Genet. Res., Camb. (2010), 92, pp. 1-11.
doi:10.1017/S0016672310000017

© Cambridge University Press 2010 1

Genetic architecture of rainbow trout survival

from egg to adult

HARRI VEHVILAINEN"™ ANTTI KAUSE"?, HEIKKI KOSKINEN?

AND TUIJTA PAANANEN?

YMTT Agrifood Research Finland, Biotechnology and Food Research, Biometrical Genetics, FI-31600 Jokioinen, Finland
2 Wageningen University and Research Centre, Animal Breeding and Genomics Centre, 6709 PG Wageningen, The Netherlands
3 Finnish Game and Fisheries Research Institute, Tervo Fisheries Research and Aquaculture, FI-72210 Tervo, Finland

(Received 30 June 2009 and in revised form 27 November 2009, first published online 3 March 2010)

Summary

Survival from birth to a reproductive adult is a challenge that only robust individuals resistant to

a variety of mortality factors will overcome. To assess whether survival traits share genetic
architecture throughout the life cycle, we estimated genetic correlations for survival within fingerling
stage, and across egg, fingerling and grow-out stages in farmed rainbow trout. Genetic parameters
of survival at three life cycle stages were estimated for 249 166 individuals originating from ten year
classes of a pedigreed population. Despite being an important fitness component, survival traits
harboured significant but modest amount of genetic variation (42=0-07-0-27). Weak associations
between survival during egg-fry and fingerling periods, between early and late fingerling periods
(rc=0-30) and generally low genetic correlations between fingerling and grow-out survival

(mean rg=0-06) suggested that life-stage specific survival traits are best regarded as separate traits.
However, in the sub-set of data with detailed time of death records, positive genetic correlations
between early and late fingerling survival (rg=0-89) showed that during certain years the best
genotypes in the early period were also among the best in the late period. That survival across
fingerling period can be genetically the same, trait was indicated also by only slightly higher
heritability (A =0-15) estimated with the survival analysis of time to death during fingerling period
compared to the analysis treating fingerling survival as a binary character (h2=0-11). The results
imply that (1) inherited resistance against unknown mortality factors exists, but (2) ranking of

genotypes changes across life stages.

1. Introduction

Survival from birth to reproductive adult is a series
of challenges created by a multitude of mortality fac-
tors whose incidence varies in time and space. Thus
only individuals robust enough to overcome these
challenges will become parents of the next generation.
Survival is an ultimate robustness trait because it is
a measure of an individual’s resistance against mul-
tiple mortality factors occurring in an environment
(Vehvildinen et al., 2008).
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In animal breeding, a common goal is that animals
would be robust against multiple environmental dis-
turbances, stressors and mortality factors throughout
all life stages (Mulder & Bijma, 2005; Pertoldi et al.,
2007; Vehvildinen et al., 2008). Genetic analyses of
survival, and its underlying component traits, across
environments and during different growth or life
stages will increase our ability to utilize survival as a
selected trait in breeding programmes. Likewise, in
the wild, natural selection favours genotypes capable
of producing optimal phenotypes at different life
stages and across multiple environments (Pigliucei &
Schlichting, 1995; Miller & Vincent, 2008), making
understanding of survival genetics and its develop-
mental mechanisms of importance for evolutionary
biology (Félix & Wagner, 2008).
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Previous studies on survival at different periods have
revealed that genetic variation can vary depending on
the age or life stage of an organism. For instance, re-
ported heritabilities for lamb survival show large
variation during the first year of life (h* range:
0-01-0-33; Southey et al., 2001, 2003 ; Sawalha et al.,
2007; Riggio et al., 2008). Similarly, resistance to
multifactorial mastitis disease in cattle is not the same
trait between different lactations, and the proper
selection method is thus based on a multitrait index
rather than defining mastitis as one trait over all lac-
tations (Negussie et al., 2007, 2008). Different variants
of candidate genes have age-specific influence on hu-
man survival (Passarino et al., 2006).

However, there is a lack of comprehensive coverage
of the genetic architecture of age-specific survival
traits across life stages (Wilson et al., 2008). The main
mortality factors (diseases, parasites, predators and
abiotic conditions) change during the life cycle of
most organisms, and susceptibility to different fac-
tors, e.g. bacterial versus viral diseases, can be weakly
or even negatively genetically correlated (e.g. Gjoen
et al., 1997; Cotter et al., 2004; Bubliy & Loeschcke,
2005; Gdegard et al., 2007; Kjoglum et al., 2008).
Most of the studies mentioned above concentrate on a
relatively short period of time, a specific disease, or
are conducted within one life stage of an animal.
Therefore it is not evident whether the same geno-
types have superior survival across all life cycle stages.
Moreover, genotypes can re-rank even within a life
stage if the stage is long with respect to variation in
the presence of mortality factors. It is also possible
that there are trade-offs between resistance mech-
anisms at different ages, thus creating re-ranking
even when mortality factors remain constant. These
questions can be approached by defining survival
in physiologically different life stages as separate
traits and then calculating the genetic correlations
between the traits. Finding positive genetic corre-
lations would then mean a set of genotypes exist that
on average survive best in all life stages. Negative
correlations, on the other hand, would mean that
there is a degree of reversed genotype ranking and
that survival in different life stages is best regarded as
separate traits.

