Since [X, Y]^ = [X, Y]q9 it follows easily that N 
is naturally reductive with respect to f)/I0. = I + p. Viewing p(= p) as the 
tangent space of N9 the induced metric is just the restriction of (,) to p. 
Since (exp tX) • p, X e p9 is the geodesic in M through p with initial 
tangent vector X (see [12] ), N is totally geodesic at p. By homogeneity, N 
is totally geodesic. 

For the general case, suppose M is naturally reductive with respect to 
the transitive subgroup G' of G. Let L = G C\ L, H' = H n Gr. Then 
L' c H' and 7//L = H'/L'. Hence the first part of the proof applies. 

Note that if A is any subgroup of G normalized by L, then Lemma 2.7 
implies that A/{A C\ L) = AL/L with the induced Riemannian metric is 
naturally reductive. In particular we have: 

(2.8) PROPOSITION. Suppose M = GIL is naturally reductive with respect 
to a transitive subgroup of G. Choose a semisimple Levi factor Gx of G 
compatible with L and write Gx = GncGc as in 2.3. Let N = nilrad(G). Then 
N n L = {e} and the submanifolds Gnc/(Gnc Pi L), GCI(GC n L) and 
N (= NI(N n L) ) with the induced Riemannian metrics are naturally 
reductive and totally geodesic. 

Proof By 2.4, Gnc and Gc as well as N are normalized by L. We are left 
only to prove N n L = {e}. For this we do not need natural reductivity 
but only the condition that G act effectively on M. Suppose x e N Pi L. 
Since the group exponential map of any nilpotent Lie group is surjective, 
x = exp X for some X G n = nilrad(g). AdG(x) = eadflX is a unipotent 
operator. But since x e L, Ad(x) acts orthogonally on (q, (,) ) where q is 
an Ad(L)-invariant subspace of g and (,) is the Riemannian inner 
product. Hence Ad(x)|Q is the identity operator and x acts as the identity 
on M. Since G acts effectively, x = e. 
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3. Structural conditions on the isometry groups. We now obtain some 
necessary structural conditions on the isometry groups of a homogeneous 
Riemannian manifold M in order that M be naturally reductive. 

(3.1) THEOREM. Suppose M = GIL is naturally reductive with respect to a 

transitive subgroup of G and let N = nilrad(G). Then GXN acts transitively 
on M for every semis imp le Levi factor Gx of G. 

Proof. Since any two Levi factors Gx and G\ are conjugate by an element 
of N, GXN = G\N. Hence it suffices to prove transitivity of GXN when Gx 

is chosen to be compatible with L (see 2.5). Define ê as in Remark 2.6. 
Since g = çjj + I + §> and § is a g-ideal, G = (GXS)L and GXS is transitive 
o n M . i V c S; we prove N = S. Note that § Pi I = {0} since the Killing 
form is negative-definite on I. 

Let M be naturally reductive with respect to the subgroup H of G 
and decomposition £) = ï + q with ! = g PI I. Then g = I + q with 
( n q = {0}. Let X{ and Xq denote the I and q components of X e g. For 
X,Y^q, [X, Y] G I), so [X, 7]q is also the q-component of [X, Y] in Ï) and 
[X, •] is skew-symmetric on q relative to the Riemannian inner product (,) 
on q. Since ê Pi I = {0}, X —> Xq is injective on ê and induces an inner 
product on §> given by (X, Y) = (Xq, 7 ). The operators ad U^, [ / e l , are 
skew relative to (,). For a c g, we will write 

(a)q = {*q:* G a}. 

Since ê is a g-ideal, 

(1) [*„, 7q]q G ( [ê + I, § + I] )q c ( [g, s] )q for X, 7 G §. 

Let h be the orthogonal complement of [g, §>] in § relative to (,). By (1) and 
skew-symmetry of [Xq, -]q, 

([*„> (&)„])„ = {0}, 

i.e., 

(2) [XQ, Yq] G I for A- G ê, y G b. 

Since [I, §] c [g, ê], the skew-symmetry of ad I|S implies [t, b] = {0}. 
Hence for X G §, 7 G b, [X(, y] = 0 and 

(3) [*„, yfl] = [x, y] + [Yh x] + [xb y j . 

By (2) and (3), 

[*, Y] + [y t, X] e ê n I = {0}. 

Thus 

(4) ad y,ê = ad Ym for all y G b. 

But § was defined to be orthogonal to I relative to the Killing form of g. 
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Therefore 

0 = tr ad Y{ ad Y = tr ad Y{ ad 7,ê 

since ê is a g-ideal. (4) then implies 

tr(ad Y{)\ = 0. 

By the skew-symmetry of ad Y{ and another application of (4), 

[Yhè] = 0 = [7, ê] for all 7 E 6 . 

Hence b is central in ê and ê = b © [g, ê]. Since [g, ê] c. n, it follows that ê 
is nilpotent. Hence ê = n. 

