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A b s t r a c t . Modal coupling oscillation models for the stellar radial pulsation and coupled-
oscillators are reviewed. Coupled-oscillators with the second-order and third-order terms 
seemed to behave non-systematically. Using the equation by Schwarzschild and Savedoff 
(1949) with the dissipation term of van del Pol's type which is third-order, we demonstrate 
the effect of each term. The effects can be understood by the terms of the nonlinear dynam­
ics, which is recently developing, that is. phase-locking, quasi-periodicity, period doubling, 
and chaos. As the problem of stellar pulsation, especially of double-mode cepheids on the 
period-ratio, we examine the dependence on the stellar structure from which the coupling 
constants in the second-order terms are derived. Eigen functions for adiabatic pulsations 
had been used for the calculation of the constants. It is noted that only two set of the 
constants are available, that is, for the polytrope model with n = 3 and a cepheid model 
without convection. Some examples of nonlinear dynamical effects will be shown. 

It is shown that if the constants were suitable values, the period-ratio of double-mode 
cepheids is probably realized. The possibility is briefly suggested. 

1. Introduction 

Studies of the influence of second and higher order terms in the stellar pulsa­
tion have been continued for several decades. Woltjer (1935) shows equations 
of adiabatic stellar pulsation with a second order term can be expressed as 
the differential equation of time-dependent coefficients that the solution of 
stellar pulsation is expanded in terms of eigen functions of linear pulsation. 
He also applies it to Cepheid-variation with nonadiabatic perturbation and 
discuss the stationary state of periodic pulsation (Woltjer, 1937). 

Resseland (1943) developed the mathematical theory of anharmonically 
pulsating gas spheres in the same way as Woltjer (1935, 1937) and applies it 
to the pulsation of homogeneous star, only taking the single mode into ac­
count. Bhatnager and Kothari (1944) give an exact solution for the pulsation 
of homogeneous modes for unperturbed stars. 

Schwarzschild and Savedoff (1949) study anharmonic pulsation of the 
standard model which is more realistic model than the homogeneous model. 
The standard model is constructed by Schwarzschild (1941) with polytropic 
index 3 and various values of ratio of specific heats. Following Rosseland, 
they derive the equation of time-dependent amplitude for the fundamental 
and first overtone modes and compute it numerically. They result in that 
for the amplitude of characteristic cepheids, anharmonic pulsations yields 
the same period as harmonic pulsations. Anharmonics shows an appreciable 
skewness in the velocity-curve, but is still smaller than that observed. 

Prasad (1949a, b) studies the interaction of multi-modes with calculations 
of coupling constants. The solutions are obtained by the use of Fourier series. 
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After her, there are many studies of multi-mode coupled oscillator models, 
including the modes of non-radical oscillations. 

Recently, the effects of nonadiabatic term and more realistic coupling 
constants of modes are studied by Takeuti and Aikawa (1981). Their work is 
mainly two properties. Following the mode coupling models, they use more 
realistic cepheid model and obtain the coupling constants. For studying to 
nonadiabatic effects, they introduce nonlinear damping terms of the van der 
Pol or the Krogdahl's type, which is introduced by Krogdahl (1955) to the 
stellar pulsation theory. 

In the famous review of Ledoux and Walraven (1958, Fig. 46), the result 
by Krogdahl (1955) can be seen in comparison with the observational data 
and with the computed result by Schwarzschild and Savedoff (1949). The 
orbit in the radial-velocity space by Krogdahl does not fit to that observed 
at his period. However, this term is very compact and seen convenient for 
describing the effect of nonlinear dissipation, which may consist of many 
complicated terms of the nonlinear nonadiabatic effect. Using the equations 
which is the same ones as we will use later, Takeuti and Aikawa (1981) 
studied the behaviors of mode-coupling model analytically. 

After them, analytical studies are developed by many authors such as 
Aikawa (1983, 1984), Dziembowski and Kovacs (1984), and Takeuti (1984, 
1985, 1986). 

2. Structure of Equations of Modal Coupling Model 

The motion of simple pendulum is represented by 

dx dy 

* - » • £ = -* (1) 

where x and y is the displacement from the equilibrium and the velocity, 
respectively. The solution of Eq. (1) is the sinusoidal functions such as x = 
i4sin(i) which depends on the initial values. It should be noted that the 
equation of motion for the forced oscillation is written as follows: 

(J T fill 

— = y, -jt = -x3 + pL(l-x2)y + Bcos(at), (2) 

where the second term is so-called van der Pol's damping term and the third 
is the external force. The system of Eq. (2) is given by Ueda and Akamatsu 
(1981), which shows the Japanese attractor. This is a hybrid of the Duffing 
and van der Pol oscillator. If we rewrite Eq. (2) as 

dx dy o . 9. 

z = Bcos(at), (4) 
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or 
dx 

dz 

d4 = -x*-
dt 
da 2 — = -a z 
dt 

-x3 + /i(l - x2)y + z, (5) 

(6) 

we can see the system is a coupled oscillator that there is no reaction from 
the first one to the second. The coefficient B in Eq. (2) is dependent on the 
initial values of Eq. (6) which lead chaotic behaviors of the system. 