Salmonids are well suited for studying the genetic
architecture of traits across life stages. These fish lack
an internal embryonic stage and have several clearly
defined life stages (egg, yolk-sac fry, fingerling and
post-smoltification grow-out). Thus, survival of in-
dividuals can be tracked from embryo to adulthood.
In this paper, we investigate genetic architecture of
survival traits within and across life stages (egg-fry,
fingerling and grow-out) in farmed rainbow trout
(Oncorhynchus mykiss Walbaum) using data from ten
year classes of a pedigreed population. These results
provide evidence of the extent to which (1) survival is
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heritable and (2) survival traits within and across life
cycle stages share genetic architecture.

2. Materials and methods

Survival records were obtained from the Finnish
national rainbow trout breeding programme main-
tained by the Finnish Game and Fisheries Research
Institute (FGFRI) and MTT Agrifood Research
Finland. The freshwater breeding nucleus is held at the
FGFRI Tervo Fisheries Research and Aquaculture
station in Central Finland. The breeding population
was established in 1992 and the pedigree is known
back to a common base population in 1989 (Kause
et al., 2005).

(1) Population structure

The data consisted of 814 full-sib family-level survival
observations from the egg-fry period (fertilized egg
to first feeding fry), 249 166 individual survival ob-
servations from the juvenile fingerling period (the first
months of feeding), and 121905 individual survival
records from the grow-out period in freshwater or
seawater (growth from 50 to 1000 g, after which the
first individuals reach maturity).

The fish originated from three subpopulations
sharing a common base population and from ten year
classes belonging to four generations (Table 1). Each
year class consisted of 109-341 full-sib families gen-
erated from 48 to 168 sires and 79 to 272 dams, mated
using either nested paternal or partial factorial de-
signs. Pedigrees of all individuals were known at all
life stages because families with known parents were
held separately before individual tagging. During the
fingerling period, the total number of fish within each
year class was 16 169-50962. During grow-out in
each year class, fish were kept either in the freshwater
nucleus station (range: 445913 643 fish/year class),
or sent to one or two sea test stations (range:
14565165 fish/year class, Table 1).

(i1) Rearing conditions

The parents for each generation were selected based
on their estimated breeding values for growth (since
1992), maturity age (since 2001), external appearance
(since 2001), skeletal deformations (since 2002), fillet
colour (since 2003) and cataracts due to Diplostomum
parasite (since 2003) (Kause et al., 2005). Parental fish
were mated at the Tervo freshwater nucleus station
during April-June.

(a) Egg-fry period

The egg-fry period lasted from egg fertilization to first
feeding. Full-sib egg batches of equal volume (0-5 dl)
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Fig. 1. Timing of mortality (% of fish died in each
observation period from total number of fish in family
tanks after grading) during juvenile fingerling period in
different year classes. Monthly moving average (MA)
calculated as mean of + 15 days around each observation
point over all year classes in grey bold. Dashed vertical
line marks the division of fingerling period to early and
late fingerling survival traits.

were incubated separately in subdivided trays of ver-
tical incubators, and at the eyed-egg stage, each full-
sib family was transferred to one or two indoor
150 litres family-tanks (Table 1). Eggs hatched in
July. To estimate egg-fry period survival, the number
of fish alive at the end of the egg-fry period in August
was counted. This resulted in one observation per full-
sib family. At the same time, full-sib families were
graded to similar family size (mean =150 individuals,
range=17-170) and the average individual weight
of fish was determined (mean=3-37g, range=
0-56-17-3 g).

(b) Juvenile fingerling period

The fingerling period lasted from full-sib family
grading to individual tagging. After grading of the
families to a similar family size, full-sib families were
kept separately indoors in 150 litres family tanks until
the start of individual tagging at November. Dead
individuals were collected from the tanks during rou-
tine maintenance, and the individuals alive at the end
of the period were counted, providing individual-level
data on survival. Individual mortality during the fin-
gerling period (length range in different year classes:
92-147 days, Fig. 1) was recorded periodically (mean
interval of recording =22 days, range: 4-51).