(3.2) THEOREM. Suppose M = GIL is naturally reductive with respect to a 
transitive subgroup of G. Let G = IQ(M) and let Gx and Gx be semisimple 
Levi factors of G and G with Gj c Gj. Then the noncomp act parts of Gx and 
Gx coincide, i.e., Gnc = Gnc. 

Proof The transitive (by 3.1) group GXN has nilpotent radical and 
semisimple Levi factor Gx. We now apply Theorem 2.2 of [6] which 
asserts: given that G is a transitive subgroup of the full connected isometry 
group G of a Riemannian manifold, that rad(G) is nilpotent j ind that 
G, c Gj are semisimple Levi factors of G and G, then Gnc = Gnc. 

(3.3) THEOREM. Suppose M = GIL is naturally reductive with respect to a 
transitive subgroup of G and let Gnc be the noncomp act part of a semisimple 
Levi factor of G. Then Gnc is normal in the full isometry group I(M). 

(3.4) Remark. Theorem 3.3 asserts in particular that Gnc is normal in G. 
By the conjugacy of semisimple Levi factors, Gnc is the noncomp act part 
of every semisimple Levi factor of G; i.e., Gnc is the unique maximal 
connected semisimple subgroup of noncompact type in G. By 3.2 and 3.3, 
Gnc = Gnc < G for G = 70(M), so Gnc satisfies an analogous uniqueness 
property in G. 

Proof of Theorem 3.3. By Remark (3.4), it suffices to prove that a fixed 
choice of Gnc is normal in I(M). Let G be the transitive subgroup of G 
defined by Kostant's Theorem (see 2.2). Choose Levi factors G1? Gx and 
Gj of G, G and G with Gx Q Gx Q Gx. By Theorem 3.2, the noncompact 
parts satisfy Gnc = Gnc = Gnc. Thus we may replace G by G, i.e., we 
assume the existence of a symmetric non-degenerate form Q on g and a 
<2-orthogonal decomposition g = I © q as in Kostant's Theorem. 

Choose a Levi factor gj of g compatible with I. Then QX + I = gj © t 
where t is an abelian subalgebra of the radical of g and [gh t] = {0}. In 
particular gnc is an ideal in QX + I. Let q' = q n (QX + I) and let q" be the 
g-orthogonal complement of q' in q. QX + I = I + q', so 

fi(Gi + I, Q") = 0. 
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Since the operators of adggnc are skew relative to Q, 

[flnc, <H C A"-

Thus a representation p of gnc on q" is defined by 

p(X) = ad X|q,„ 

The operators p(X) are all skew-symmetric relative to the positive-definite 
form <2|q". But the only representation of a semisimple Lie algebra of 
noncompact type by skew-symmetric operators is the trivial representa
tion. Therefore 

p = 0 and [anc, q"] = {0}. 

Since g = I + q = ( g 1 + I ) + q", it follows that gnc is a g-ideal i.e., Gnc is 
a normal subgroup of G. 

A theorem of [7] states that if G is a transitive group of isometries of 
a Riemannian manifold M, then every semisimple normal subgroup 
of noncompact type in G is also normal in IQ(M). Thus Gnc is normal in 
G = I0(M). As noted in (3.4), it follows that Gnc is the unique maximal 
connected semisimple subgroup of noncompact type in G; hence Gnc is 
invariant under every automorphism of G. Therefore Gnc is normal in the 
full isometry group I(M). 

4. Naturally reductive nilmanifolds. A connected Riemannian manifold 
which admits a transitive nilpotent group TV of isometries is called a 
homogeneous nilmanifold. The action of N is necessarily simply transitive 
assuming it is effective (see the proof of 2.8). Hence the manifold may be 
identified with the group N endowed with a left-invariant metric. 

(4.1) Notation, (i) As discussed in [16], a homogeneous nilmanifold can 
be specified by a data triple (n, (,), L) where n is a nilpotent Lie algebra; 
(,) an inner product on n and L is a lattice (i.e., discrete vector subgroup) 
in the center of n. For TV the simply-connected Lie group with Lie algebra 
n and exp:n —» TV the group exponential, exp is a diffeomorphism, so 
exp(L) is a discrete central subgroup of N, N = N/cxp(L) is a nilpotent 
Lie group, and (,) defines a left-invariant metric on N. Two data triples 
(x^l\ (,)7, Lt\ i = 1,2 are said to be equivalent if there exists a Lie algebra 
isomorphism <j>: n<» -> n<

2> such that <$>(LX) = L2 and 

(<KX), <t>(Y) >2 = (X, y>, for all X, Y G n(1). 

(ii) Given an inner product space (F, (,) ), we denote by so(V) the Lie 
algebra of skew-symmetric operators on V. For n a Lie algebra, Der(n) 
will denote the Lie algebra of derivations of rt. For L a lattice in n, Ann(L) 
denotes the annihilator of L in the dual space n*. 

(4.2) LEMMA. ( [16] ). (i) The full isometry group G of a homogeneous 
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nilmanifold contains a unique simply transitive nilpotent subgroup N; N 
coincides with the nilradical of G. 

(ii) There is a one-to-one correspondence between equivalence classes of 
data triples as in 4.1 and isometry classes of homogeneous nilmanifolds. 

