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Abstract. Let R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal
multiplicity. Set S := R/(f), where f := f1, . . . , fc is an R-regular sequence. Suppose M
and N are maximal CM S-modules. It is shown that if Exti

S(M, N) = 0 for some
(d + c + 1) consecutive values of i � 2, then Exti

S(M, N) = 0 for all i � 1. Moreover,
if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a
counterpart of this result for Tor-modules is provided. Furthermore, we give a number
of necessary and sufficient conditions for a CM local ring of minimal multiplicity to
be regular or Gorenstein. These conditions are based on vanishing of certain Exts or
Tors involving homomorphic images of syzygy modules of the residue field.

2010 Mathematics Subject Classification. Primary 13D07; Secondary 13D02,
13H05, 13H10.

1. Introduction. Throughout this paper, unless otherwise specified, all rings are
assumed to be commutative Noetherian local rings, and all modules are assumed to
be finitely generated. Let (R,m, k) be a Noetherian local ring. A celebrated result by
Auslander and Lichtenbaum, [2, Corollary 2.2] and [27, Corollary 1], is the following:

THEOREM 1.1 (Rigidity Theorem). Let R be a regular local ring. For R-modules
M and N, if TorR

i (M, N) = 0 for some i � 1, then TorR
j (M, N) = 0 for all j � i.

Heitmann [17] showed that rigidity may fail even when R is a Cohen–Macaulay
(CM) local ring and projdimR(M) is finite. Let S be a local complete intersection
ring of codimension c. In [30, Theorem 1.6], Murthy showed that c + 1 consecutive
vanishing of Tors involving a pair of S-modules M and N forces the vanishing of
all subsequent Tors. We refer the reader to [5, Theorem 9.3.6] for a concise proof
of this result. Theorem 1.1 has been generalized further by Avramov and Buchweitz
in [6, Theorem 4.9]. They improved the number c + 1 of consecutive vanishing of
Tors by replacing it by cxS(M) + 1, where cxS(M) (� c) is the complexity of M;
see 2.9. Moreover, they proved a counterpart of this result for Ext-modules; see
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[6, Theorem 4.7]. In this paper, we prove analogues of Murthy’s result and that of
Avramov and Buchweitz for deformations of CM local rings of minimal multiplicity.

The multiplicity of an R-module M, i.e., the normalized leading coefficient of the
Hilbert–Samuel polynomial PM(n) (= length of M/mn+1M for all sufficiently large n)
is denoted by e(m, M), or simply by e(M). In [1, (1)], Abhyankar showed that if R
is CM, then e(R) � μ(m) − dim(R) + 1, where μ(m) denotes the minimal number of
generators of m. If equality holds, then R is said to have minimal multiplicity, or maximal
embedding dimension. It is well-known that if the residue field k is infinite, then R has
minimal multiplicity if and only if there exists an R-regular sequence x with the property
that m2 = (x)m; see, e.g., [9, 4.6.14(c)]. Hence, every regular local ring has minimal
multiplicity. But the converse is not necessarily true, e.g., R1 = k[U, V ]/(U2, UV, V2)
and R2 = k[[U, V ]]/(UV ), where U and V are indeterminates, and k is a field. Note
that R1 is not even Gorenstein.

We now state our main results. We first give a result on the vanishing of Ext.

THEOREM 1.2 (Theorem 6.2). Let R be a d-dimensional CM local ring of minimal
multiplicity. Set S := R/(f1, . . . , fc), where f1, . . . , fc is an R-regular sequence. Let M
and N be maximal Cohen–Macaulay (MCM) S-modules. Then, the following statements
are equivalent:

(i) Exti
S(M, N) = 0 for some (d + c + 1) consecutive values of i � 2.

(ii) Exti
S(M, N) = 0 for all i � 1.

Moreover, if this holds true, then projdimR(M) or injdimR(N) is finite.

Next, we state our result on the vanishing of Tor:

THEOREM 1.3 (Theorem 6.4). With the hypotheses as in Theorem 1.2, the following
statements are equivalent:

(i) TorS
i (M, N) = 0 for some (d + c + 1) consecutive values of i � c + 2.

(ii) TorS
i (M, N) = 0 for all i � c + 1.

Moreover, if this holds true, then projdimR(M) or projdimR(N) is finite.

We note that practically all results on complete intersection rings (including the
results of Murthy, Avramov and Buchweitz) do use the fact that projective dimension
of all modules over a regular local ring is finite. This fact is not necessarily true over
rings of minimal multiplicity. The essential property of rings of minimal multiplicity
that we use is the following: The first (and hence all subsequent) syzygy of a non-free
MCM module is Ulrich. (An MCM module is assumed to be non-zero). Recall that
an R-module M is said to be Ulrich if M is an MCM R-module and e(M) = μ(M).
It should be noted that for an MCM R-module M, we always have e(M) � μ(M).
Moreover, when k is infinite, then equality holds if and only if mM = (x)M for some
M-regular sequence x; see [8, Lemma (1.3)]. We refer the reader to [8, 18] for more
details on Ulrich modules.

As an application of our result, we show that the commutative version of a
conjecture of Tachikawa holds true for deformations of CM local rings of minimal
multiplicity; see Theorem 7.2. As other applications, we obtain a few necessary and
sufficient conditions for a deformation of a CM local ring of minimal multiplicity
to be regular or Gorenstein. These conditions are based on the vanishing of certain
Exts or Tors involving homomorphic images of syzygy modules of the residue field; see
Theorems 7.4 and 7.5. Similar criteria for a CM local ring of minimal multiplicity to be
regular or Gorenstein are given in Propositions 5.2, 5.4 and Theorems 5.6, 5.9. These
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criteria are motivated by the following results: [11, Corollary 1.3], [28, Proposition 7],
[4, Corollary 9], [34, 4.3 and 6.5], [14, 3.2, 3.4 and 3.7] and [13, 4.1, 5.1 and 5.5].

Here is an overview of the contents of the paper. In Section 2, we introduce some
notations and discuss a few results that we need. In Section 3, we show properties of
Ulrich modules as test modules for projective and injective dimensions. In Section 4, we
provide some results on the vanishing of Exts and Tors over CM local rings of minimal
multiplicity. These are the base cases of Theorems 1.2 and 1.3. In Section 5, we give
our results on regularity and Gorenstein properties of CM local rings of minimal
multiplicity. In Section 6, we prove our main results: Theorems 1.2 and 1.3. Finally, in
Section 7, we give applications of our results.

2. Preliminaries. Throughout the paper, R always denotes a CM local ring of
dimension d with the unique maximal ideal m and residue field k. For an R-module
M, and n � 0, we denote the nth syzygy module of M by �R

n (M), i.e., the image of the
nth differential of an augmented minimal free resolution of M.

2.1. To prove our results, we may without loss of generality assume that the
residue field k is infinite. If the residue field k is finite, then we use the standard trick to
replace R by R′ := R[X ]mR[X ], where X is an indeterminate. Clearly, the residue field
of R′ is k(X), which is infinite. For more detail explanations, we refer the reader to [13,
Section 2.1].

2.2. Let M be an R-module, and x be an M-regular element. It is not always true
that e(m, M) = e(m/(x), M/xM). This holds true if x is an M-superficial element. An
element x ∈ m is called M-superficial if there exists an integer c � 1 such that

(
mn+1M :M x

) ∩ mcM = mnM for all n � c.

