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ABSTRACT

We prove that the Hilbert—Kunz multiplicity is upper semi-continuous in F-finite rings
and algebras of essentially finite type over an excellent local ring.

1. Introduction

Let R be a commutative Noetherian ring of characteristic p > 0. For a prime ideal p the
(normalized) Hilbert—Kunz function of p is defined to be

R, (Ry/pPIRy)
ped ’

where e is a positive integer and pP is the ideal generated by the p¢th powers of elements of p.
The Hilbert—Kunz multiplicity of p, egx (p), is defined as the limit of this sequence. The Hilbert—
Kunz theory originates in the work of Kunz [Kun69, Kun76], and Hilbert—-Kunz multiplicity was
introduced by Monsky [Mon83] in 1983.

From the beginning, there was a perception that the Hilbert—Kunz theory could be used
to measure singularities. In fact, in 1969 Kunz showed that the Hilbert-Kunz function detects
singularity, and later, in 2000, Watanabe and Yoshida generalized this for the Hilbert—-Kunz
multiplicity. In [WYO00] they showed that an unmixed local ring (R, m) is regular if and only if
CHK (m) = 1.

Since it follows from the work of Kunz that exx(m) > 1, one may expect that, when ey i (m)
gets close to 1, the singularity of R should be better. A notable example of this was given by
Blickle and Enescu in [BE04] and then improved by Aberbach and Enescu in [AEO08]. They show
that if e (m) is sufficiently close to 1, then R has to be Gorenstein and F-regular.

This work is devoted to a global property of the Hilbert—Kunz multiplicity: upper semi-
continuity. A formal definition of upper semi-continuity is given in Definition 1, but via Nagata’s
criterion (Proposition 8) this question can be considered as a distribution property of singularities
of the local rings of R. Namely, given a prime ideal p of R, we want to know if the Hilbert—-Kunz
multiplicity of a generic prime containing p is close to the Hilbert-Kunz multiplicity of Rp; see
Proposition 9. So, we may say that we are trying to understand if Hilbert—Kunz multiplicity sees
that the singularity of a general prime containing p is close to that of p.

We also want to draw reader’s attention to Example 7, where we show that the Hilbert—Kunz
multiplicity of a general prime containing p need not to be equal to ey (p). This illustrates
the subtlety of the problem, and since the corresponding statement for the Hilbert—Samuel
multiplicity is true, demonstrates a difference between two theories.
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I. SMIRNOV

In 1976 [Kun76] Kunz proved that for a fixed e the Hilbert-Kunz function £(R,/plP’IRy) /ped
is upper semi-continuous. Shepherd-Barron [She79] supplied a more elementary proof and showed
the necessity of an equidimensionality assumption. Twenty years later, in [ES05], Enescu and
Shimomoto revisited this work and asked whether the Hilbert—Kunz multiplicity is upper semi-
continuous. They also proved that the Hilbert—Kunz multiplicity is dense upper semi-continuous
on the maximum spectrum, which is a weaker condition. In 2011 there was a group working on
this question in the AIM workshop ‘Relating Test Ideals and Multiplier Ideals’.

We prove that the Hilbert—Kunz multiplicity is upper semi-continuous in locally equidimen-
sional F-finite rings and locally equidimensional rings of essentially finite type over an excellent
local ring, a mild restriction that is satisfied by complete local domains and domains finitely
generated over a field. To achieve this, we want to control the convergence rate of the Hilbert—
Kunz function and, building on Tucker’s estimates from [Tuc12], we show that it can be controlled
generically for F-finite domains (Theorem 19) and for algebras of essentially finite type over a
complete local domain (Theorem 22). This method allows us to reduce upper semi-continuity of
the limit of a sequence (the Hilbert—Kunz multiplicity) to upper semi-continuity of a term of the
sequence (a fixed Hilbert—Kunz function), and the latter is known from the work of Kunz. This
strategy should be useful for other numerical invariants in positive characteristic, for example, for
F-signature. However, an application of this approach seems to require a better understanding
of F-signature; see Remark 26.