(iii) The full isometry algebra g of the homogeneous nilmanifold with data 
triple (n, (,), L) is the vector space direct sum g = I + n where the isotropy 
algebra 1 is given by 

Î = so(n) n Der(n) n Ann(L). 

(4.3) THEOREM. Every naturally reductive nilmanifold is at most 2-step 
nilpotent. 

Proof Let (n, L)), L) be a data triple for M. Suppose n is «-step nil-
potent and let C( \rt), k = 0, . . . , n, be the kth term in the lower central 
series of rt. The full isometry algebra is given by g = I + n as in 4.2 
(iii). 

Let M be naturally reductive with respect to the subgroup G of G and 
the decomposition g = I + q with I = g Pi I. 

g = T + q = T + n with ï n q = {0} = ï n n. 

There exists a linear map p:n —* I such that 

q = {X + p(X):X G n}. 

Define 

x^(X) = X + p(X) for X G n. 

Each of n, q is naturally identified with T (M). Relative to the induced 
inner products ( ,)n and (,)q, \p is an isometry. 

For /' = 0, . . . , / ? — 1, define 

(1) n(0 = c ( / )(n) 0 C(/ + 1)(n) and q(/) = ^n ( / ) ) 

where 0 denotes the orthogonal difference relative to (,)n . Since n is a 
g-ideal, 

[Ï, C(/)(n) ] c C(z)(n). 

The operators ad X\n, X G I, are skew-symmetric relative to (,)n , so 

[Ï, n(7)] c n (0 , i = 0 , . . . , /i - 1. 

For X G n(/), 7 G n
0 ) , 

(2) MX), MY) ] = [X, Y) + [p(X\ Y] - [p(7), X] + [p(X), p(7) ]. 

The four terms on the right-hand-side of (2) lie in 
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n0) ? n(>) a n c j ^ respectively. Thus the q-component of [^(X), *MT) ] in 
g = I + q is given by 

(3) MX), KY) }a = MX Y] + MX), Y) - ttPiY), X] 

Hence for A" G n(,), 

mx), "e. q(<:)]q c p . q<*> 
and by skew-symmetry 
(4) MX), gQ Q{k\ c l

k@o q<*>. 

For 7 G n 0 ) , 7 < z, (3) and (4) imply ^[X, Y] = 0 and therefore 
[X, 7] = 0. i.e., 

(5) [n(z), tt0)] = {0} for i * j . 

Hence 

n-\ 

C<l\n) = [n, n] = 2 [n(0, n(/)] 
/=o 

and 

n-\ 

(6) C(2)(n) = 2 [n, [n(0, n (0] ]. 

But for X <= n, 7, Z e n(z), 

(7) [X, [7, Z] ] = [ [X, 7], Z] + [7, [X, Z] ] 

e [n(0, C ( /+1)(n)l-

Since 

d ' + ')(n) - " S , n<*), 

(5) and (7) imply 

[n, [n(0, n (0] ] = {0}. 

By (6), C^(n) = {0}, i.e., n is at most 2-step nilpotent. 

Our task now is to classify the naturally reductive 2-step nilmanifolds. 
Kaplan [11] classified the naturally reductive manifolds among a certain 
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class of 2-step nilmanifolds said to be "of type H". Our arguments and 
notation parallel those of Kaplan. 

(4.4) Notation, (i) Let (n, (,), L) be a data triple as in 4.1 and assume n 
is 2-step nilpotent. Denote by 3 the center of n and set a = 3 . Note that 
[n, n] = [a, a] c 3. Denote by (,)Q and (,)3 the restrictions of (,) to a and 
3, respectively. Define j : 3 —> so (a) by 

(8) j(Z)X = (ad X)*Z. 

(ii) We will say (n, (,), L) is a naturally reductive data triple if the 
associated nilmanifold is naturally reductive. 

(4.5) Remark. All two-step homogeneous nilmanifolds can be con
structed as follows: Let (a, (,)a) and (3, (,)5) be inner product spaces, 
7:3 —> so(a) a linear map and L a lattice in 3. Let (n, (,) ) be the direct sum 
of (a, (,)a) and (3, (,)5). The skew-symmetric bilinear map [,]:n X n -> 3 
defined by 

[X, Z] = 0 for X G n, Z e 3 and 

<[J , 7], Z> = <y(Z)Jf, 7> f o r I j E û , Z G j 

defines a Lie algebra structure on n, so (n, (,), L) is a data triple for a 
2-step nilmanifold. By 4.1, two such triples (n^\ (,),, Lz), / = 1, 2 are 
equivalent if and only if there exist inner product space isomorphisms 
<j>:a{l) -> a(2) and ^:â

(1) -> 3(2) such that 

\p(Lx) = L2 and j2(\p(Z) ) = <j> oj\(Z) o <t>~1 for all Z G 3. 

The nilmanifolds of type / / studied by Kaplan are those for which 

\j(Z)X\ = \Z\ \X\ for all Z e 3, X G Q. 