It is well-known that if k is infinite, then there exists an M-superficial element. If
dim(M) � 1, then for every M-superficial element x, it can be shown that x /∈ m2,
which yields that μ(m/(x)) = μ(m) − 1. If depth(M) � 1, then one can easily show
that every M-superficial element is M-regular; see, e.g., [19, p. 67, paragraph 3] for the
case M = R. Moreover, if x ∈ R is both M-superficial and M-regular, then e(m, M) =
e(m/(x), M/xM); see [32, Corollary 10(5)]. Thus, in view of these results, we obtain
the following:

LEMMA 2.3.

(i) Assume that x ∈ R is both R-superficial and R-regular. If R has minimal multiplicity,
then R/(x) also has minimal multiplicity.

(ii) Let M be an R-module. Assume that x ∈ R is both M-superficial and R ⊕ M-
regular. If M is Ulrich, then so is the R/(x)-module M/xM.

We recall the following lemma concerning the behaviour of consecutive vanishing
of Exts or Tors after going modulo a regular element.

LEMMA 2.4 [29, p. 140, Lemma 2]. Suppose M and N are R-modules. Let x be an
R ⊕ M ⊕ N-regular element. Set (−) := (−) ⊗R R/(x). Fix two positive integers m and
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n. If Exti
R(M, N) = 0 (resp. TorR

i (M, N) = 0) for all n � i � n + m, then

Exti
R(M, N) = 0 for all n � i � n + m − 1,

(resp. TorR
i (M, N) = 0 for all n + 1 � i � n + m).

By considering the long exact sequences of Ext (resp. Tor) modules, and using
induction on j, one can prove the following:

LEMMA 2.5. For R-modules M and N, we have the following isomorphisms:

(i) Exti
R

(
�R

j (M), N
) ∼= Exti+j

R (M, N) for all i � 1 and j � 0.
(ii) TorR

i

(
�R

j (M), N
) ∼= TorR

i+j(M, N) for all i � 1 and j � 0.

Using a standard change of rings spectral sequence, we obtain the following:

LEMMA 2.6 [33, Theorem 10.75]. Set S := R/(f ), where f is an R-regular element.
Let M and N be S-modules. Then, we have the following long exact sequence:

0 −→ Ext1
S(M, N) −→ Ext1

R(M, N) −→ Ext0
S(M, N) −→

...

Exti
S(M, N) −→ Exti

R(M, N) −→ Exti−1
S (M, N) −→

Exti+1
S (M, N) −→ Exti+1

R (M, N) −→ Exti
S(M, N) −→ · · · .

The following is the counterpart of Lemma 2.6 for Tor-modules.

LEMMA 2.7 [33, Theorem 10.73]. Set S := R/(f ), where f is an R-regular element.
Let M and N be S-modules. Then, we have the following long exact sequence:

· · · −→ TorS
i (M, N) −→ TorR

i+1(M, N) −→ TorS
i+1(M, N) −→

TorS
i−1(M, N) −→ TorR

i (M, N) −→ TorS
i (M, N) −→

...

TorS
0 (M, N) −→ TorR

1 (M, N) −→ TorS
1 (M, N) −→ 0.

Here, we collect a few well-known facts about canonical modules for later use.

PROPOSITION 2.8. Let R be a CM local ring.

(i) Let R be complete. Then, R has a canonical module ωR (cf. [9, 3.3.8]). Moreover,
every MCM R-module M of finite injective dimension can be expressed as M ∼= ωr

R
for some r � 1; see [12, Corollary 21.14].

(ii) Let M be a CM R-module, and ωR be a canonical module of R. Then,
Exti

R(M, ωR) = 0 for all i 
= dim(R) − dim(M); see, e.g., [9, 3.3.10].
(iii) Set R′ := R/(f1, . . . , fc), where f1, . . . , fc is an R-regular sequence. Suppose that R

has a canonical module ωR. Then, R′ also has a canonical module ωR′ , and ωR′ ∼=
ωR/(f1, . . . , fc)ωR (cf. [9, 3.3.5(a)]). Note that injdimR(ωR) is finite (by definition
of canonical modules). Using induction on c, one can prove that injdimR(ωR′) is
finite.
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2.9. Let M be an R-module. For each i � 0, let βi(M) := rankk
(
TorR

i (M, k)
)

be
the ith Betti number of M. Set PM(z) := ∑

n�0 βn(M)zn, the Poincaré series of M. The
complexity of M is defined to be

cxR(M) := inf
{

b ∈ ��0

∣∣∣ lim sup
n→∞

βn(M)
nb−1

< ∞
}

.

It is possible that cxR(M) = ∞. For an R-module M, we have cxR(M) � cxR(k); see
[5, 4.2.4]. If R is a complete intersection ring of codimension c, then it follows from
[35, Theorem 6] that cxR(k) = c. Furthermore, for each i = 0, . . . , c, there exists an
R-module Mi such that cxR(Mi) = i.

2.10. For a local ring (R,m, k), Serre showed a coefficientwise inequality

Pk(z) � (1 + z)μ(m)

1 − ∑∞
j=1 rankk

(
Hj(K•)

)
zj+1

,

of formal power series, where K• is the Koszul complex on a minimal set of generators
of m. If equality holds, then R is said to be a Golod ring.

3. Behaviour of an Ulrich module as test module. Here, we study Ulrich modules.
We start with the following theorem, which shows that every Ulrich module behaves
like a test module that detects the finiteness of homological dimensions for MCM
modules.

THEOREM 3.1. Let M be an Ulrich R-module, and N be an MCM R-module.

(i) If Exti
R(M, N) = 0 for some (d + 1) consecutive values of i � 1, then injdimR(N)

is finite.
(ii) If Exti

R(N, M) = 0 for some (d + 1) consecutive values of i � 1, then N is free.
(iii) If TorR

i (M, N) = 0 for some (d + 1) consecutive values of i � 1, then N is free.

Proof. We prove this theorem by using induction on d. Let us first consider the base
case d = 0. In this case, since M is Ulrich, we have mM = 0, i.e., M is a non-zero k-
vector space. Therefore, Exti

R(M, N) = 0 for some i � 1 yields that Exti
R(k, N) = 0 for

some i � 1, which implies that injdimR(N) is finite. For (ii) and (iii), Exti
R(N, M) = 0

or TorR
i (M, N) = 0 for some i � 1 yields that Exti

R(N, k) = 0 or TorR
i (k, N) = 0 for

some i � 1, which implies that projdimR(N) is finite. Since R is Artinian, we obtain
that N is free.

We now give the inductive step. Assume that d � 1. In view of 2.1, we may as
well assume that the residue field k is infinite. Hence, there exists an R ⊕ M ⊕ N-
superficial element x. Since depth(R ⊕ M ⊕ N) = d � 1, we obtain that x is (R ⊕ M ⊕
N)-regular. Set (−) := (−) ⊗R R/(x). Clearly, R is a CM local ring of dimension d − 1,
and N is an MCM R-module. Moreover, M is an Ulrich R-module by Lemma 2.3(ii).
In view of Lemma 2.4, since Exti

R(M, N) = 0 for some (d + 1) consecutive values of
i � 1, we get that Exti

R(M, N) = 0 for some d (= dim(R) + 1) consecutive values of
i � 1. Therefore, by the induction hypothesis, we obtain that injdimR(N) is finite, which
implies that injdimR(N) is finite. For (ii) and (iii), Exti

R(N, M) = 0 (resp. TorR
i (M, N) =

0) for some (d + 1) consecutive values of i � 1 yields that Exti
R(N, M) = 0 (resp.