Now we discuss the equations of the mode coupled oscillator by Takeuti 
and Aikawa (1981). That is written as follows: 

dx! 

^ = -alx1 + al{[^CuiXi + Cn2X2}xi + ̂ (l-a2
1x

2
1)y1 + ^Ci22X2

2}:(8) 

HT = ^ (9) 

^ 7 = -v2X2 + al{[lc222X2+C2uXi}x2 + ^(l-a2
2xl)y2 + lc2nX2},(10) 

at 2 a2 I 

where C,^- are the coupling constants between the modes 1 and 2. 
If we suppose fi2 and all C2jk equal to zero, and C m and C\\2 also 

zero, the system becomes the nonlinearly forced van der Pol oscillator. That 
is, the mode 1 with van der Pol's damping is forced to oscillate by mode 
2 through the term of C m ^ s i n c ^ f + B cos cr2t)

2. Two sets of coupling 
constants between the fundamental and first overtone for stellar models have 
been evaluated with linear adiabatic eigen functions (Takeuti, 1985). Before 
analyzing the coupled oscillator for stellar models, we study oscillators with 
rather simple method. 

It should be worthwhile to note that the forced oscillation can be reduced 
into a sine circle map (Chirikov, 1979), which shows the Arnold's tongues 
for phase locking and the devil's staircase. The discrete system seems rather 
convenient to study the rough behavior of differential equation system. The 
two-dimensional maps such as Henon's and Mira's attractors may also be 
useful (Gumowski and Mira, 1980). 

3. Rough Behaviors of the Equations 

The values of Cuj and C2ij obtained by Takeuti (1985) for cepheid models 
nearly equals 2~4, and 6, respectively. If we simplify constant values for 
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coupling constants such as Cm — Ciu = C m = C\ and so on, we can 
decrease the number of parameters whose dependence should be examined. 
The brief method and results are given by Nakahara and Tanaka (1992) and 
more detailed discussion can be seen in Tanaka et al. (1992 a, b). Here we 
sketch their results. 

First, fixing the values of C2 = 6 and p\jo\ = 0.1, they examine the de­
pendence of solutions on other parameters. They show various phase locking 
of period ratios from 2/3 to 1/1 (Tanaka et al., 1992a). Between them, we 
can see the phase locking of period ratios in Farey series where the ratio 
of 5/7 is included. The ratio of 5/7, however, can be seen in very nar­
row region of parameter space. The regions between the phase locking are 
not distinguished whether higher ratios of phase locking, chaotic or quasi-
periodic states. They also compute the Lyapunov exponents for examining 
quasi-periodicity, phase locking and chaos (Nakahara and Tanaka, 1992). 
But they do not recognize the chaotic states within their computed results. 

Tanaka et al. (1992b) show the dependence of C\ and C2 in the manner 
of the Mandelbrot set. They select the color for each point in (Ci,C2) plane 
when the solution has diverged (Fig. 1). In Fig. 2, the enlargement of Fig. 
1 in the first quarter is shown. We can see complicated patterns in the 
divergent region and the complex boundary. In Fig. 3, we see the structure 
of the non-divergent region. The phase locking of lower period ratios such 
as 3/4, 5/7 etc. are shown. The shape of typical phase locked regions seems 
similar to so-called Arnold's tongues in the sine maps. It is noted that the 
non-divergent region is located C-i < — I.0C1 + 15, depending on the other 
parameters. As their results is very preliminary ones, further examples are 
desired. 

4. Oscillation of the "Standard Model" 

Equations used by Schwarzschild and Savedoff (1949) are the same as those 
of us without nonadiabatic term and give values of coupling constants be­
tween the fundamental and first overtone modes for the standard model. It 
is noted that their coupling constants are the first one for realistic stellar 
models. Following Takeuti and Aikawa (1981), Nakahara and Tanaka (1993) 
introduce the van der Pol's term as the nonadiabatic effect to the equations 
by Schwarzchild and Savedoff (1949) and demonstrate the behavior of the 
oscillation of polytropic stars. 

They report that in the polytropic stellar pulsation the fundamental and 
first overtone mode synchronize each other for most values of parameters of 
the damping terms, while phase locking of 4/5 and 3/4 rarely appears. It-
is found that for the period ratio of 1/1 which located near the boundary 
between the divergent and non-divergent regions, the period doubling of 
1/1 is observed, which will lead to chaos. Since the mesh of parameters for 

https://doi.org/10.1017/S0252921100014408 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100014408


COUPLED-OSCILLATORS 337 
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Fig. 1. Pattern of divergence. 

researching lower period ratios is rather coarse, more careful survey may be 
helpful for understanding period ratios of compact star's pulsation. 