(4.6) PROPOSITION. /« /Ae notation of 4.4, let n' = a + [a, a], to ( ,) ' /><? 
the restriction of (,) /o n, a«J /e/ Lr denote the orthogonal projection of L in 
n'. Then 

(i) n = nr © ker(y'), orthogonal direct sum of ideals. Ker(y) = |̂ 0} if and 
only if there is no Euclidean factor in the De Rham decomposition of the 
simply-connected covering of the nilmanifold associated with (n, (,), L). 

(ii) (n, (,), L) is naturally reductive if and only if(n\ (,)', L') is naturally 
reductive. 

Proof, (i) is easily verified since the Riemannian metric on iV is 
left-invariant. Using either (i) or 4.2 (iii), one checks that the full isometry 
algebra g of (n, (,), L) is a direct sum of ideals çf = Q' © g" with n' c Q' 
and ker(y') c g", and (ii) follows easily. 

(4.7) LEMMA. Let (n, (,), L) be a data triple for a 2-step homogeneous 
nilmanifold and let I be the isotropy algebra given by 4.2 (iii). We use the 
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notation A A and assume j is injective. Then 
(i) I leaves each of a and 3 invariant. 
(ii) For <j> G. I, 

*|8 = J ] 0 a d 5 0 ( û ) ^ | û ° i -

In particular the map <J> —> <j>\a is an isomorphism of I onto a subalgebra 
of so (a). 

(iii) Let é e so (a). Then <f> extends to an element of I if and only if 
[4>>Kt)] ^J(h)and 

J~l ° adMa) 4> °J G so(t) n Ann(L). 

Proof (i) is easily checked. We prove (ii) and (iii) simultaneously. Let 
a G so (a) and /? e so (3). By 4.2, the linear map <J> which agrees with a 
and yS on a and 3, respectively, lies in I if and only if fi(L) = 0 and for all 
X, Y e a, Z e 3, 

(9) 0 = <Z, [«(*), 7] + [X, <*(7) ] - flZ, 7] > 

= (YJ(Z)a(X) - a(j(Z)X) + y(/?(Z) )*>. 

(The second equality uses the skew-symmetry of a and /?.) (9) is equivalent 
to 

[a, 7 (Z) ] = j(fi(Z) ) or P=j-lo adJ0(û)a 0 7. 

(4.8) THEOREM. Le/1 M be a two-step homogeneous nilmanifold and 
(n, (,), L) aw associated data triple. We use notation 4.4 and set 3' = 3 © 
ker 3, w/iere © denotes orthogonal difference. Then M is naturally reductive if 
and only if both of the following hold: 

(1)7(3) is a subalgebra of so (a) and 

(ii) OV)"1 ° ad5o(a)i(z) °J G ^(8) H Ann(L) 

for all Z e 3. 

Proof (i) and (ii) hold if the analogous conditions hold on the triple 
(n\ (,)', L') defined in 4.6. Hence by 4.6, we may assume that n = n', i.e., 
that j is injective and 3 = 3'. 

Let g = I + n be the full isometry algebra of M. First assume M is 
naturally reductive with respect to a transitive subalgebra g of g and 
decomposition g = I 4- q with I = g n I. Define p:n —> I so that 

q = {X + p(X):X G n}. 

Viewing p(X) as a linear operator on n as in 4.2 (iii), we write p(X)Y for 
[p(X), Y] when X, Y e n. The condition for natural reductivity 

< [ * + p(I ) , 7 + p(7)] , £ / + p(I/)>q 

= - ( 7 + p(7), [X + p(X), £/ + p(l/) ] >q 
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(where (,)q is the Riemannian inner product on q) can be interpreted on n 
as 

(10) ([X, Y] + p(X)Y- p(Y)X, U) 

= - < y , [x, u] + P(X)u - P(U)X). 

Since p(X) e stf(rt), the terms involving p(X) cancel and (10) yields 

(11) (ad Y)*U + (ad U)*Y = p(Y)U + p(U)Y for all 7, [/ G n. 

( (11) was obtained in [11].) Moreover since both q and n are normalized 
by p(n), we have 

[p(X), Y+ p(Y)] = p(X)Y + [p(X), p(Y)} e q 

and therefore 

(12) p(p(X)Y) = [p(X), p(Y) ] for all X, Y e n. 

When £/ G 5 and 7 G a, (ad t / )*7 = 0 and (11) says 

(13) 7 ( [ / ) 7 = p(y)I / + p(U)Y. 

But p(7)C/ e s and p ( [ / ) 7 e a by 4.7 (i) so (13) implies 

p(U){a =j(U). 

By 4.7 (iii), it then follows that 

[J(U)J(i)] cy(8) and 

7~ ' o ad j i (0 )y(I/) o ; e so(ï) n Ann(L) for all t / e j . 

This proves the necessity of (i) and (ii). 
Conversely if (i) and (ii) hold, then by 4.7, j(Z) extends to an element 

p(Z) of I with p(Z)|3 given by the left-hand side of (ii). Extend p to a linear 
map p:n —* I by setting p|a = 0. We claim 

(14) p(p(X)Y) = [p(X), p(Y) ] for all X, Y G n. 