(c) Grow-out period

The grow-out period lasted from individual tagging at
the end of first growing season to measurements at the
end of the second growing season. At the size of
50-100 g, fish were individually tagged with Passive
Integrated Transponders (Trovan Ltd, Germany).
After tagging, the fish were transferred either to an
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outdoor raceway at the freshwater station or sent to
one or two Baltic Sea test stations during April in
a split-family design (Table 1). In commercial sea
farming, it is a standard protocol to vaccinate fish
before transportation from freshwater to sea grow-
out. Thus, all fish sent to the sea test stations were
vaccinated one month before transportation with in-
traperitoneal injection (1995-1997: 0-1 ml of Lipogen
Duo, Aquahealth Ltd, Canada; 1998-2004: 0-2 ml
of Apoject 1800, Pharmac, Norway) against bacterial
diseases caused by Aeromonas salmonica ssp. salmo-
nica and Listonella (Vibrio) anguillarum. These dis-
eases do not occur in significant incidence in
freshwater grow-out, and thus the fish remaining in
freshwater are not vaccinated.

At the freshwater station, the fish were held in a
flow-through earth-bottomed raceway. All sea sta-
tions were located in South-West Finland within a
maximum distance of 163 km from each other, but
they were not the same ones from generation to gen-
eration. At each sea station, the fish were reared under
commercial farming conditions in a single net-pen. All
fish were fed commercial fish feed pellets throughout
the rearing cycle. The rearing procedure is detailed by
Kause et al. (2005). The individual grow-out survival
of fish from tagging to the end of the second growing
season (fingerling period 4+ grow-out season) was de-
termined in May at freshwater (mean weight of fish=
964 g) and in late summer—autumn (July-December)
at the sea stations (mean weight of fish=1095 g). In
each year class and environment, grow-out survival
recording lasted 2—4 weeks.

(ii1) Trait definitions for linear model analysis

(a) Egg-fry survival

Full-sib family size before grading was used as an
estimate of family-level survival from egg fertilization
to first feeding fry. For each family, an equal volume
of fertilized eggs (0-5dl) was initially placed in in-
cubators and all eyed eggs were transferred into fam-
ily tanks. If all eggs were the same size, the number of
fish at grading would precisely describe family-level
survival. However, egg size likely differed among
families, and therefore ‘egg-fry survival’ is only an
approximation. Egg-fry survival was not recorded for
year class 2002 and could not be obtained in a few
families throughout the study, resulting in 814 family-
level records.

(b) Fingerling survival

A trait ‘juvenile fingerling survival’ (JuvTotal) was
defined as survival from grading to the starting date of
individual tagging of the first tagged family within
each year class. Individual fish that survived this per-
iod were scored as survived (= 1), while the individual
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fish that died were coded as dead (=0). The length of
period from grading to the start of tagging varied
between year classes (year class period length range:
61-147 days, Fig. 1). This was due to both variability
of fish growth in different years (fish need to reach a
certain size before individual tagging is feasible) and
practical logistic challenges. To standardize the trait
definition across families, the end of the fingerling
period was defined as the date when the first family
was tagged. This is because tagging all families takes
months. Out of all eight year classes, fingerling sur-
vival records for three families were deleted because
they experienced non-natural mortality due to man-
agement accidents (e.g. failure in water flow system).

(c) Early and late fingerling survival

To assess whether mortality during early and late
fingerling periods are the same trait, two additional
fingerling survival traits were defined by dividing
JuvTotal into two periods. ‘Early juvenile fingerling
survival’ (EarlyJuv) was defined as survival until 60
days after grading (year class range: 51-69 days; in-
dividual fish surviving until the end of the period =1,
individual fish died during the period =0). ‘Late juv-
enile fingerling survival’ (LateJuv) was defined as
survival from 60 post-grading until the start of indi-
vidual tagging (range: 30-91 days; individual fish that
survived =1, individual fish that died =0). The 60-day
threshold was based both on the experience of prac-
titioners and on the preliminary inspection of the
data, which suggested that mortality is not stable
through the fingerling period (Fig. 1).

The fingerling survival records for year class 2000
extended only to 61 days. Therefore LateJuv and
JuvTotal were not defined for this year class, resulting
in 219951 observations for these traits.

(d) Grow-out survival

For grow-out survival (from tagging to the end of the
second growing season), two environment-specific
traits were defined: (1) ‘Grow-out survival in fresh-
water’ (FreshwG) and (2) ‘Grow-out survival in sea
water’ (SeaG). Individual fish that survived from
tagging to the end of the second growing season were
scored as survived (=1), while fish not present were
coded as missing (=0).