The structure of the proof is as follows. We start with general preliminaries in § 2. Then we
develop the machinery of global convergence estimates in §§ 3 and 4: § 3 treats the F-finite case;
§4 obtains the same result for algebras of essentially finite type over a complete local domain,
so may be skipped by a reader interested only in the F-finite case. Then the estimates are used
in §5 to prove the main theorem.

2. Preliminaries

In this paper all rings are assumed to be commutative Noetherian and containing an identity
element. For a module M over a ring R, we will use ¢(M) to denote the length of M.

Let R be a ring of characteristic p > 0. For convenience, we use ¢ = p® where e may vary. For
an ideal I of R, let 19 be the ideal generated by gth powers of the elements of I. By F, R we mean
R viewed as an R-module via the extension of scalars through the Frobenius endomorphism. If
R is reduced, FyR can be identified with the ring of p-roots RY/?. We say that R is F-finite if
F,R is a finitely generated R-module.

DEFINITION 1. Let X be a topological space. A real-valued function f is upper semi-continuous
if for any a € R the set {x € X | f(z) < a} is open in X.

In his papers [Kun69, Kun76] Kunz initiated the study of the Hilbert-Kunz function f,(R) =
(1/¢")¢(R/mld). For any q we can define a function on Spec R, the spectrum of R, by setting
fqo(p) = fg(Rp). In [Kun76, Proposition 3.3, Corollary 3.4] Kunz obtained the following results.

THEOREM 2. Let R be a locally equidimensional ring. Then for all q:
(i) fo(p) < fola), ifp S q;

(ii) fq(p) is upper semi-continuous on Spec R.

We should note that Kunz claimed this result for an equidimensional ring, but Shepherd-
Barron pointed out in [She79] that the theorem is false if R is not locally equidimensional.
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DEFINITION 3. Let (R, m) be a local ring of characteristic p > 0. It was shown by Monsky that
the limit

~ U(R/mld
enx(R) = lim (qdi/mR )

exists and is called the Hilbert-Kunz multiplicity of R.

Defining egx (p) := enx(Ryp), we can view the Hilbert-Kunz multiplicity as a function on
Spec R. In view of Kunz’s result, it was natural to make the following conjecture [ES05].

CONJECTURE 4. If R is a locally equidimensional excellent ring, then the Hilbert—-Kunz
multiplicity is an upper semi-continuous function on Spec R. Or, less generally, if R is a locally
equidimensional F-finite ring, then the Hilbert—Kunz multiplicity is an upper semi-continuous
function on Spec R.

Note that F-finite rings are excellent by a theorem of Kunz [Kun76, Theorem 2.5]. Also, we
note that is natural to restrict to F-finite rings, since F-finiteness arises often as useful finiteness
property, especially in geometry. For example, it is still not known whether all excellent rings
have a test element.

Remark 5. The reader should be warned that Shepherd-Barron (in [She79, Corollary 2]) claimed
a much stronger statement. However, in his proof he used that a descending sequence of open
sets stabilizes without a proper justification. In fact Shepherd-Barron’s claim implies that ey
attains only finitely many values on Spec R. We provide a counter-example to this claim; see
Example 7.

It is also worth pointing out that a stronger property holds for Hilbert—Kunz functions.
The proofs of semi-continuity by Kunz [Kun76] and Shepherd-Barron [She79] show the following
statement.

PROPOSITION 6. Let R be a locally equidimensional ring and p be a prime ideal. Then for any
fixed q and any a € R the set

{pl fo(p) < a}

is open in Spec R.

Ezample 7. Let R = Fla,y,z,t]/(z* + zyz? + (2% 4+ 33)z + t2?y?), where F is the algebraic
closure of Z/27. In [BM10], Brenner and Monsky showed that tight closure does not commute
with localization in this ring.

Let p = (z,vy, 2); this is a prime ideal of dimension one in R. Building on the work of Monsky
[Mon98], the author was able to show that the Hilbert—Kunz multiplicity attains infinitely many
values on the set of prime ideals containing p. Moreover, for any prime ideal m containing p,
egr(m) > egr(p), so the set {q | egx(q) < emr(p)} is not open. The details will appear in a
future paper.