(14) holds trivially if at least one of X, Y G a. If X, Y G j , then 

p(p(X)Y)la =j(r\j(X),j(Y)]) = [7(X),y(7)] 

and therefore (14) follows from 4.7 (ii). Define 

(15) I = p(n), q = {X + p(X):X G n} and q = 1 + q. 

By (14), 1 is a subalgebra of I and [I, q] c q. Moreover since q = I + n and 
n is a q-ideal, q is a subalgebra of q. 

We next claim that (11) is valid. (11) is easily verified whenever at least 
one of Y, U e a. If both 7, [/ G 5, the left-hand size of (11) is zero. The 
right-hand side lies in 3 n ker(p) by (14). But 

3 n ker(p) = 3 n ker(j) = {0} 
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by our assumption that j is injective. This proves (11). Tracing the 
argument preceding (11) backwards, we see that M is naturally reductive 
with respect to g = I + q. 

(4.9) Examples. If M is simply-connected, then L = {0} and the 
right-hand side of (ii) in Theorem 4.8 is just so(%). 

Recall that the Heisenberg groups are characterized as the two-step 
nilpotent groups with one-dimensional centers. They are odd-dimensional 
and, up to isomorphism, there is a unique simply-connected Heisenberg 
group of dimension In + 1 for each « è l . Theorem 4.8 trivially implies 
that every left-invariant metric on a simply-connected Heisenberg group is 
naturally reductive. (J. D'Atri in unpublished work independently proved 
this result for the three-dimensional Heisenberg group.) If n is the Lie 
algebra of a simply-connected Heisenberg group N, two data triples 
(n, (,)z, {0} ), /' = 1,2 associated with left-invariant metrics on N are 
equivalent if and only if j\(Zx) and j2(Z2) have the same eigenvalues 
counted with multiplicities, where Zt is an element of 5 of norm 
one relative to (,),, i = 1, 2. The Heisenberg manifold associated with 
(n, (,), {0} ) is of type H as defined by Kaplan if and only if the only 
eigenvalues of j(Z) for \Z\ = 1 are ± \ / — 1 . 

Using Theorem 4.8, one can show that the only simply-connected 
homogeneous nilmanifolds of dimension ^ 5 without Euclidean factors 
are the Heisenberg manifolds of dimension 3 and 5. 

5. Naturally reductive homogeneous spaces of noncompact semisimple 
Lie groups. Let G be a connected semisimple Lie group of noncompact 
type. We will use the results of Section 3 to classify all naturally reductive 
Riemannian metrics on homogeneous spaces GIL of G. Throughout this 
section we drop the assumption that G act effectively on G/L and require 
only that G act almost effectively. 

(5.1) We recall some general properties of connected semisimple Lie 
groups of noncompact type and of their Riemannian homogeneous 
spaces. 

(i) Let I be a maximal compactly embedded subalgebra of g (unique up 
to conjugacy). There exists a unique, necessarily connected, subgroup K of 
G with Lie algebra f. Let g = g ^ © . . . © g ^ be the decomposition of g 
into simple ideals. 

and the center of ! n g^ is at most one-dimensional for each /. 
Let p = f1 relative to the Killing form 2?ofg.g = f + £ i s a Cartan 

decomposition. B is negative-definite on I and positive-definite on p. If G 
is simple, Ad(K) acts irreducibly on p. See [10] for further details. 
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(ii) (See [5].) Suppose M = GIL is a Riemannian homogeneous space. 
Choose a maximal compactly embedded subalgebra ï of g containing I and 
let K be the corresponding subgroup of G. Denote by NK(L) the 
normalizer of L in K. For g e G, h e NK(L) let L and i?^ denote left 
translation by g and right translation by h~x on G/L, and let WK be the 
identity component in [u e NK(L):RU is an isometry}. Then 

G = /0(M) = {Lg o £w:g e G, K e W}. 

to may be decomposed into a direct sum of ideals to = 1 © u. Let U be the 
analytic subgroup of G with Lie algebra u. Then G = G X U/D where D 
is the discrete effective kernel of the action (g, u) —> L o i?M. g = g © u 
with isotropy algebra (I, 0) + A(u) where A(u) is the diagonal subalgebra 
of u © u. 

(5.2) THEOREM. A left-invariant Riemannian metric on a homogeneous 

space GIL of a connected semisimple Lie group G of noncompact type is 

naturally reductive if and only if the following three conditions are 

satisfied: 

(i) Let î be any maximal compactly embedded subalgebra O/Q containing 

I. Then L is a normal subgroup of the corresponding subgroup K of G 
(ii) The Riemannian metric is Ad(K)-invariant for K as in (i). 

(iii) Let g = f + p be a Cart an decomposition and let f be a ï-ideal 
complementary to I. (Note that f + $ is naturally identified with the tangent 
space of GIL at the base point.) Relative to the inner product (,) on f -f p 
induced by the Riemannian metric, f _L «p. 