(iv) Trait definitions for survival analysis

For the detailed survival analysis of the fingerling
period, the survival trait analysed was the number of
days from grading until death. Individuals still alive at
the start of individual tagging for each year class were
treated as censored records. Three year classes (1997,
1998 and 1999) consisted of enough detailed data that
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allowed a genetic survival analysis. In these year
classes, time at death was recorded both more fre-
quently (6 times) than in other year classes (mean=
4-4 times), and the recording period was longer
(102-126 days) than in the others (61-142 days).

(v) Accounting for selection bias

In artificially selected populations, traits are recorded
from a non-random sample of individuals. The im-
pact of such selection bias on the genetic parameter
estimates can be accounted for with a multitrait
analysis that includes the selected trait(s) (Henderson,
1984). In our data, body weight was the main selected
trait encompassing approximately 60% of the selec-
tion index weights. Thus, genetic parameters for sur-
vival traits were estimated by including three body
weight traits into all linear model multitrait analyses.
The body weight traits included were: (1) ‘JuvBW’ —
individual body weight of fingerlings recorded at tag-
ging (n=189299 fish); (2) ‘FreshwBW’ —individual
body weight recorded at the end of the grow-out
period in freshwater in April-June (n= 58 724) and (3)
‘SeaBW’ —individual body weight recorded at the
end of grow-out period in sea in October—April
(n=41678). Genetic analysis of body weights has
been reported previously (Kause et al., 2003, 2005).

(vi) Linear model genetic analyses

Linear model heritabilities and genetic correlations
were estimated using restricted maximum likelihood
and multitrait animal models (DMU-AI software;
Madsen & Jensen, 2008).

Juvenile fingerling survival traits (JuvTotal, Early-
Juv and LateJuv) and grow-out survival in freshwater
(FreshwG) were modelled as

Vijk =M+ year; + year; % ¢; +animy + ey, (1)
grow-out survival at sea (SeaG) as

Vit =M+ year; « site; + year,  ¢; 4 animy + £y, (2)
body weight at tagging (JuvBW) as

Viik =M +year; +year; x ¢; +animy + €, x Tsum(year),
3)

body weight after freshwater grow-out (FreshwBW)
as

Vijkn = M + €T, % S€X,,, % mat, + year,;  ¢; +animy + €;;

4
and body weight after sea grow-out (SeaBW) as

Vijkimn =M+ year; # site; x sex,, = mat, 4 year, * ¢; )

+animy + €,
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where y, is the survival or body weight observation
for an individual (k =number of animals), u is a mean
of a given trait, year; is the fixed effect of fertilization
year (i=1, ..., 8 years for fingerling period and 1, ...,
10 years for grow-out period), year;*site; is the fixed
interaction effect of birth year and sea test station
(I=1, 2; site A and B), year;*sex,,*mat, is the fixed
interaction effect of birth year, sex (m=1, 2, 9; male,
female and unknown) and maturation (=0, 1; ma-
ture or immature), year;*c; is the random interaction
effect of birth year with common environment effect
shared by full sibs before tagging (j=number of
family tanks), anim; is the random genetic animal
effect (k=number of animals) taking into account full
pedigree information and ¢ is a random error term.
Tsum(year) is a covariate of the cumulative tempera-
ture at date of recording, nested within a birth year.
The common environment effect was modelled sep-
arately for each birth year because tanks did not have
a consistent effect every year.

Heritabilities and genetic correlations were derived
from seven-trait analyses. Estimation of parameters
with all fingerling survival traits in the same analysis
was not feasible because of the close to unity corre-
lation structure between EarlyJuv versus JuvTot and
LateJuv versus JuvTot, combined with near zero
correlation between EarlyJuv and LateJuv. Thus, to
obtain all correlations three separate trait combina-
tions were run. In each run, different two-trait com-
binations of fingerling survival traits were analysed
with both of the grow-out survival traits and the three
body weight traits. The correlation matrices were bent
to be positive definite using the method of Hayes &
Hill (1981). Bending changed the genetic correlations
by an average of 0-005, the maximum change being
0-022, and the common environment correlations
by an average of 0-:017, the maximum change being
0-093. The standard errors reported for the correla-
tions are means from the separate multitrait runs.

Heritability for linear animal models was quantified
as ’=Vg(Vg+Ve+ Vr) 7L where Vg is genetic, Ve
common environment and Vpy residual variation.
Although genetic variance is assumed to be mainly
due to additive genetic effects, the potential effects of
dominance and epistasis cannot, however, be excluded.
The common environment effect was quantified as
A=Vc(Ve+Vg+ Vr) L In addition to the common
environment effects of full-sibs, V¢ may potentially
include parts of dominance variance. Asymptotic
standard errors for the genetic parameters were com-
puted based on a Taylor series approximation
(Madsen & Jensen, 2008).