TorR
i (M, N) = 0) for some d (= dim(R) + 1) consecutive values of i � 1. In both cases,
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by the induction hypothesis, we get that projdimR(N) is finite, and hence projdimR(N)
is finite, which gives that N is free as N is MCM. �

As an immediate corollary of Theorem 3.1(i), we obtain a characterization of
Gorenstein local rings provided there exists an Ulrich module. The reader may compare
this result with [24, Theorems 2.2 and 2.4].

COROLLARY 3.2. Let M be an Ulrich R-module. Then, R is Gorenstein if and only if
Exti

R(M, R) = 0 for some (d + 1) consecutive values of i � 1.

As a consequence of Theorem 3.1, we prove that Ulrich modules are Ext-test
as well as Tor-test modules, which detect the finiteness of projective dimension for
arbitrary modules.

COROLLARY 3.3. Suppose M and N are R-modules, where M is Ulrich. Set t :=
depth(N). Then, the following statements hold true:

(i) If Exti
R(N, M) = 0 for some (d + 1) consecutive values of i � d − t + 1, then

projdimR(N) is finite.
(ii) If TorR

i (N, M) = 0 for some (d + 1) consecutive values of i � d − t + 1, then
projdimR(N) is finite.

Proof. For a short exact sequence 0 → U → V → W → 0 of R-modules, by virtue
of the Depth Lemma, we have depth(U) � min{depth(V ), depth(W ) + 1}. Using this
fact, one can prove that �R

d−t(N) is an MCM R-module. In view of Lemma 2.5, we get
that

Exti
R(N, M) ∼= Exti−(d−t)

R

(
�R

d−t(N), M
)

and

TorR
i (N, M) ∼= TorR

i−(d−t)

(
�R

d−t(N), M
)

for all i � d − t + 1. Therefore, from the hypothesis of (i) (resp. (ii)), we obtain that
Extj

R

(
�R

d−t(N), M
) = 0 (resp. TorR

j

(
�R

d−t(N), M
) = 0) for some (d + 1) consecutive

values of j � 1. Hence, in either case, it follows from Theorem 3.1 that �R
d−t(N) is free,

and hence projdimR(N) is finite. �

The following corollary shows that Ulrich modules are Ext-test modules, which
detect the finiteness of injective dimension for arbitrary modules.

COROLLARY 3.4. Let M and N be R-modules, where M is Ulrich. Let Exti
R(M, N) =

0 for some (d + 1) consecutive values of i � 1. Then, injdimR(N) is finite.

Proof. We may assume that R is complete. In view of [3, Theorem A], we may
consider an MCM approximation of N, i.e., an exact sequence 0 → Y → X → N → 0
of R-modules, where X is MCM and Y has finite injective dimension. Since M is
MCM, we have that Exti

R(M, Y ) = 0 for every i � 1; see, e.g., [9, 3.1.24]. Therefore,
Exti

R(M, X) ∼= Exti
R(M, N) = 0 for some (d + 1) consecutive values of i � 1. Since X

is MCM, it follows from Theorem 3.1(i) that injdimR(X) is finite, and hence injdimR(N)
is finite. �
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REMARK 3.5. In particular, by virtue of Corollaries 3.3 and 3.4, Ulrich modules
belong to the following subcategories of mod(R) studied in [10]:

T(R) := {
M : every N with TorR

�0(M, N) = 0 has projdimR(N) < ∞}
,

EP(R) :=
{

M : every N with Ext�0
R (N, M) = 0 has projdimR(N) < ∞

}
and

EI(R) :=
{

M : every N with Ext�0
R (M, N) = 0 has injdimR(N) < ∞

}
,

where mod(R) denotes the category of all (finitely generated) R-modules. Moreover,
in view of [10, Proposition 2.7], if R is a local complete intersection ring, then every
Ulrich R-module M has maximal complexity, i.e., cxR(M) = codim(R).

4. Vanishing of Exts and Tors over CM local rings of minimal multiplicity. In
this section, we study the vanishing of Exts or Tors over CM local rings of minimal
multiplicity. We need the following well-known lemma, which shows the existence
of Ulrich modules provided the base ring has minimal multiplicity. It is essentially
contained in [8, 2.5].

LEMMA 4.1. Let R be a CM local ring of minimal multiplicity. Let M be a non-free
MCM R-module. Then, �R

n (M) is an Ulrich R-module for every n � 1.

Let us fix the following hypothesis for the rest of this section.

HYPOTHESIS 4.2. Let (R,m, k) be a d-dimensional CM local ring of minimal
multiplicity. Let M and N be R-modules. Set s := depth(M) and t := depth(N).

The following theorem particularly shows that over a CM local ring R of minimal
multiplicity, TorR

i (M, N) = 0 for all i � 0 if and only if either M or N has finite
projective dimension. It should be noted that, in [21, Theorem 1.9], Huneke and
Wiegand showed this result when R is a hypersurface (i.e., a regular local ring modulo
a regular element).

THEOREM 4.3. Along with Hypothesis 4.2, further assume that TorR
i (M, N) = 0

for some (d + 1) consecutive values of i � 2d − (s + t) + 2. Then, either projdimR(M)
or projdimR(N) is finite.

Proof. By virtue of Depth Lemma, one can prove that �R
d−s(M) and �R

d−t(N)
are MCM R-modules. If projdimR(M) is finite, then there is nothing to prove. So we
may assume that projdimR(M) is infinite. Therefore, �R

d−s(M) is a non-free MCM R-
module. Hence, in view of Lemma 4.1, we have that �R

d−s+1(M) is an Ulrich R-module.
Applying Lemma 2.5(ii) twice, we obtain that

TorR
i (M, N) ∼= TorR

i−(d−s+1)

(
�R

d−s+1(M), N
)

∼= TorR
i−(d−s+1)−(d−t)

(
�R

d−s+1(M),�R
d−t(N)

)
,

for all i − (d − s + 1) − (d − t) � 1, i.e., for all i � 2d − (s + t) + 2. These
isomorphisms, along with the hypotheses of the theorem, yield that

TorR
j

(
�R

d−s+1(M),�R
d−t(N)

) = 0,

for some (d + 1) consecutive values of j � 1. It then follows from Theorem 3.1(iii) that
�R

d−t(N) is free, and hence projdimR(N) is finite. �
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Here, we give the counterpart of Theorem 4.3 for Ext-modules.

THEOREM 4.4. Along with Hypothesis 4.2, further assume that Exti
R(M, N) =

0 for some (d + 1) consecutive values of i � d − s + 2. Then, either projdimR(M) or
injdimR(N) is finite.

Proof. If projdimR(M) is finite, then there is nothing to prove. So we may assume
that projdimR(M) is infinite. Hence, as in the proof of Theorem 4.3, we get that
�R

d−s+1(M) is an Ulrich R-module. In view of Lemma 2.5(i), we obtain that

Exti
R(M, N) ∼= Exti−(d−s+1)

R

(
�R

d−s+1(M), N
)
,

for all i − (d − s + 1) � 1, i.e., for all i � d − s + 2. These isomorphisms, along with
the hypotheses of the theorem, provide that Extj

R

(
�R

d−s+1(M), N
) = 0 for some (d + 1)

consecutive values of j � 1. Therefore, by virtue of Corollary 3.4, we obtain that
injdimR(N) is finite. �

REMARK 4.5. The authors thank Saeed Nasseh for informing them that analogous
results of Theorems 4.3 and 4.4 have been obtained in [31, Corollaries 6.5 and 6.6].
They proved these results over CM local rings with quasi-decomposable maximal
ideal; see [31, Definition 4.1]. In particular, a non-Gorenstein CM local ring with
minimal multiplicity (and with infinite residue field) has quasi-decomposable maximal
ideal ([31, Example 4.7]). Although their results are more general than ours, but in
the special case of rings of minimal multiplicity our results are more complete and
proofs are more simple and elementary. Not only our results cover the case where R is
Gorenstein with multiplicity e(R) = μ(m) − d + 1, but also we consider the vanishing
of Exts for i � d − s + 2, while they consider it for i � d − s + 5. For a Gorenstein
local ring R with multiplicity e(R) = μ(m) − d + 2 and μ(m) > 2, it is shown in [20,
3.6 and 3.7] that Exti

R(M, N) = 0 for all i � 0 if and only if either M or N has finite
projective dimension.