This rather surprising result shows that, compared to the Hilbert—Samuel multiplicity and
a fixed Hilbert—Kunz function, the Hilbert—Kunz multiplicity has a distinctively different global
behavior.

We use the following standard terminology. A closed set V(I) consists of all prime ideals
containing I C R, and a principal open set D; consists of all prime ideals not containing s € R.
Since Dy can be naturally identified with Spec R,, we will sometimes abuse notation, and, when
speaking of inverting an element s, we will mean considering D;.

We recall Nagata’s criterion of openness in Spec R [Mat80, 22.B].
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PROPOSITION 8. Let R be a ring. A subset U of Spec R is open if and only if:

(i) U is stable under generalization, i.e. if ¢ € U and p C q, then p € U;
(ii) U contains a nonempty open subset of V (p) for any p € U.

Since any open set is a union of principal open sets, the second condition is equivalent to the
containment U D V(p) N Dy for some s ¢ p.

It follows from Theorem 2 that if p C q then egx(p) < emx(q), so for any a the set {p €
Spec R | egk (p) < a} is stable under generalization. Hence, it is enough to verify only the second
condition of the criterion, and we restate Conjecture 4 in the following form.

PRropOSITION 9. Let R be a locally equidimensional ring. Then the Hilbert—Kunz multiplicity is
upper semi-continuous on Spec R if and only if for any prime ideal p and any € > 0 there exists
s ¢ p such that for all prime ideals q € Ds NV (p),

enk(q) <emr(p)+e.
It is also easy to show that we can restrict ourselves to domains.

ProposiTiON 10. Let R be a locally equidimensional ring. If the Hilbert—Kunz multiplicity is
upper semi-continuous in R/ P for all minimal primes P of R, then the Hilbert—Kunz multiplicity
is upper semi-continuous in R.

Proof. Given e, we want to find an element s ¢ p such that egx(q) < egx(p) + & for any ideal
q containing pR; of Rs.

Let P, ..., P, be the minimal primes of R. Inverting an element if necessary, we may assume
that all P; are contained in p. By the assumption, there exist elements s; ¢ p such that in the
corresponding subsets of Spec R/ F;,

ek (AR/Fi) <enk(pR/P;) + &/ (nlrp, (Rp,)).

Now, if we invert the product s of s;, we obtain that for any ideal q of Ry that contains p, by
the associativity formula for Hilbert—Kunz multiplicity [WYO00, (2.3)],

en(q) =Y enx(aR/P)lr,, (Rp,)
=1

<> (eHK(pR/pi) +

£
i=1 NERp, (Rp,)

COROLLARY 11. Conjecture 4 holds if and only if for any excellent domain R, prime ideal p of
R, and € > 0, there exists s ¢ p such that for all prime ideals q € V(p) N D,

)pri (Rp,) =enx(p) +e. 0

enk(q) <emr(p)+e.
Proof. We just note that a quotient of an excellent ring is excellent. O

A descent of semi-continuity over a faithfully flat extension would be extremely useful for
the proof; in fact, it would eliminate the need for §4. Unfortunately, we do not know how the
Hilbert—Kunz multiplicity changes after an arbitrary faithfully flat extension well enough to
control it for all localizations. So, we are able to obtain a descent statement only for extensions
with regular fibers. The following lemma will be needed in the proof of our main result for
algebras of essentially finite type over an excellent local ring.
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LEMMA 12. Let R be a ring and f: R — S be a faithfully flat R-algebra. Moreover, suppose
that f has regular fibers. Then the Hilbert—Kunz multiplicity is upper semi-continuous in S if
and only if it is upper semi-continuous in R.

Proof. Let @) be any prime in S and let p = @ N R. Note that R, — Sq is faithfully flat with
regular fibers, so, by a result of Kunz [Kun76, Proposition 3.9], egx(Ry) = egx(Sq). Thus,
under our assumption the Hilbert—Kunz multiplicity is constant in fibers.