When these conditions hold, the metric is naturally reductive with respect to 
IQ(M) = G X F/D, where F is the connected subgroup of G with Lie algebra 
f and D is discrete. The metric is not naturally reductive with respect to any 
proper subgroup of I0(M). 

Before proving Theorem 5.2, we reformulate conditions (ii) and (iii). 

(5.3) THEOREM. We use the notation of Theorem 5.2 and assume that L 
satisfies condition (i). Let g = g ^ © . . . © g ^ be the decomposition of g 
into simple ideals, let 

*>(/) = » n 8 ( 7 ) ' J = l> • • • ' " 

and let 

f = f(1) e . . . e f(r) e z(f) 
be the decomposition off into simple ideals and center z(f). A left-invariant 
Riemannian metric on GIL satisfies conditions (ii) and (iii) / / and only if 
f(z), (1 ^ / ^ r), p,y (1 = j = n) and z(f) are pairwise orthogonal and 

<>> = -« l 5 l f ( l ) - • • • - «r»|f(f) 

+ /*,* + . . . + MK) + Am 
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where B is the Killing form of'g, at and /? are any positive constants and A is 
any inner product on z(f). 

Proof Ad(^)-invariance of (,) together with condition (iii) guarantee 
that the f(ẑ , p^ and z(f) are orthogonal. Since Ad(K) acts trivially on z(f), 
every inner product on z(f) is Ad(^T)-in variant. For each / and 7, Ad(K) 
acts irreducibly on f̂  and p^ and the only Ad(X)-invariant metrics on 
f(/) and pyy are multiples of B. Since B is negative-definite on f and 
positive-definite on p, the theorem follows. 

Proof of Theorem 5.2. Suppose the left-invariant metric (,) on GIL is 
naturally reductive with respect to a subgroup A of G = I0(M). Choose a 
maximal compactly embedded subalgebra ! of g containing I. As in 5.1 (ii), 
the full isometry algebra is given by g = g © u where u is a subalgebra of f 
commuting with I, and the isotropy subalgebra of g is (I, 0) + A(u). 

Choose a transitive subgroup H a A and a bilinear form Q on !) 
satisfying the conclusions of Kostant's Theorem (see 2.2). By Theorem 3.2, 
ï) contains the maximal semisimple subgroup of noncompact type in g, i.e., 
g c f). Hence 

I) = (g, 0) © (0, f) with f c u. 

J) n Ï = (I, 0) + A(f). The Ad(tf )-invariance of Q implies that 

0 ( ( g , 0 ) , (0, f)) = 0. 

If 9 = 0(i) © • • • © Q>(n) is the decomposition of g into simple ideals, 

Q( (g(/), 0), (g0 ) , 0) ) = 0 when i * j 

and <2((g g) *s a multiple fifi of the Killing form B of g. (Here g is 
identified with (g, 0).) Hence if g = f -f £ is a Cartan decomposition. 

eaï,o),(t>,o)) = 0. 
Thus 

QQ) n T, (*>, 0) ) = 0, 

i.e., (£, 0) lies in the g-orthogonal complement q of ï) Pi I. Since 2 and 5 
are positive-definite on g and £, respectively, /}z- > 0 for / = 1, . . . , n. Now 
let (b, 0) be the g-orthogonal complement of (I + f, 0) in (!, 0). 

g((b, 0),Tn $) = 0, 

so (b, 0) c q n (f, 0). But (?|(f,o) is negative-definite since /?zi? is negative 
definite on f n g(z). Hence q h (!, 0) - {0}, b = {0} and ! = I + f, 
proving (i). Moreover it follows that f = u, g = (g, 0) © (0, f) and K = LF 
where F is the connected subgroup corresponding to f. Hence I) = g and 
H = A= /0(M). 

By the definition of u in 5.1 (ii), Rh is an isometry of GIL for all h e F 
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and trivially for all h e L. Thus the metric is Ad(X)-invariant. For (iii), 
define r:f + p —> q by r(JSf) = 7r(X, 0) where 77 is the g-orthogonal 
projection of (f + £, 0) onto q. r is an isometry relative to the inner 
products (,) on f + p and Q on q. r(£) = (£,0) and 

r(f) c (f, 0) + (Ï n r0 c (f, 0) + (T n !)). 

Hence 

Ô(r(f), rfo) ) = 0 

and (f, p) = 0. 
For the converse, if L satisfies (i) and the metric satisfies (ii) and (iii), 

then the metric is of the form described in Theorem 5.3. That every such 
metric is naturally reductive is proved by an argument analogous to that 
given by D'Atri-Ziller [3], p. 9-11 for compact groups. We sketch the 
argument here. By 5.1 (ii), the full isometry algebra is 

q = (q, 0) 0 (0, f). 