REMARK 4.6. If R is a CM local ring of minimal multiplicity, then R is Golod; see
[5, 5.2.8]. It is shown in [25, Proposition 1.4] that for modules M and N over a Golod
ring R, if Exti

R(M, N) = 0 for all i � 0, then either projdimR(M) or injdimR(N) is
finite. The counterpart of this result for Tor-modules is obtained in [22, Theorem 3.1].
It should be noted that over CM local rings of minimal multiplicity, Theorems 4.3 and
4.4 are considerably stronger that require only finitely many vanishing of Exts or Tors
to detect finiteness of homological dimensions.

The following example shows that Theorems 4.3 and 4.4 are not necessarily true
if R does not have minimal multiplicity.

EXAMPLE 4.7. Let R = k[X, Y ]/(X2, Y 2), where k is a field. Let x and y be the
images of X and Y in R, respectively. Then, R is an Artinian local ring with the maximal
ideal m := (x, y). Since m2 
= 0, R does not have minimal multiplicity. Set M := (x) and
N := (y). Let E be the injective hull of k over R. Set (−)∨ := HomR(−, E). Considering
the minimal free resolution of M:

· · · x−→ R
x−→ R

x−→ R → 0,
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one may compute that TorR
i (M, N) = 0 for every i � 1. Hence, Exti

R(M, N∨) ∼=
TorR

i (M, N)∨ = 0 for every i � 1. Since M is annihilated by x, it is not free. Similarly,
N is not free. By Matlis Duality, it can be verified that N∨ is not injective.

The following well-known example shows that the number of consecutive vanishing
of Tors (resp. Exts) in Theorem 4.3 (resp. 4.4) cannot be further reduced.

EXAMPLE 4.8. Let k[[X, Y ]] be a formal power series ring in two indeterminates
X and Y over a field k. Set R := k[[X, Y ]]/(XY ). Suppose x and y are the images
of X and Y in R, respectively. Set m := (x, y). Clearly, (R,m, k) is a CM local ring.
It can be easily shown that e(R) = 2, μ(m) = 2 and dim(R) = 1. Therefore, R has
minimal multiplicity. Set M := (x), an ideal of R. Note that M is an MCM R-module.
Considering the minimal free resolution of M:

· · · x·−→ R
y·−→ R

x·−→ R
y·−→ R −→ 0,

we can easily compute the following:

TorR
2i+1(M, M) = (x)/(x2) 
= 0 for all i � 0,

TorR
2i(M, M) = 0 for all i � 1,

Ext2i
R(M, M) = (x)/(x2) 
= 0 for all i � 1 and

Ext2i+1
R (M, M) = 0 for all i � 0.

Note that both projdimR(M) and injdimR(M) are infinite.

As a corollary of Theorems 4.3 and 4.4, we obtain a few necessary and sufficient
conditions for a CM local ring of minimal multiplicity to be Gorenstein.

COROLLARY 4.9. Let (R,m, k) be a CM local ring of minimal multiplicity. Set
d := dim(R). Let ω be a canonical module of R. Then, the following statements are
equivalent:

(i) R is Gorenstein.
(ii) TorR

i (ω,ω) = 0 for some (d + 1) consecutive values of i � 2.
(iii) Exti

R(ω, R) = 0 for some (d + 1) consecutive values of i � 2.

Proof. It is a well-known fact that R is Gorenstein, if and only if projdimR(ω) is
finite. So the corollary follows from Theorems 4.3 and 4.4. �

REMARK 4.10. In [7], Avramov, Buchweitz and Şega proved in several significant
cases the following commutative local analog of a conjecture of Tachikawa: If
Exti

R(ω, R) = 0 for all i � 1, then R is Gorenstein. In a particular case, they showed
that if there is an R-regular sequence x such that m3 ⊆ (x), then Exti

R(ω, R) = 0 for
all 1 � i � d + 1 implies that R is Gorenstein; see [7, Theorem 5.1]. We note that if
the residue field k is infinite and R has minimal multiplicity, then there is a minimal
reduction J of m such that m2 ⊆ J. The implication ‘(iii) ⇒ (i)’ in Corollary 4.9 does
not quite follow from the result of Avramov, Buchweitz and Şega. We should also note
that our proof is considerably simpler than theirs.

5. Criteria for regular and Gorenstein local rings via syzygy modules of the residue
field. In this section, we give a number of necessary and sufficient conditions for a
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CM local ring of minimal multiplicity to be regular or Gorenstein. These criteria are
based on the vanishing of certain Exts or Tors involving syzygy modules of the residue
field. Throughout this section, we are going to refer the following:

HYPOTHESIS 5.1. Let (R,m, k) be a CM local ring of minimal multiplicity. Set
d := dim(R).

5.1. On homomorphic images of finite direct sums of syzygy modules. Here, we
consider the vanishing of Exts and Tors involving homomorphic images of finite direct
sums of syzygy modules of the residue field. One may compare the following result
with [13, Theorem 4.1].

PROPOSITION 5.2. Along with Hypothesis 5.1, assume that M and N are non-zero
homomorphic images of finite direct sums of syzygy modules of k. (Possibly, M = N). Set
i0 := 2d − depth(M) − depth(N) + 2. Then, the following statements are equivalent:

(i) R is regular.
(ii) TorR

i (M, N) = 0 for some (d + 1) consecutive values of i � i0.
Moreover, if N is MCM, then we may add the following:

(iii) Exti
R(M, N) = 0 for some (d + 1) consecutive values of i � i0.

Proof. (i) ⇒ {(ii) and (iii)}: If R is regular, then projdimR(M) is finite, and hence
projdimR(M) = d − depth(M) (by the Auslander–Buchsbaum Formula). Therefore

TorR
i (M, N) = 0 = Exti

R(M, N) for all i � d − depth(M) + 1.

(ii) ⇒ (i): By virtue of Theorem 4.3, either projdimR(M) or projdimR(N) is finite.
In either case, it follows from [28, Proposition 7] that R is regular.

(iii) ⇒ (i): In view of Theorem 4.4, either projdimR(M) or injdimR(N) is finite. If
projdimR(M) is finite, then R is regular (due to [28, Proposition 7]). In other case, we
have that injdimR(N) is finite. Then, by virtue of [14, Corollary 3.4], we get that R is
regular, which completes the proof of this implication. �

REMARK 5.3. Although Proposition 5.2 is stronger than the result [13, Theorem 4.1]
in many directions, but one disadvantage is that here we consider the vanishing of ith
Ext or Tor for i � 2 at least.

Here are the criteria for Gorenstein local rings. The reader may compare this result
with [13, Theorems 5.1 and 5.5].