Heritabilities and their standard errors estimated
by the linear model were transformed to the under-
lying liability scale using the formula of Dempster
& Lerner (1950). Genetic correlations of binary
traits estimated using linear models are unbiased
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Table 2. Sample sizes, mean survival, heritabilities (h%), common environment effects (c?) and their standard
errors (SE), genetic (V) and phenotypic (V p) variances

Trait Sample size Survival (%) n+SE *+SE Vo Vp
EarlyJuv 249 166 96-1 0-20+0-04 0-:09+0-00 0-0014 0-0368
LateJuv 219951 97-4 0-27+0-07 0-124+0-01 0-0009 0-0240
JuvTotal 219951 93-4 0-19+0-04 0-10+0-00 0-0031 0-0594
FreshwG 81499 72-3 0-16+0-02 0-054+0-00 0-0178 0-1955
SeaG 40405 71-3 0-07+0-02 0-:04+0-00 0-0071 0-1914

(Maéntysaari et al., 1991). Because fish in the sea were
not recorded for traits in fresh water, and vice versa,
residual covariances between the sea and freshwater
traits were set to zero in the analysis. Because in-
dividuals were not yet individually tagged during the
fingerling survival data collection, a fingerling sur-
vival record of an individual could not be attached to
the individual’s grow-out observation, and thus the
residual covariances between the fingerling and grow-
out survival traits were also set to zero.

Because egg-fry survival was recorded at a family
level, genetic correlations with the other survival traits
could not be estimated using the animal model.
Instead, we explored the associations between egg-fry
and fingerling survival traits by calculating sire-family
mean Spearman correlations between egg-fry and fin-
gerling survival traits within each year class (Proc
CORR in SAS v.9.1.3; SAS, 2005). A sire-mean cor-
relation is an approximation of the true genetic cor-
relation, and more conservative (i.e. produces a weaker
genetic correlation) than Restricted Maximum Like-
lihood (REML) (Roff, 1997; Astles et al., 2006).

(vil) Survival analysis

Survival analysis for the timing of death during the

juvenile fingerling period was run for the sub-set

of data (year classes 1997, 1998 and 1999) using

SurvivalKit software (Ducrocq & Sélkner, 1998). Rate

of mortality over time was modelled as a continuous

time with frailty Cox’s proportional hazard model.
In the frailty model, survival was modelled as

hijk(f) = ho([)eyear;erear, " c,»+animk’ (6)

where h;;(f) is the hazard function for the kth indi-
vidual from the jth family tank in the ith year and /,(¢)
is a baseline hazard function. The covariance struc-
ture of the random animal effect was modelled as a
multivariate normal, and that of the common en-
vironment as a log-gamma distribution.

Heritability of frailty model was quantified as
R=Vs(Vg+Vc+m(6) 1)L, where Vg is the mode
of genetic and V¢ the mode of common environment
variance estimated from a Laplacian approximation
of the corresponding marginal posterior distribution
(Ducrocq & Casella, 1996). Due to failure in iterating
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Gauss—Hermite quadrature of the approximate mar-
ginal posterior densities, the standard errors for
variances could not be conclusively obtained and
therefore are not reported.

The sub-set data was also analysed using linear
models in which survival was defined as binary traits
(EarlyJuv, LateJuv and JuvTotal). This was done to
compare results from the linear and survival models.

3. RESULTS
(1) Heritability of survival traits

All three juvenile fingerling survival traits displayed
significant amounts of genetic variation (/2:
JuvTotal=0-19, EarlyJuv=0-20 and LateJuv=0-27;
Table 2). Heritabilities for the grow-out survival traits
were significant, but slightly lower than those for the
fingerling period (h*: FreshwG=0-16, SeaG=0-06;
Table 2). The common environment effect was sig-
nificant, but fairly low, for all traits (¢* range:
0-:04—0-12; Table 2).

(i1) Genetic correlations within fingerling period

The positive genetic correlation between early and
late fingerling survival traits was moderate, but non-
significant (rg=0-30; Table 3), suggesting that re-
ranking occurs even within a life stage. In line with
this observation, mortality during the fingerling period
tended to occur during two separate peak times, at the
beginning and end of the period (Fig. 1). Fingerling
period mortality was constant only in two year classes
(1998 and 2000). Three year classes (1997, 1999 and
2000) had higher mortality both at the beginning and
end with a plateau in the middle, and the remaining
three year classes had higher mortality either in the
beginning or end of the period (Fig. 1). In addition, the
common environment correlation between EarlyJuv
and LateJuv did not differ from zero (rc=0-04;
Table 3).