5. 5:7 Period Ratio by a Cepheid Model Without Convection 

More realistic coupling constants of double-mode stellar pulsation are ob­
tained by Takeuti and Aikawa (1981) and Takeuti (1984) as mentioned 
above. Following the mode coupling models, they use more realistic cepheid 
model (M/MQ = 6.7, L/L& = 2280, Teff = 5850 K, X,Y,Z = 0.70, 0.28, 
0.02) and obtain the coupling constants. Using the constants, Seya et al. 
(1990) demonstrate the behavior of the solutions of Eq. (7)—(10). It should 
be noted that Moskalik and Buchler (1989) show period doubling bifurcation 
of coupled oscillators with van der Pol's term, but CUJ equal to zero. 

Seya et al. (1990) obtain time developments of mode 1 (the fundamen­
tal mode) and 2 (the first overtone) and the orbits in the phase planes of 
{x\,dx\/dt) etc. for various sets of coefficients of the damping terms. They 
find the phase locking of several ratios. As pointed out by Ishida and Takeuti 
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(25 , 25) 
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Fig. 2. Enlargement of Fig. 1. 

(1991), the ratio of 3/4 is dominant for the given coupling constants and the 
linear frequency ratio adopted by them. Seya et at. (1990) also show the 
phase locked orbits such as the period ratio of 3/4 will bifurcate in period 
doubling as the change of a\. They use the first return map for showing 
the characteristics of the beat or the quasi-periodicity of the solution. The 
phenomena of quasi-periodicity may be important for studying the beat of 
variable stars. 

Seya et al. (1991) demonstrate the behavior of solutions of Eqs. (7)-
(10) in the Poincare section. On the section, the complex features can be 
understood as the chaotic states of solutions. Thus they conclude that the 
chaos of coupled oscillator are produced through folding the surface of torus. 
Ishida and Takeuti (1991) give the condition of synchronization of coupled 
oscillator with non-zero djk of Takeuti (1985). They also find the phase 
locking of other ratios than 2/1. 

The period ratio of 5/7 as phase locking is reported by Seya et al. (1990), 
Tanaka et al. (1990) and Ishida and Takeuti (1991). Ishida and Takeuti 
(1991) obtain it for fixed ratio of linear periods and fixed coupling constants, 
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Fig. 3. Structure of non-divergent region. The phase locking can be seen as the Arnold's 
tongues. 

while the others change the linear period ratios for showing the ratio of 5/7. 
The period ratio of 5/7 is important, because the double-mode cepheids seem 
have rather narrow period ratios 0.7 to 0.71. The standard stellar evolution­
ary theory derives the period ratios higher than those of observation. It is 
known that the mass of cepheids should be considerably reduced for fitting 
them. The review on this problem by Balona (1985) should be referred. 

Tanaka et al. (1992c, d) try to search the condition of coupling constants 
for the period ratio of 5/7 with the realistic linear periods and the coefficients 
of the damping terms. Using the relation of C112/C211 = C122/C212 and fixed 
Cijk-, they find out the relation of C m and A where A is a multiplier of the 
original coupling constants of Cij2.lt is shown that the 5/7 phase locking is 
realized by the increase of self- and mutual-coupling constants of mode 1. 

Takeuti et al. (1992) and Yamakawa et al. (1992) calculate the cou­
pling constants, taking the nonadiabatic effect in radiative models. They 
obtain rather large values of the constants in order of 10-100. Such increases 
may make the oscillation to be synchronized or sometime diverge. Zalewski 
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(1992), however, show that the nonadia.ba.tic constants become much smaller 
for the cepheid models if convection is taken into account. This may be the 
real model of double-mode cepheids which have the period ratio of 5/7. 

It is noted that the present coupled oscillator model is still not very 
realistic. As the further correction, we should mention that Ishida et al. 
(1992) try to examine the effect of third order nonlinear terms. Their results 
will give us more information on the direction for studying double-mode 
cepheids and its evolutionary masses. 

6. Summary 

We have the constants of modal coupling for the standard model and some 
cepheid models. With these constants, the behaviors of the coupled oscillator 
model of stellar pulsation are analyzed by many authors. They find out the 
phase locking, quasi-periodicity, chaos and divergent states which depend 
on the constant and the coefficients of the van der Pol's damping term. The 
coupling constants for nonadiabatic models are now examined with and 
without convection. As the result, the period ratio of 5/7 and the mystery 
of mass reduction of cepheids are expected to be understood. Thus we may 
expect to resolve soon one of mysteries of multi-period variables, but no one 
can say the step might not be the devil's staircase. It is desired to work 
with further knowledge from observation, hydrodynamical simulations, and 
nonlinear dynamics. 
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