PROPOSITION 5.4. Along with Hypothesis 5.1, let M be a non-zero homomorphic
image of a finite direct sum of syzygy modules of k. Set i0 := d − depth(M) + 2. Then,
the following statements are equivalent:

(i) R is Gorenstein.
(ii) Exti

R(M, R) = 0 for some (d + 1) consecutive values of i � i0.
Moreover, if R has a canonical module ω, then we may add the following:

(iii) TorR
i (M, ω) = 0 for some (d + 1) consecutive values of i � i0.

Proof. (i) ⇒ (ii): If R is Gorenstein, then injdimR(R) = d (see [9, 3.1.17]). Hence,
Exti

R(M, R) = 0 for all i � d + 1.
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(ii) ⇒ (i): By virtue of Theorem 4.4, either projdimR(M) or injdimR(R) is finite.
If projdimR(M) is finite, then R is regular (due to [28, Proposition 7]), and hence R is
Gorenstein. In other case, injdimR(R) is finite, i.e., R is Gorenstein. So, in both cases,
we obtain that R is Gorenstein.

(i) ⇒ (iii): If R is Gorenstein, then ω ∼= R. Hence, TorR
i (M, ω) = 0 for all i � 1.

(iii) ⇒ (i): In view of Theorem 4.3, either projdimR(M) or projdimR(ω) is finite.
If projdimR(M) is finite, then R is regular (by [28, Proposition 7]), and hence R
is Gorenstein. In other case, projdimR(ω) is finite, which also implies that R is
Gorenstein. �

5.2. On direct summands of syzygy modules. We now provide a few criteria for a
CM local ring of minimal multiplicity to be regular or Gorenstein in terms of direct
summands of syzygy modules of the residue field. We use the following elementary
result. This is probably known. But for the sake of completeness, we give its proof here.

LEMMA 5.5. Let (R,m, k) be a d-dimensional local ring (not necessarily CM).
Let N be an R-module. Fix an arbitrary integer n � 1. Suppose Exti

R(k, N) = 0 for all
n � i � n + d. Then, injdimR(N) � n − 1.

Proof. We claim that Extn
R(R/p, N) = 0 for all p ∈ Spec(R). Fix p ∈ Spec(R).

If possible, assume that Extn
R(R/p, N) 
= 0. Then, we must have p 
= m, and hence

d � 1. Moreover, in view of [9, 3.1.13], there exists a prime ideal q1 � p such that
Extn+1

R (R/q1, N) 
= 0. If q1 = m, then we are getting a contradiction. So we may
assume that q1 
= m. Then, we must have d � 2, and there is a prime ideal q2 � q1,
such that Extn+2

R (R/q2, N) 
= 0 by [9, 3.1.13]. This process must stop after some finite
number of steps. That means we obtain the situation that m = qr � qr−1 � · · · � q1 � p

and Extn+r
R (R/m, N) 
= 0 for some 1 � r � d, which is a contradiction. Therefore,

Extn
R(R/p, N) = 0 for all p ∈ Spec(R), which implies that injdimR(N) � n − 1 (see [9,

3.1.12]). �
We now give the criteria for regular local rings.

THEOREM 5.6. Along with Hypothesis 5.1, assume that M and N are non-zero
direct summands of some syzygy modules of k. (Possibly, M = N). Then, the following
statements are equivalent:

(i) R is regular.
(ii) TorR

i (M, N) = 0 for some (d + 1) consecutive values of i � 1.
(iii) Exti

R(M, N) = 0 for some (d + 1) consecutive values of i � 1.

Proof. (i) ⇒ {(ii) and (iii)}: If R is regular, then projdimR(M) � d, and hence

TorR
i (M, N) = 0 = Exti

R(M, N) for all i � d + 1.

{(ii) or (iii)} ⇒ (i): To prove these implications, we may without loss of generality
assume that R is complete. In view of 2.1, we may also assume that k is infinite. To
prove (ii) ⇒ (i) and (iii) ⇒ (i), we use induction on d. If d = 0, then the implications
follow from [13, Theorem 4.1] as every R-module is MCM in this case. So we assume
that d � 1, and the implications hold true for all such rings of dimension smaller
than d.

Since the residue field of R is infinite and d � 1, there exists an element x ∈ m � m2,
which is both R-superficial and R-regular. Set (−) := (−) ⊗R R/(x). In view of
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Lemma 2.3(i), we have that R is a (d − 1)-dimensional CM local ring of minimal
multiplicity. Suppose that M and N are direct summands of �R

m(k) and �R
n (k),

respectively, for some m, n � 0. The following three cases may occur.
Case 1. Assume that m = 0. In this case, M must be equal to k. Therefore, the

statement (ii) (resp. (iii)) yields that TorR
i (k, N) = 0 (resp. Exti

R(k, N) = 0) for some (d +
1) consecutive values of i � 1, which gives that projdimR(N) is finite (resp. injdimR(N)
is finite by Lemma 5.5), and hence the implications follow from [28, Proposition 7] and
[14, Theorem 3.7], respectively.

Case 2. Assume that n = 0. In this case, N must be equal to k. So the statement (ii)
(resp. (iii)) yields that TorR

i (M, k) = 0 (resp. Exti
R(M, k) = 0) for some i � 1. Therefore,

in either case, we obtain that projdimR(M) is finite, and hence R is regular by [28,
Proposition 7].

If none of the above two cases holds, then we must have the following:
Case 3. Assume that m, n � 1. In this case, since �R

m(k) and �R
n (k) are submodules

of free R-modules, and x is R-regular, we obtain that x is regular on both �R
m(k) and

�R
n (k). Hence, since M and N are direct summands of �R

m(k) and �R
n (k), respectively, x

is regular on both M and N as well. Therefore, by virtue of Lemma 2.4, the statement
(ii) (resp. (iii)) yields that

TorR
i (M, N) = 0 (resp. Exti

R(M, N) = 0), (1)

for some d consecutive values of i � 1. Let us now fix indecomposable direct summands
M′ and N ′ of M and N, respectively. Then, from (1), we get that

TorR
i (M′, N ′) = 0 (resp. Exti

R(M′, N ′) = 0), (2)

for some d (= dim(R) + 1) consecutive values of i � 1. Since M is a direct summand of
�R

m(k), we have that M is a direct summand of �R
m(k). Hence, M′ is a direct summand

of �R
m(k). In view of [34, Corollary 5.3], we obtain the following isomorphism of

R-modules:

�R
m(k) ∼= �R

m(k) ⊕ �R
m−1(k).

It then follows from the uniqueness of Krull–Schmidt decomposition [26, 21.35] that
M′ is isomorphic to a direct summand of �R

m(k) or �R
m−1(k). In a similar way, we get

that N ′ is isomorphic to a direct summand of �R
n (k) or �R

n−1(k). Thus M′ and N ′

are non-zero direct summands of some syzygy R-modules of the residue field k of R.
Therefore, for both (ii) ⇒ (i) and (iii) ⇒ (i), in view of (2), by the induction hypothesis,
we obtain that R is regular, and hence R is regular as x ∈ m � m2 is an R-regular
element. �

REMARK 5.7. It should be noted that in Theorem 5.6, unlike Proposition 5.2, we
consider the vanishing of ith Ext or Tor for i � 1.

REMARK 5.8. In view of [13, Example 4.3], one obtains that the number (d + 1) of
consecutive vanishing of Exts or Tors in Theorem 5.6 cannot be further reduced.