Suppose that upper semi-continuity holds in S. Let a be any real number and consider the
closed set V(I) = {Q | Q € SpecS,egx(Q) = a}. The argument above tells us that for any
Q@ € V(I) any minimal prime of (Q N R)S is also in V(I). Hence V(I) = V(JS) for J =INR.

We claim that V(J) = {p | p € Spec R, egx(p) > a}. Note that J C p if and only if JS C Q
for any prime @ in S that contracts to p, so egx(p) = enr(Q) = a.

For the other direction, note that f*: Spec.S — Spec R is surjective, so, since ey g is constant
in fibers, we obtain that

{Q| Q€ SpecS,enk(Q) <a}=(f*)""{p|p € Spec R,enx(p) < a}.

Hence, it is open. O

3. Globally uniform Hilbert—Kunz estimates for F-finite rings

In this section we essentially rebuild Tucker’s uniform Hilbert—Kunz estimates from [Tucl2] in
order to control the rate of convergence of the Hilbert-Kunz function on an open subset.

We will use some properties of the Hilbert—-Samuel multiplicity (see [HS06, Proposition
11.1.10, Theorem 11.2.4, Proposition 11.2.9]) for proofs.

PROPOSITION 13. Let (R, m) be a local ring of dimension d > 0, x be a system of parameters,
and I be an arbitrary m-primary ideal.
(i) {(R/z) > e(z, R). If z is a regular sequence, then equality holds.

(i) (Associativity formula) e(I,R) = }_, e(I,R/p)lr,(Ry), where the sum is taken over all
primes p such that dim R/p = dim R.

(iii) For any numbers ni,...,ng, e((2}*,...,2,;*),R) =n1---nqe(z, R).
We also record the following lemma.

LEMMA 14. Let R be an excellent ring and p be a prime ideal in R. Then there exists an element
f ¢ p such that Ry/pRy is a regular ring and Ry/p™ Ry are Cohen-Macaulay Ry-modules for
all n.

Proof. First, invert an element s ¢ p to make (R/p)s regular; this is possible because R/p is an
excellent domain. Now consider the associated graded ring gr,(Rs) = @@, p" Rs /p" L R,. This
is a finitely generated R/pRs-algebra, so by generic freeness [Mat80, 22.A] we can invert an
element ¢ ¢ pRy and make it free over the regular ring (Rs/pRs):.

Let f = st. Then it follows that p"R;/p"T1 Ry are projective Ry/pRg-modules for all n.
Hence, by induction, using the sequences

0— anf/anrlRf — Rf/anrlRf — Rf/anf — 0,

we get that all residue rings Ry/p™ Ry are Cohen-Macaulay in this localization. O
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LEMMA 15. Let R be an excellent ring of characteristic p > 0 and p a prime ideal of R. Let M
be a finite R-module. There exist a constant C (independent of q) and an element s ¢ p such
that for any prime ideal q € Ds NV (p) and for all q,

R, (Mq/q[q]Mq) < Cq M,

Proof. Assume that M = R/P is a cyclic module for a prime ideal P. If p does not contain P,
we can invert any s € P\p, so Ms = 0 and the assertion is trivially true. Hence, assume P C p.

Via Lemma 14 we can find an element f ¢ p such that, localizing at f, R/p = S/p becomes
regular and S/p™S becomes Cohen—Macaulay for all n. Let q be an arbitrary prime ideal
in V(p) N Dy. Since Rq/pRq is a regular local ring, there exists a system of parameters z

that generates qf2; modulo pR,. Suppose that p can be generated by ¢ elements in R. Then
(pt‘?,g[q])Rq C Cl[q]Rq, S0
(Ry(Sa/a955) < Ury(Sy/ (b7, (2)")Sy).

Since (S/p'S), is Cohen-Macaulay for any ¢, we may use Proposition 13 to show that

Cry(Sa/ (09, (2)1)S) = e((2)!), S/p"Sy) = ¢ VP e(z, Sq/p'S,).

Thus, from the associativity formula we obtain

Ry (Sq/ (019, (2)7)S) = " 9/P e(x, Sq/pSq)lR, (Sp/P9Sy) = q" VP LR, (Sp/p!9S}).