Genetic correlations of both EarlyJuv and LateJuv
with JuvTotal were highly positive (rg: 0-:86 and
0-76, respectively; Table 3), as can be expected for
traits that are components of a whole. Similarly,
the common environment correlations between the
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Table 3. Genetic associations of different survival traits during ontogeny estimated from the whole data: below
diagonal = genetic correlations (SE), above diagonal = common environment correlations (SE). Significant
(zero not within estimate + 1-96 SE) correlations in bold. All correlations significantly different from unity

EarlyJuv LateJuv JuvTotal FreshwG SeaG

EarlyJuv 0-04 (0-03) 0-74 (0-02) 0-06 (0-04) 0-09 (0-06)
LateJuy 030 (0-16) 0-69 (0:02) —0-02 (0-05) 0-03 (0-05)
JuvTotal 0-85 (0-05) 0-76 (0-08) 0-03 (0-04) 0-09 (0-06)
FreshwG — 008 (0-12) 0-27 (0-14) 0-09 (0-12) 0-59 (0-05)
SeaG —0-22 (0-17) 0-33 (0-18) 0-03 (0-16) 0-62 (0-09)
component and total fingerling survival traits were
highly positive (rc=0-71-0-73; Table 3). 1:00 1 |

|

|
(i) Detailed survival analysis of time at death within 0-98 ~ |
fingerling period !

— |

For the year classes 1997, 1998 and 1999, the herita- % 0-96 1 i
bility estimate from the frailty model for time at death a i
during the fingerling period was moderate (4*=0-15) }
and only slightly higher than the heritability from the 0-94 1 i
linear model [#? (SE): JuvTotal 0-11 (0-04)]. Thus, }
modelling survival as a continuous time with the 0.5 i

frailty model added some but minor additional in-
formation.

Surprisingly, genetic correlations between the fin-
gerling survival traits in the sub-set data were much
higher [rg (SE): EarlyJuv versus LateJuv=0-89
(0-38), EarlyJuv versus JuvTotal=0-95 (0-16) and
LateJuv versus JuvTotal=0-99 (0-05)] than in the
analysis of the whole dataset (rg: EarlyJuv versus
LateJuv=0-30, EarlyJuv versus JuvTotal=0-86, and
LateJuv versus JuvTotal 0-76; Table 3). This means
that in the sub-set data, survival was almost a single
trait across the fingerling period, a conclusion con-
trary to the results of the whole data.

Although EarlyJuv and LateJuv were highly cor-
related in the sub-set of data, the estimated survival
curve for these year classes substantiated the finding
that the survival probability drops at the beginning
and end of the fingerling period separated by a mid-
period plateau (Fig. 2).

(iv) Sire-family correlations across egg-fry and
fingerling stages

The sire-family mean correlations of egg-fry survival
with fingerling survival traits were in most cases
close to zero [mean rg across year classes (range):
JuvTotal=—0-03 (—0-18-0-23), EarlyJuv=0-01
(—0-15-0-29) and LateJuv=—0-09 (—0-19-0-00)].
Only three correlations out of 19 differed significantly
from zero [year class 1996: EarlyJuv rg=0-29,
P=0-01; year class 2004: JuvTotal r¢=—0-18, P=
0-04, LateJuv rg=—0-19, P=0-03). The low sire-
family mean correlations indicate that survival during
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Fig. 2. Kaplan—Meier estimated survival curve for year

classes 1997, 1998 and 1999. Dashed vertical line marks

the division of fingerling period to early and late fingerling
survival traits.

egg-fry and fingerling periods are genetically separate
traits.

(v) Genetic correlations across fingerling
and grow-out stages

The differences in genetic architecture between fin-
gerling and grow-out survival traits were similar to
those found for traits within the fingerling period.
Genetic correlations between fingerling and grow-out
survival were generally low (mean rg=0-06; Table 3)
suggesting that survival traits during different life
stages do not share common genetic architecture.

Furthermore, the grow-out traits also displayed
genotype x environment interaction, as revealed by
the non-unity genetic correlation between FreshwG
and SeaG (rg=0-62; Table 3).

The common environment correlations between
fingerling and grow-out survival traits were low
(mean rc=0-05; Table 3).

4. DISCUSSION

The genetic analysis of rainbow trout survival across
life stages revealed two major patterns. First, strong
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genotype re-ranking across life-stages was evidenced
by the weak sire-family correlations between egg and
fingerling stages, and near zero genetic correlations
within fingerling stage and between fingerling and
grow-out stages. Second, the results changed con-
siderably depending on the dataset analysed. These
results reveal the transient nature of the genetic
architecture of survival, a composite trait recorded
without knowing the exact mortality agents.