Here, we give the criteria for Gorenstein local rings.
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THEOREM 5.9. Along with Hypothesis 5.1, assume that M is a non-zero direct
summand of some syzygy module of k. Let ω be a canonical module of R. Then, the
following statements are equivalent:

(i) R is Gorenstein.
(ii) Exti

R(M, R) = 0 for some (d + 1) consecutive values of i � 1.
(iii) TorR

i (ω, M) = 0 for some (d + 1) consecutive values of i � 1.
(iv) Exti

R(ω, M) = 0 for some (d + 1) consecutive values of i � 1.

Proof. (i) ⇒ (ii): If R is Gorenstein, then Exti
R(M, R) = 0 for all i � d + 1.

(i) ⇒ {(iii) and (iv)}: If R is Gorenstein, then ω ∼= R, and hence

TorR
i (ω, M) = 0 = Exti

R(ω, M) for all i � 1.

(ii) ⇒ (i), (iii) ⇒ (i) and (iv) ⇒ (i): As before, we may without loss of generality
assume that R is complete, and the residue field k is infinite. We prove these implications
by using induction on d. If d = 0, then these implications follow from [13, Theorems 5.1
and 5.5]. So we assume that d � 1, and these implications hold true for all such rings
of dimension smaller than d.

Suppose that M is a direct summand of �R
m(k) for some m � 0. Let us first consider

the case m = 0. In this case, M must be equal to k. Then, the statement (ii) gives that
Exti

R(k, R) = 0 for some (d + 1) consecutive values of i � 1. Hence, by Lemma 5.5, we
obtain that injdimR(R) is finite, i.e., R is Gorenstein. If m = 0, then the statement (iii)
(resp. (iv)) yields that TorR

i (ω, k) = 0 (resp. Exti
R(ω, k) = 0) for some i � 1. In either

case, we obtain that projdimR(ω) is finite, which implies that R is Gorenstein. Thus, all
three implications hold true when m = 0. So we may assume that m � 1.

Since the residue field of R is infinite and d � 1, there exists an element x ∈ m � m2,
which is both R-superficial and R-regular. Set (−) := (−) ⊗R R/(x). By Lemma 2.3(i),
we have that R is a (d − 1)-dimensional CM local ring of minimal multiplicity. Since
M is a direct summand of �R

m(k), we get that M is a direct summand of �R
m(k). We fix

an indecomposable direct summand M′ of M. As in the proof of Theorem 5.6, one
obtains that

M′ is isomorphic to a direct summand of �R
m(k) or �R

m−1(k). (3)

Since x is R-regular and m � 1, we get that x is �R
m(k)-regular, and hence x is M-

regular. Since ω is an MCM R-module, x is ω-regular as well. Therefore, in view of
Lemma 2.4, the statements (ii), (iii) and (iv) yield that Exti

R(M, R) = 0, TorR
i (ω, M) = 0

and Exti
R(ω, M) = 0 (respectively) for some d consecutive values of i � 1, which imply

that

Exti
R(M′, R) = 0, TorR

i (ω, M′) = 0 and Exti
R(ω, M′) = 0, (4)

(respectively) for some d (= dim(R) + 1) consecutive values of i � 1. It is a well-known
fact that ω is a canonical module of R. Thus, from each of (ii), (iii) and (iv), in view of
(3) and (4), by the induction hypothesis, we obtain that R is Gorenstein, and hence R
is Gorenstein as x is an R-regular element. �

6. Vanishing of Exts and Tors over deformation of CM local rings of minimal
multiplicity. Suppose S is a quotient of a d-dimensional CM local ring of minimal
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multiplicity by a regular sequence of length c. Let M and N be MCM S-modules. In
this section, it is shown that if Exti

S(M, N) = 0 for some (d + c + 1) consecutive values
of i � 2, then Exti

S(M, N) = 0 for all i � 1. Moreover, if this holds true, then either
projdimR(M) or injdimR(N) is finite; see Corollary 6.3 for more general case when
M and N are not necessarily MCM. We also prove that if TorS

i (M, N) = 0 for some
(d + c + 1) consecutive values of i � c + 2, then TorS

i (M, N) = 0 for all i � c + 1, and
either projdimR(M) or projdimR(N) is finite; see Corollary 6.5 for more general case.
Let us fix the following hypothesis for this section.

HYPOTHESIS 6.1. Let (R,m, k) be a d-dimensional CM local ring of minimal
multiplicity. Set S := R/(f1, . . . , fc), where f1, . . . , fc is an R-regular sequence.

We now prove our main result of this section for Ext-modules.

THEOREM 6.2. Along with Hypothesis 6.1, further assume that M and N are MCM
S-modules. Then, the following statements are equivalent:

(i) Exti
S(M, N) = 0 for some (d + c + 1) consecutive values of i � 2.

(ii) Exti
S(M, N) = 0 for all i � 1.

Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite.

Proof. We may assume that R (and so S) is complete. The implication (ii)
⇒ (i) follows trivially. So we need to prove the implication (i) ⇒ (ii). Suppose
that Exti

S(M, N) = 0 for some (d + c + 1) consecutive values of i � 2. We show
that Exti

S(M, N) = 0 for all i � 1. Moreover, we prove that either projdimR(M) or
injdimR(N) is finite. We prove these assertions by using induction on c.

Let us first consider the base case c = 0. In this case, S = R. Therefore, by virtue of
Theorem 4.4, either projdimR(M) or injdimR(N) is finite. If projdimR(M) is finite, then
by the Auslander–Buchsbaum Formula, we get that M is a free R-module, and hence
Exti

S(M, N) = 0 for all i � 1. In the other case, i.e., if injdimR(N) is finite, then in view of
Proposition 2.8(i), we have that N ∼= ωr

R for some r � 1. Hence, by Proposition 2.8(ii),
we obtain that Exti

S(M, N) = 0 for all i � 1. This completes the proof for the base case.
We now assume that c � 1.

Set R′ := R/(f1, . . . , fc−1). Clearly, S = R′/(fc). Since Exti
S(M, N) = 0 for some

(d + c + 1) consecutive values of i � 2, in view of Lemma 2.6, we get that

Exti
R′(M, N) = 0 for some (d + c) consecutive values of i � 3. (5)

Note that depthR′(M) = depthS(M) = dim(S) = dim(R′) − 1. Similarly, we have
that depthR′ (N) = dim(R′) − 1. By virtue of [3, Theorem A], we have an MCM
approximation of N as R′-module:

0 −→ Y −→ N ′ −→ N −→ 0. (6)

That is, (6) is a short exact sequence of R′-modules, where N ′ is an MCM R′-module,
and injdimR′ (Y ) is finite. Since depthR′(N) = dim(R′) − 1, by the Depth Lemma, Y
is an MCM R′-module. Therefore, in view of Proposition 2.8(i), Y ∼= ωl

R′ for some
l � 1. Since M is an MCM S-module, we get that M is a CM R′-module of dimension
dim(R′) − 1. Hence, by Proposition 2.8(ii), we obtain that

Exti
R′(M, Y ) = 0 for all i 
= 1. (7)
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The short exact sequence (6) yields the following long exact sequence:

· · · −→ Exti
R′(M, Y ) −→ Exti

R′ (M, N ′) −→ Exti
R′ (M, N) (8)

−→ Exti+1
R′ (M, Y ) −→ · · · .

Therefore, in view of (5) and (7), we get that

Exti
R′ (M, N ′) = 0 for some (d + c) consecutive values of i � 3. (9)

We now consider a short exact sequence of R′-modules:

0 −→ M′ −→ F −→ M −→ 0, (10)

where F is a free R′-module. Since depthR′(M) = dim(R′) − 1, by the Depth Lemma,
M′ is an MCM R′-module. The short exact sequence (10) yields the following long
exact sequence:

· · · −→ Exti
R′(M, N ′) −→ Exti

R′(F, N ′) −→ Exti
R′(M′, N ′) (11)

−→ Exti+1
R′ (M, N ′) −→ · · · .