Since f c q, we may extend the Killing form B of q to an invariant form B' 
on q by defining 

B'((xl9 y,), (x2, y2)> = B(xl9 x2) + B(Y]9 y2). 
We need to construct a bilinear form Q on q © f of the form 

Q = /^| (Q(1),0) + - • • + M'i(a^O) 
(1) - yi£'|(0,f(1)) - . . . - Yr*'|(0,f(r)) 

+ C | (0,2(f)) 

(with ft; given by 5.3) such that both Q and Q^ are non-degenerate and 
such that for 

r:(f + p, 0) -> q = F 

the Q orthogonal projection, 

Q(r(X9 0), r(7, 0)) = (X, 7> 

where (,) is given by 5.3. For each i = 1,. . . , r, f(/̂  c q( ^ for a unique j \ 
and we set 

(2) * = - & * -
/*, + «, 

Let 4̂ and Z) be the symmetric endomorphisms of z(f) given by 

A(X9 Y) = B(ÂX9 Y) and Q( (X, 0), (y, 0) ) = B(DX9 Y). 

(Note that D is diagonal with eigenvalues lying in {/?b . . . , f$n}.) 
Since 5 is negative-definite on z(f), 4̂ is negative-definite whereas D is 

positive-definite. Define 
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C = (D~] - 1 " V 
and let 

C((0,*) , (0,y))= -B(CX9Y) 

in (1). Then C is positive-definite and Q is non-degenerate. Qjs also 
non-degenerate on I since /? — yz- ^ 0 when \,^ c g, -̂  and D — C 
( = —D _ 1 y l _ 1 C) i s nonsingular. 

The isomorphism T:(f + £, 0) —> q is given by 

\x, 0) x G t) 

«X, 0) 

(£ (*) , C~]DE(X)) x e z(f) 

where E = (I - C XD) '. (The non-degeneracy oi I — C D follows 
from that of D - C.) Now 

£ ( T ( X ) , r (7) ) = £,*(*, 7) for X, 7 e t ^ . 

For I j e f(/) c fl(,)f 

Q{T{X\ T ( 7 ) ) = - ^ - B(X, 7) = -« , .*(* , 7) 
Y,- - Pj 

by (2). For X, Y e Z(f), 

£ ( T ( X ) , T ( 7 ) ) = B(DE(X), E(Y)) - B(DE(X), C~]DE(Y)) 

= B(D(I - C~lD)E(X), E(Y)) 

by definition of E 

= B(D(X),E(Y)) 

= B(X9DE(Y)) 

= B(X,(D-1 

= B{X9AY). 

B(X,(D~l - C~l)~lY) 

Thus 

Q(T(X9 0), r(7, 0) ) = (X, 7> for all X, 7 e f + £. 

(5.4) Remark. In [3] p. 64, D'Atri and Ziller incorrectly assert that a 
class of left-invariant metrics on G, which properly contains those of 
Theorem 5.3 with L trivial, are naturally reductive. Setting b = {0} in 
their notation, we obtain the metrics of 5.3. 

We conclude this section with a study of the geometrical properties of 
naturally reductive metrics on GIL. 
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(5.5) THEOREM. Let M = GIL be a naturally reductive homogeneous 
space of a semisimple Lie group G of noncompact type. Choose a subgroup K 
of G containing L such that I is a maximal compactly embedded subalgebra 
of g. Under the obvious choice of left-invariant metric on G IK, the 
projection 

<n\M-+ GIK 

is a Riemannian submersion of M onto the symmetric space GIK of 
non-positive curvature. The fibres are Lie groups with bi-invariant Rieman
nian metrics forming totally geodesic symmetric spaces. Every two-plane 
which intersects the vertical space non-trivially has non-negative sectional 
curvature, while every horizontal two-plane has non-positive sectional 
curvature. In the notation of Theorem 5.3, the sectional curvature K of (,) for 
orthonormal vectors X and Y is given by. 

K(X,Y)= - 2 2 {-+-)\\[X,Y}{1)\\
2 

n 

- 2 ^mB{\Xm,YJh[XwYm\) 
ra = 1 

for X, Y <E J3 and 

K(X, Y) - - 2 || [X{i)9 Y{1)] ||2 

4 / = 1 

+ 2 2 S < [X(i), YJ, [XU), Ym] > 
ij=\ m=\ 4/3m 

+ 2 ^ - ([ÂXZ, Ym], 

for X G f, Y e f 4- p where Ub f/(/), Uz and Um denote the I, f(/), z(f) ««J 
^)/m) components of U G g. 

Proof It is immediate from Theorems 5.2 and 5.3 that 77 is a submersion. 
By Cartan's theory, GIK is a symmetric space of non-positive curvature, 
and by O'Neill's curvature formulas for submersions ( [14], Corollary 1), 
every horizontal two-plane in M has non-positive curvature. The fibre over 
eK is KIL, a Lie group with Lie algebra f. The metric on KIL is 
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bi-invariant so K/L is a symmetric space of non-negative curvature and by 
Lemma 2.7, K/L is totally geodesic. Since each X e f is a Killing vector 
field, K(X, •) = 0 ( [13], p. 296). The curvatures can be computed as 
follows: for X e f + £, let X* be the fundamental vector field given by 

For X, Y € 

AYY 

X<^ = j exP tX' fy=o-

+ £, define 

(Vx*7* - [X\ Y*] )(*)). 