Note that e(z, Sq/pS;) = 1 because = generates the maximal ideal of a regular local ring Sq/pS;.
To finish the argument, we observe that £g, (Sp/p"Sy) = €Rr,(Ry/(P+p")Ry) is a polynomial
in n of degree htp/P for all sufficiently large n, so clearly there exists a constant D such that
for all g,
CR,(Sp/p"Sp) = LR, (Rp/(P + p')Ry) < D(tq)"*/".

Thus, we have just obtained a bound
(Ry(S4/a955) < R, (Sa/ (", (2)%)Sq) < g™ VP D(tq)"*P/F = (DIMP/P)g" /P = Ogtim s,

Hence, if M = R/P, the statement has been proved for C = Dtht?/P 4 constant independent
of q.

By choosing a prime filtration of M, we can deduce the general statement from the case
considered above. Namely, if P; are prime ideals appearing in the prime filtration, then

Ry (My/q M) < ZeRq((R/an/q[q](R/Pi)q)-

Since there are finitely many primes P;, we can invert finitely many elements in order to force
the claim for all R/P;. Also, note that dim M, is the maximum of dim Ry/P; R4 over the primes
in a prime filtration. So

qu (Mq/q[q]Mq) < ZKRCI (RCI/(PZ + q[Q])Rq) < Z Ciqhtq/Pi < (Z Cz‘>qdiqu. 0

Using a standard argument ([Tucl2, Lemma 3.3] or [Mon83, Lemma 1.3]), we derive from
Lemma 15 the following result.

COROLLARY 16. Let R be an excellent ring of characteristic p > 0 and p be a prime ideal of R.
Suppose that M and N are finite R-modules such that their localizations at every minimal
prime of R are isomorphic. Then there exist a constant C' and an element s ¢ p such that for
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any prime ideal ¢ € DNV (p) and for all g,
e, (V1) — 1, (N g < O

Proof. If ht ¢ = 0, the claim is trivial, so we may assume that ht ¢ > 0. By the assumptions, we
have an exact sequence
N—->M-—-K-—Q0,

where Kp = 0 for every minimal prime P of R. By Lemma 15, there is an element s; such that
for some constant C; and all g € Dg, NV (p),

(R, (Mq/q[q}Mq) - BRq(Nq/q[q}Nq) < Ug, (Kq/q[‘ﬂKq) < Cpgdm K,

Since Kp = 0 for any minimal prime P, dim Ky < htq — 1.
To finish the proof, we switch M and N in the first part of the argument, i.e. apply it to the
sequence
M— N—L—D0.

Hence, by inverting an element so, we will get
gRq (Nq/q[q}Mq) - gRq (Mq/q[q]Mq) < KRq(Lq/q[Q}Lq) < C2qdiqu < CQthq_la
and the claim follows for C' = max(Cy, C2) and s = s159. O

DEFINITION 17. Let R be a ring of characteristic p > 0. For a prime ideal p of R, we denote
a(p) = log,[k(p) : k(p)?], where k(p) = Ry/pRy is the residue field of p.

This number measures the change of length via Frobenius: if M is a finite-length module
over a local ring (R, m), then £(F,M) = p*™¢(M). In particular,

((F,R ®p R/mldy = p*™¢(R /mlww]).
We will need the following result of Kunz [Kun76, 2.3].

PROPOSITION 18. Let R be F-finite and let p C q be prime ideals. Then a(p) = a(q) + ht q/p.