Note that Exti
R′(F, N ′) = 0 for all i � 1. Hence, in view of (9) and (11), we obtain that

Exti
R′ (M′, N ′) = 0 for some (d + (c − 1) + 1) consecutive values of i � 2. Therefore,

since M′ and N ′ are MCM modules over R′ = R/(f1, . . . , fc−1), by the induction
hypothesis, we get that

Exti
R′(M′, N ′) = 0 for all i � 1. (12)

We also obtain that either projdimR(M′) or injdimR(N ′) is finite.
We now show that Exti

S(M, N) = 0 for all i � 1. In view of (11) and (12), we obtain
that Exti

R′(M, N ′) = 0 for all i � 2. Hence, (7) and (8) yield that Exti
R′(M, N) = 0 for

all i � 2. Therefore, by virtue of Lemma 2.6, we get that

Exti
S(M, N) ∼= Exti+2

S (M, N) for all i � 1. (13)

Since Exti
S(M, N) = 0 for some d + c + 1 (� 2) consecutive values of i � 2, the

isomorphisms (13) yield that Exti
S(M, N) = 0 for all i � 1.

It remains to show that either projdimR(M) or injdimR(N) is finite. We show this
by considering the following cases:

Case 1. Suppose projdimR(M′) is finite. Then, in view of the short exact sequence
(10), we obtain that projdimR(M) is finite because F is a free R′-module and projective
dimension of R′ = R/(f1, . . . , fc−1) as an R-module is finite.

Case 2. Suppose injdimR(N ′) is finite. Consider the exact sequence (6):

0 −→ Y −→ N ′ −→ N −→ 0,

where Y ∼= ωl
R′ has finite injective dimension as an R-module; see Proposition 2.8(iii).

Therefore, injdimR(N) is finite. �
As a corollary of Theorem 6.2, we obtain the following:

COROLLARY 6.3. Along with Hypothesis 6.1, assume that M and N are S-modules.
Set i0 := dim(S) − depth(M). Then, the following statements are equivalent:
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(i) Exti
S(M, N) = 0 for some (d + c + 1) consecutive values of i � i0 + 2.

(ii) Exti
S(M, N) = 0 for all i � i0 + 1.

Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite.

Proof. We may assume that R (and so S) is complete. Let Exti
S(M, N) = 0 for some

(d + c + 1) consecutive values of i � i0 + 2. We need to show that Exti
S(M, N) = 0 for

all i � i0 + 1, and either projdimR(M) or injdimR(N) is finite.
In view of Lemma 2.5(i), we obtain that

Exti
S(M, N) ∼= Exti−i0

S

(
�S

i0 (M), N
)

for all i − i0 � 1. (14)

So Extj
S

(
�S

i0 (M), N
) = 0 for some (d + c + 1) consecutive values of j � 2. Consider

an MCM approximation of N, i.e., an exact sequence 0 → Y → X → N → 0 of S-
modules, where X is MCM and injdimS(Y ) is finite. Since �S

i0 (M) is an MCM S-module
and injdimS(Y ) is finite, we obtain that Exti

S

(
�S

i0 (M), Y
) = 0 for all i � 1. Therefore,

Exti
S

(
�S

i0 (M), X
) ∼= Exti

S

(
�S

i0 (M), N
)

for all i � 1. (15)

It then follows that Extj
S

(
�S

i0 (M), X
) = 0 for some (d + c + 1) consecutive values of

j � 2. Hence, by virtue of Theorem 6.2, we get that

Extj
S

(
�S

i0 (M), X
) = 0 for all j � 1. (16)

Moreover, we obtain that either projdimR

(
�S

i0 (M)
)

or injdimR(X) is finite. It
follows from (14), (15) and (16) that Exti

S(M, N) = 0 for all i � i0 + 1. Note that
if projdimR

(
�S

i0 (M)
)

is finite, then projdimR(M) is finite because projective dimension
of S = R/(f1, . . . , fc) as an R-module is finite. Since injdimS(Y ) is finite, Y has a
finite resolution by ωS; see, e.g., [9, 3.3.28(b)]. But, in view of Proposition 2.8(iii),
ωS = ωR/(f1, . . . , fc)ωR has finite injective dimension as an R-module. Therefore,
injdimR(Y ) is finite, which yields that injdimR(N) is finite provided injdimR(X) is
finite. This completes the proof of the corollary. �

Here, we prove our main result of this section for Tor-modules.

THEOREM 6.4. Along with Hypothesis 6.1, further assume that M and N are MCM
S-modules. Then, the following statements are equivalent:

(i) TorS
i (M, N) = 0 for some (d + c + 1) consecutive values of i � c + 2.

(ii) TorS
i (M, N) = 0 for all i � c + 1.

Moreover, if this holds true, then either projdimR(M) or projdimR(N) is finite.

Proof. We may assume that R (and so S) is complete. The implication (ii) ⇒
(i) follows trivially. So we need to prove the implication (i) ⇒ (ii). Suppose that
TorS

i (M, N) = 0 for some (d + c + 1) consecutive values of i � c + 2. We show that
TorS

i (M, N) = 0 for all i � c + 1. Moreover, we prove that either projdimR(M) or
projdimR(N) is finite. To prove these assertions, as in the proof of Theorem 6.2, we use
induction on c.

We first consider the base case c = 0. In this case, S = R. Therefore, by virtue
of Theorem 4.3, either projdimR(M) or projdimR(N) is finite. If projdimR(M) is
finite, then by the Auslander–Buchsbaum Formula, M is a free R-module, and hence
TorS

i (M, N) = 0 for all i � 1. In another case, i.e., if projdimR(N) is finite, then N is
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a free R-module. In this case also, TorS
i (M, N) = 0 for all i � 1. This completes the

proof for the base case c = 0. We now assume that c � 1.
Set R′ := R/(f1, . . . , fc−1). Clearly, S = R′/(fc). Since TorS

i (M, N) = 0 for some
(d + c + 1) consecutive values of i � c + 2, in view of Lemma 2.7, we get that

TorR′
i (M, N) = 0 for some (d + c) consecutive values of i � c + 3. (17)

Note that depthR′(M) = depthS(M) = dim(S) = dim(R′) − 1. Similarly, one obtains
that depthR′(N) = dim(R′) − 1. Consider the following short exact sequences of R′-
modules:

0 → M′ → F → M → 0 and 0 → N ′ → G → N → 0, (18)

where F and G are free R′-modules. Clearly, by the Depth Lemma, M′ and N ′ are MCM
R′-modules. The short exact sequences (18) yield the following long exact sequences:

· · · −→ TorR′
i+1(M′, N) −→ TorR′

i+1(F, N) −→ TorR′
i+1(M, N) (19)

−→ TorR′
i (M′, N) −→ · · ·

and

· · · −→ TorR′
i+1(M′, N ′) −→ TorR′

i+1(M′, G) −→ TorR′
i+1(M′, N) (20)

−→ TorR′
i (M′, N ′) −→ · · ·

respectively. Note that TorR′
i (F, N) = 0 = TorR′

i (M′, G) for all i � 1. Therefore, in view
of (17) and (19), we obtain that

TorR′
i (M′, N) = 0 for some (d + c) consecutive values of i � c + 2. (21)

Hence, (20) and (21) yield that TorR′
i (M′, N ′) = 0 for some (d + (c − 1) + 1) consecutive

values of i � c + 1 (= (c − 1) + 2). Therefore, since M′ and N ′ are MCM modules over
R′ = R/(f1, . . . , fc−1), by the induction hypothesis, we get that

TorR′
i (M′, N ′) = 0 for all i � (c − 1) + 1 (= c). (22)

We also obtain that either projdimR(M′) or projdimR(N ′) is finite. Hence, in view of
the short exact sequences (18), we get that either projdimR(M) or projdimR(N) is finite
(because F and G are free R′-modules and projective dimension of R′ = R/(f1, . . . , fc−1)
as an R-module is finite).