4̂X is a skew-symmetric operator and may be computed by the formula 
([12], pp. 188-204) 

(3) 2(AXY, Z> = ( [X, 7], Z> + < [Z, * ] , 7> + ( [Z, 7], *>. 

For X{ and ^ + p the I and f + p components of X e g, the curvature 
tensor at/? is given by ( [12], p. 192): 

(4) * , ( * , 7 ) = [Ax, AY]- AlXtY]f+t - p( [X, Y]{) 

where p denotes the isotropy action of I, 

P([X, Y\) s ad[X, 7 ] I | f + p . 

Using (3) we obtain 

/ : 
[X, Y] 

(5) ^ y = V 
2j8„ 

2£„ 

[^ r] 

n 

X,Ye f(1) 

I J e p 

* e f(l), ^ 

• © f(D 

v(m) 

K'̂ M 2P, 
1 

[X, A Y] 
IB 

* e p(«). ̂  e f(o 

x G z(f), y G f 

A- G z(f), y G j j ( i n ) 

x G t,(fB), y G z(f). 

A tedious computation using (4), (5) and the fact that 

K(X, 7) = ~(R(X, Y)X, 7> 

for orthonormal X and 7 yields the curvature formulas. 
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6. Conclusions. The following theorem summarizes the necessary 
conditions for natural reductivity established in Sections 2-5. 

(6.1) THEOREM. Suppose M = GIL is naturally reductive with respect to a 
transitive subgroup of G. Choose a maximal connected semisimple subgroup 
G] of G compatible with L and let Gnc and Gc be the noncompact and compact 
parts of Gv Let N = nilrad(G). Then: 

(1) Gnc is a maximal connected semisimple subgroup of noncompact type in 
the full isometry group I(M) and is normal in I(M). 

(2) TV is at most 2-step nilpotent. 
(3) G,7V acts transitively on M. 
(4) The image of I under the homomorphic projection of g onto gnc is a 

maximal compactly embedded subalgebra I of gnc. ï n I is a Ï-ideal. 
(5) The submanifolds Gnc/(Gnc n L), GC/(GC n L) and N(= N/(N n 

L) ) with the induced Riemannian metrics are totally geodesic and naturally 
reductive. In particular, the metric on Gnc/(Gnc P L) is of the type defined in 
Theorem 5.3, and the data (n, (,), L) associated with N as in 4.1 satisfies 
conditions (i) and (ii) of Theorem 4.8. 

(6) M admits a transitive group H c G of isometries which contains no 
noncompact semisimple subgroups. 

Proof (1), (2), (3) and (5) are proven in Sections 2-5. For (4), suppose M 
is naturally reductive with respect to the subgroup H of G. Choose a Levi 
factor Hx of H compatible with H P L. By Remark 3.4, Hnc = Gnc. Hence 
by Theorem 3.3, 

ï) = gnc © (ï)c + ï)2) and g - gnc 0 (gc + g2), 

direct sums of ideals with fjc + ï)2 c gc -I- g2- I n particular, the 
homomorphic projection fl"nc:I) —» gnc is the restriction to fj of the 
projection g -» gnc. It therefore suffices to show that 77nc(I Pi fj) is 
a maximal compactly embedded subalgebra ! of gnc and ! D I ( = f Pi 
(I Pi I)) ) is a f-ideal. Thus we may assume for simplicity that g = £); i.e., M 
is naturally reductive with respect to G. 

77nc(I) lies in some maximal compactly embedded subalgebra !. Let L0 be 
the largest normal subgroup of GncL contained in L. By the proof 
of Lemma 2.7 Gnc/(Gnc n L) is naturally reductive with respect to 
GncL/L0. 7rnc(I0) = {0} since gnc contains no compact ideals. I = I0 © m 
for some 1-ideal m and irnc(l) = ?rnc(m). (GncL)/L0 has Lie algebra 
isomorphic to gnc -f m. By Theorem 5.2,77nc(m) = f and 1 n gnc = m n 
gnc is a f-ideal. 

For (6), let K be the subgroup of Gnc corresponding to f in (4). Recall 
that Gnc admits an Iwasawa decomposition Gnc = KS where S is solvable 
and K n S ={e) (see [10] ). Let H = SGCG2. (Here G2 = rad(G).) The 
reductive subalgebra Q1 + 1 equals gj + t where t = (g, + I) n g2 is 
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central in g, + 1. (See 2.4.) By (4), 

f C [ + gc + t. 

Hence K c GCTL c GCG2L. But then 

G = SKGCG2 c SGCG2L = HL. 

Thus H acts transitively on M. 

(6.2) Remark. One can use Theorem 6.1 to obtain a new proof of a 
theorem of Deloff [4] stating that every naturally reductive homogeneous 
Riemannian manifold of non-positive sectional curvature is symmetric. 
We omit the details here as a more general theorem (with sectional 
curvature replaced by Ricci curvature) is proved in [9]. The proof of the 
latter theorem uses both a result of Wang-Ziller [15] and Theorem 6.1. 
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