THEOREM 19. Let R be an F-finite domain and let p be an arbitrary prime ideal. Then there
exists an element s ¢ p such that for any € > 0 there is qy such that for all ¢ > qo,

0R, (Rq/q9 Ry) /™ — enxc(q)] < e

for all prime ideals q € Ds NV (p).
Proof. Since R is F-finite, R and RY/P are isomorphic when localized at the minimal prime 0.
So, by Corollary 16, we can invert an element and obtain a global bound

a(0) a(0)

|0k, (REP™ g REP™ ) — b (RYP /gl RY/P)| < Cg a1

for an arbitrary prime ideal q containing p.
We follow Tucker’s argument from [Tuc12]. Proposition 18 applied to the formula above gives

[p™ q*“(q)ERq(Rq/q[Q]Rq) _ poc(q)gRq (Rq/q[qleq)y < Cq™" 1 50
[P 9R, (Rq/0 Rg) — Lr, (Ry/a ™ Ry)| < p~ W O™~ < Oghto~t, (1)
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We will prove by induction on ¢’ that
’ _ ql -1
(¢)* %, (Rq/a" Ry) — Lr,(Rq/a""Ry)| < C(aq' /p)"™** lpj- (2)
The induction base of ¢’ = p is (1). Now, assume that the claim holds for ¢’ and we want to
prove it for ¢'p.
First, (1) applied to ¢q¢’' gives
[P R, (Ra/al " Ry) — £r, (Rq/dl 9P Ry)| < C(ag)* ", (3)
and, multiplying the induction hypothesis by p'9, we get
/ 14p—p
()6, (Rl Re) — 50y (/a7 )| < a0 TP, (W
Combining (3) and (4) results in
/ fdp—p
)06, (o) — b1, (o a7 )| < Cla o (T2 1),
and the induction step follows.
Now, dividing (2) by ¢'"*9, we obtain

1 , L, qd -1 1 _
‘gRq(Rq/q[q]Rq) - WERARq/CI[QMRq)‘ <Cg™at. p_1 ’ gphta—1 < Cg™at.

Thus, letting ¢/ — oo, we get that
[0ry (Rq/a Ry) — ¢" T eric(q)] < Cq™ 7,

and the claim follows. O

4. Uniform estimates for a flat extension

In this section we prove convergence estimates of Theorem 19 for algebras of essentially finite
type over a complete domain. We will use the existence of a faithfully flat F-finite extension and
will relativize the estimates of the previous section for use in the extension.

LEMMA 20. Let R be a locally equidimensional excellent ring and S be an R-algebra. Let I be
an ideal in R, let M be a finitely generated S-module such that Supp M C V(I), and let p be a
prime ideal in R. Then there exist an element s ¢ p and a constant C' such that for any prime
ideal q € V(p) N D(s) and for any prime ideal ) in S minimal over g5,

lso (Mg /qMg) < Cq™ ™ 15, (So/a5q).

Proof. If I is not contained in p we can invert an element and make M zero, so we may assume
that I C p.

By Lemma 14 we can invert an element s ¢ p to make R/p regular and R/(p"™ + I) be
Cohen—Macaulay for all n. We claim that the required bound holds for this s.

As in the proof of Lemma 15, by taking a prime filtration of M we reduce the statement to
M = S/J, where J is a prime ideal in S that contains I.S. So

lsq(S/(a1S + 7)Sq) < €sy(Sa/(al + 1)Sg).
After tensoring a prime filtration of Ry/(ql% + IR, with S, we estimate that
l50(Sq/ (14 + 1)Sq) < £r,(Rq/(a4 + I)Ry)ls,(Sq/aSq)-

484

https://doi.org/10.1112/50010437X15007800 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007800

UPPER SEMI-CONTINUITY OF THE HILBERT-KUNZ MULTIPLICITY

Since R/yp is regular, we can write qRq = (p + (z)) Ry, where  are minimal generators of q/p.
Suppose that p can be generated by ¢ elements in R. Then p*? C pld and

Ro(Ba/ (09 + 1) Rq) = Cr, (Rq/ (B + (2)' + I)Ry) < lry(Re/ (0" + (2)” + D Ry).
Now, since R/(q'? + I) are Cohen—Macaulay, by Proposition 13,

Cry(Rg/ (0" + I + (2))Ry) = e((2)!, Ry /(" + I)Ry).

Moreover, by the associativity formula,

e((2)1, Ry/(p' + I)Ry) = e((2)!"), Ry /pRq)lr, (Ry/ (9" + ) R,),
and, using again that R/p is regular,

e((2)1, Ry/pRq)lr, (Ry/(p'7 + I)Ry) = ¢" /Py, (Ry/(p'7 + I)Ry).