It remains to show that TorS
i (M, N) = 0 for all i � c + 1. In view of (20) and

(22), we obtain that TorR′
i (M′, N) = 0 for all i � c + 1. Therefore, (19) yields that

TorR′
i (M, N) = 0 for all i � c + 2. Hence, by virtue of Lemma 2.7,

TorS
i (M, N) ∼= TorS

i+2(M, N) for all i � c + 1. (23)

Since TorS
i (M, N) = 0 for some d + c + 1 (� 2) consecutive values of i � c + 2, the

isomorphisms (23) yield that TorS
i (M, N) = 0 for all i � c + 1. This completes the

proof of the theorem. �

As a corollary of Theorem 6.4, we obtain the following:
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COROLLARY 6.5. Along with Hypothesis 6.1, further assume that M and N are
S-modules. Set i0 := 2 dim(S) − depth(M) − depth(N). Then, the following statements
are equivalent:

(i) TorS
i (M, N) = 0 for some (d + c + 1) consecutive values of i � i0 + c + 2.

(ii) TorS
i (M, N) = 0 for all i � i0 + c + 1.

Moreover, if this holds true, then either projdimR(M) or projdimR(N) is finite.

Proof. Let TorS
i (M, N) = 0 for some (d + c + 1) consecutive values of i � i0 + c +

2. Set cM := dim(S) − depth(M) and cN := dim(S) − depth(N). Then, i0 = cM + cN .
In view of Lemma 2.5(ii), we obtain that

TorS
i (M, N) ∼= TorS

i−cM

(
�S

cM
(M), N

) ∼= TorS
i−i0

(
�S

cM
(M),�S

cN
(N)

)
, (24)

for all i − i0 � 1. Therefore, TorS
j

(
�S

cM
(M),�S

cN
(N)

) = 0 for some (d + c + 1)
consecutive values of j � c + 2. Since �S

cM
(M) and �S

cN
(N) are MCM S-modules,

by virtue of Theorem 6.4, we get that

TorS
j

(
�S

cM
(M),�S

cN
(N)

) = 0 for all j � c + 1. (25)

We also obtain that either projdimR

(
�S

cM
(M)

)
or projdimR

(
�S

cN
(N)

)
is finite, which

yields that either projdimR(M) or projdimR(N) is finite because projective dimension
of S = R/(f1, . . . , fc) as an R-module is finite. It follows from (24) and (25) that
TorS

i (M, N) = 0 for all i � i0 + c + 1. �

REMARK 6.6. With the hypotheses as in Corollary 6.5, TorS
i (M, N) = 0 for all i � 0

does not necessarily imply that either projdimS(M) or projdimS(N) is finite, due to an
example of Jorgensen [23, 4.2], where S is even a local complete intersection ring of
codimension 2. Then, by virtue of [6, Remark 6.3], we observe that the same example
works for Ext-modules also, i.e., Exti

S(M, N) = 0 for all i � 0 does not necessarily
imply that either projdimS(M) or injdimS(N) is finite. However, if R is a non-Gorenstein
CM local ring with minimal multiplicity and infinite residue field, by [31, 3.1 and 4.7],
there is an R-regular sequence y such that S := R/(y) is a fibre product. Then, by [31,
Corollaries 6.2 and 6.3], the vanishing of TorS

i (M, N) (resp. Exti
S(M, N)) for all i � 0

implies the finiteness of projective or injective dimensions of the modules M and N
over S.

7. Applications. In this section, we assume the following:

HYPOTHESIS 7.1. Let (R,m, k) be a d-dimensional CM local ring of minimal
multiplicity. Set S := R/(f1, . . . , fc), where f1, . . . , fc is an R-regular sequence. Also
assume that R has a canonical module ωR. So ωS = ωR/(f1, . . . , fc)ωR is a canonical
module of S.

Our first application is that conjecture of Tachikawa holds true for S. In particular,
we prove the following:

THEOREM 7.2. Along with Hypothesis 7.1, if Exti
S(ωS, S) = 0 for all i � 0, then S

is Gorenstein.
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Proof. By virtue of Theorem 6.2, either projdimR(ωS) or injdimR(S) is finite.
Therefore, in view of Lemma 7.3, we get that either projdimR(ωR) or injdimR(R) is
finite. In both cases, R is Gorenstein, and hence S is Gorenstein. �

The following results are well-known and easy to prove.

LEMMA 7.3. Let A be a local ring, and M be an A-module. Let x ∈ A be an M-regular
element. Then, the following statements hold true.

(i) injdimA(M) is finite if and only if injdimA(M/xM) is finite.
(ii) projdimA(M) is finite if and only if projdimA(M/xM) is finite.

As another application, we obtain the following:

THEOREM 7.4. Along with Hypothesis 6.1, assume that M and N are non-zero
homomorphic images of finite direct sums of syzygy modules of k over S. (Possibly,
M = N). If TorS

i (M, N) = 0 for all i � 0, then S is regular.

Proof. Note that cxS(M) = cxS(N) = cxS(k) (due to [4, Corollary 9]). In view of
Corollary 6.5, either projdimR(M) or projdimR(N) is finite. Suppose projdimR(M) is
finite. Hence, by virtue of [15, Theorem 3.1], we obtain that cxS(M) is finite. Therefore,
cxS(k) is finite, and hence S is a complete intersection ring (by [16, (2.3)]). Suppose
codimension of S is l. Then, cxS(M) = cxS(N) = cxS(k) = l. Since TorS

i (M, N) = 0 for
all i � 0, in view of [5, 9.3.9], it follows that l = 0, and hence S is regular. �

Our final application is the following:

THEOREM 7.5. Along with Hypothesis 7.1, let M be a non-zero homomorphic image
of a finite direct sum of syzygy modules of k over S. Then, the following statements are
equivalent:

(i) S is Gorenstein.
(ii) Exti

S(M, S) = 0 for all i � 0.
(iii) TorS

i (M, ωS) = 0 for all i � 0.

Proof. As in the proof of Theorem 7.4, we note that if projdimR(M) is finite, then
S is a complete intersection ring, and hence S is Gorenstein.

(ii) ⇒ (i): Suppose Exti
S(M, S) = 0 for all i � 0. Then, by virtue of Corollary 6.3,

either projdimR(M) or injdimR(S) is finite. If projdimR(M) is finite, then S is
Gorenstein. In other case, i.e., if injdimR(S) is finite, then by Lemma 7.3, injdimR(R)
is finite, i.e., R is Gorenstein, and hence S is Gorenstein.

(iii) ⇒ (i): Suppose TorS
i (M, ωS) = 0 for all i � 0. Then, in view of Corollary 6.5,

either projdimR(M) or projdimR(ωS) is finite. In either case, by a similar way as above,
one obtains that S is Gorenstein. �
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