(1) Survival within fingerling stage

Non-significant genetic correlation (0-30) between
early and late fingerling survival in the whole data
suggested that the genetic architecture of survival can
vary even within a life stage. Indeed, fingerling mor-
tality in many year classes displayed seasonal vari-
ation: there was a peak in mortality either early (late
summer) or late (late autumn—winter) in this period,
or both (Fig. 1). Mortality showed constant rate
through fingerling period in only two out of eight year
classes. The early and late periods typically have dif-
ferent diseases, e.g. Flavobacterium columnare in
summer and Flavobacterium psychrophilum in winter,
and also abiotic conditions such as water temperature
change during the fingerling period.

To examine whether more exact timing of death
during the fingerling period provides additional in-
formation on the genetics of survival, the sub-set data
(year classes 1997, 1998 and 1999) with more frequent
and longer observation period of fingerling survival
were analysed with both linear and frailty Cox’s pro-
portional hazard model. The frailty model produced
only slightly higher heritability compared to that
of the linear model [4%: linear model (JuvTotal)=0-11,
frailty model =0-15]. The small change in the herita-
bility estimate between the models indicates that
in the sub-set data, time at death provides only limited
novel information on the genetics of fingerling
survival, and that linear model results are robust.
In the sub-set data, early and late fingerling survival
were also more strongly (0-89) genetically correlated
than in the whole data. This sort of difference be-
tween datasets is expected if there is spatio-temporal
variability in mortality factors causing variation
in genetic parameters (Vehvildinen et al., 2008).
For instance, in our previous study, we showed
that heritability for rainbow trout survival during
grow-out stage ranges between 0-04 and 0-71 de-
pending on the year class analysed (Vehvildinen ez al.,
2008).

Accordingly, this supports the view that during
particular years genetic architecture of survival can be
rather homogeneous across a fingerling period.
Causative mortality factors are unknown in the pres-
ent study, but the conclusion is that during some
years, it is possible to find a set of families that on
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average survive better than others through the chal-
lenges of the fingerling stage.

Previous studies have found favourable genetic as-
sociations between resistance to some mortality fac-
tors within a life stage. At the same time, however,
these studies report that genetic correlations with
other mortality factors, even within life stage, can be
weak. In Atlantic salmon (Salmo salar), resistance
against different bacterial diseases is usually favour-
ably genetically correlated, whereas the genetic cor-
relations between bacterial and viral diseases are weak
or even negative (Gjoen et al., 1997; Henryon et al.,
2005; Gdegard et al., 2007; Kjoglum et al., 2008).
Bubliy & Loeschcke (2005) also showed that survival
after different stressors in a fruit fly (Drosophila mel-
anogaster) exhibit correlated responses to selection,
even though results did not support existence of a
single resistance mechanism.

(i1) Survival across life stages

Weak correlations across life stages suggested that the
genotypes surviving best during the fingerling period
were not among the best survivors in other life stages.
This was evidenced by two results. First, survival
from fertilized egg to the first feeding fry was in most
year classes not correlated with the subsequent juv-
enile fingerling survival (mean rg= —0-03). Second,
genetic correlations between fingerling and grow-out
survival were very low (mean rg=0-06).

If any trend for similar ranking of genotypes based
on survival is visible across the life stages, it would be
between late fingerling survival and grow-out survival
traits (rg=0-29-0-32). This seems logical because
during late fingerling period fish are gaining weight
reaching body weight of 50-100 g, finishing the
smoltification phase and approaching grow-out
phase. In our previous study on the grow-out survival
of rainbow trout across production environments, we
found moderate genotype x environment interaction
[mean (range) rg=0-70 (0-17-0-98)] between survival
in freshwater and different sea environments. This
means that to some extent genotypes rank differently
for survival in separate environments even within life
stage (Vehvildinen et al., 2008). In the current study,
we found a slightly lower between environment gen-
etic correlation (freshwater versus sea grow-out
rg=0-62). The present study thus revealed that the
genetic correlations of survival across life stages are
clearly lower than the genetic correlations of survival
across environments.

In the course of a whole life cycle, both external
environment and physiology of an individual fish
change, providing potential for the reduced correla-
tions. Our results imply that survival during different
life stages are genetically different traits and that there
are no superior genotypes that are able to tolerate all
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mortality factors through life stages from fertilized
egg to 1-2 kg fish.

Similar to our results, previous studies have sug-
gested that genetic correlations of survival across
life stages are weak. Campbell (1997) found low and
non-significant genetic correlation between seedling
emergence and survival to flowering in a monocarpic
herb Scarlet Gilia (Ipomopsis aggregata). Studies on
piglet mortality from farrowing to weaning around 4
weeks of age have found close to zero or even negative
genetic correlations between different periods, thus
suggesting that different piglet survival traits do not
share a common genetic background and should be
treated as separate traits (Su et al., 2008, and refer-
ences therein). Ducrocq et al. (2000) found that sur-
vival of laying hens during rearing (from birth to
housing at 106 days) and productive periods (from
housing to 313 days of age) are genetically different
traits with different mortality rates and genetic corre-
lation close to zero. In Pacific oyster (Crassotrea
gigas), survival to 0-5 year is a genetically different
trait than survival to 1-5 years (Ernande et al., 2003,
2004; Dégremont et al., 2007). However, Gjoen et al.
(1997) studying resistance against a pathogenic bac-
teria Aeromonas salmonicida in Atlantic salmon,
found a strong (0-95) genetic correlation between
juvenile pre-smolt challenge test and post-smolt grow-
out field data.

(ii1) Factors causing weak correlations between
life stages

That survival traits at different stages have partly
different genetic architecture can be explained by two
likely mechanisms.

Firstly, survival is caused by multiple mortality
factors, whose incidence may differ between life
stages. Resistances to different mortality factors do
not necessarily share a common genetic determination
(Gjoeen et al., 1997; Henryon et al., 2005; Bubliy &
Loeschcke, 2005; GOdegard et al., 2007 ; Kjoglum et al.,
2008). This is for example highlighted by the fact that
moderate genotype x environment interaction was
also found for rainbow trout survival during the
grow-out period, as shown by the non-unity genetic
correlations between environments (Vehvildinen et al.,
2008 ; present study). Similarly, different alleles of a
single gene may provide resistance against different
diseases or mortality factors (Shook & Johnson, 1999;
Grimbholt et al., 2003). In fact, one pattern behind the
weak correlations across life stages was that sea grow-
out survival, not freshwater, had the lowest corre-
lations with the fingerling survival traits recorded in
freshwater. Although speculative, it is possible that
fish in sea grow-out confront different mortality fac-
tors compared to fingerlings and grow-out fish in
freshwater.
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Secondly, it is possible that mortality factors are the
same in different life stages, but the ranking of geno-
types in resistance against the mortality factor(s)
changes during ontogeny. When two traits are selec-
ted in the same direction, a non-favourable genetic
correlation (genetic trade-off) is assumed to evolve
between the two traits (reviewed by Roff, 1996). This
applies well to the survival traits in different life stages
analysed here. It is clear that egg, yolk-sac, fry, fin-
gerling and grow-out fish have very different resist-
ance mechanisms and that resistance level to a
multitude of mortality factors may change during
ontogeny. Thus a single family does not need to be
superior for all of these mechanisms.

(iv) Survival heritability and multiple
mortality factors

The low heritability of survival is generally hypothe-
sized to be a result of strong selection on this im-
portant fitness component, reducing additive genetic
variance for survival (Fisher, 1930; Mousseau & Roff,
1987; Roff & Mousseau, 1987). In this study, we found
significant, but fairly low heritabilities (0-06—0-27) for
survival traits. Low heritability of survival has been
found in diverse taxonomic groups in farmed terres-
trial animals (e.g. van Arendonk et al., 1996; Ducrocq
et al., 2000; Knol et al., 2002; Goyache et al., 2003;
Casellas et al., 2007; Su et al., 2008) and in wild or-
ganisms (e.g. Futuyma et al., 1995; Campbell, 1997).
Moreover, low or even negative genetic correlations
between mortality factors across life stages (present
study) and across environments (Vehvildinen et al.,
2008) may easily lead to low heritability for birth-
to-adulthood survival. When multiple agents of
mortality (e.g. different diseases, predators and phys-
iological effects) do not share common genetic deter-
mination, heritability of overall survival may be
reduced through decreased genetic variance and/or
increased residual variance (Vehvildinen et al., 2008).
This can happen even when individual component
traits of survival display moderate levels of genetic
variation (Price & Schluter, 1991; Houle, 1992;
Hoffmann & Merild, 1999; Merild & Sheldon, 1999;
Vehvildinen et al., 2008).

(v) Conclusions

Taken together, the amount of genetic variance and
mostly positive genetic correlations found within the
fingerling period support the existence of some geno-
types with superior survival within the fingerling
stage. However, weak associations between survival
during egg-fry and fingerling periods, and generally
low genetic correlations between fingerling and grow-
out survival suggested that survival across life stages
is best regarded as separate traits. The study
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demonstrates extensive spatio-temporal variation in
the genetic (co)variance structure of survival.
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