The Hilbert-Samuel polynomial of R, /IR, has degree dim R, /I = htp —ht I. Hence we can find
a constant D such that

Cr,(Ry/(p" + I)Ry) < D(tq)"P~1 — Cghtp—hel
and the claim follows. _

We will need the following lemma obtained via the gamma construction. It is a step in the
proof of [HH94, Lemma 6.13], and a more detailed exposition can be found in Hochster’s notes
[Hoc07, Theorem, p. 139].

LEMMA 21. Let B be a complete local domain and S be a B-algebra of essentially finite type.
Suppose that S is a domain. Then there exists a purely inseparable faithfully flat F-finite
B-algebra B' such that S ®p B is a domain.

THEOREM 22. Let B be a complete local domain and R be a domain of essentially finite type
over B. If p be an arbitrary prime ideal in R, then there exists an element s ¢ p such that for
any € > 0 there is qo such that for all ¢ > qo,

[Cry (Ra/a'IRe) /q" % — enrc(a)] < e
for all prime ideals q € Ds NV (p).

Proof. We apply Lemma 21 to the quotient field L of R and obtain a B-algebra B'. Note that
S = R®p BY is F-finite, so $1/7 is a finitely generated S-module.

By the choice of BY', S®r L = B" @3 R®r L = B ®p L is a domain. Since B' is purely
inseparable over B, B' ®p L is integral over a field L, so it is a field. Since taking p-roots
commutes with localization, (S ®g L)/? = (S)/? ®p L is a finite free module over the field
S®rL = B ®p L. Hence, we can invert an element f € R to make S}/p a free module over Sy.
Finally, R is a subring of S and S ®p L is a field, so S ®r L is the quotient field of S and, by
definition, the rank of the free module (S @p L)Y/? is p*(©),

Therefore there exist maps

0— Si/P S@paw) - M -0

and
«(0)

0— S 5 §P 5 N 0

such that Supp M, Supp N C V(f5).
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Thus, after applying Lemma 20 to M and N, we can invert an element s ¢ p and obtain that
for any prime q 2 p and for any minimal prime @ of g5,

a(0) a(0) _
Cso (SE™ /a9 STy — b5, (S 10198 HP) < sy (Mo /d9Mg) < Crg™ T Dig, (Sq/aSq),

a(0) D
/q[q] SQp

a(0)

Uso (SYP/aDSHP) — 5, (SSP ) < €5, (Ng/qlING) < Cag™ 17 Dig (S6/q50).

Taking C' = max(C1, () and noting that ht (f) = 1, we estimate that

«(0) a(0)

5o (SE" JalSEP™™ ) — b5, (S57 /a5 5P| < CqM 915, (S /aSq).

So, since «(0) = ht @ + a(Q) by Proposition 18,
p" @b, (Sq/a9Sq) — p™ s, (Sa/a™)Sg)| < Cd™ T sy (So/aS0)-
Because Sg is flat over Ry and qSg is @-primary, for any artinian Rg-module M,
sy (M @R, Sq) = Lry(M)ls,(Sq/aSq)-
Therefore, the estimate above can be rewritten as
pP QM(Q)ERO[(Rq/q[q]Rq) _pa(Q)gRq (Rq/q[qp}Rq)\ < Cghta—t,
Since S is flat, ht Q = ht g, so we obtain (1) from Theorem 19,
[P" R, (Ra/q Ry) — Ly (Re/ad™ Ry)| < Cp~@g" 171 < Cg™ 71,

and the rest of the proof follows the argument in Theorem 19. a

5. Proof of the main result and concluding remarks

We can now finish the proof of upper semi-continuity of the Hilbert—Kunz multiplicity for F-finite
rings and algebras of essentially finite type over an excellent local ring. To do this, we will verify
the second equivalent condition of Proposition 9.

THEOREM 23. Let R be a locally equidimensional ring. Suppose that R either is F-finite or is
an algebra of essentially finite type over an excellent local ring B. If p be a prime ideal of R,
then for any ¢ > 0 there exists s ¢ p such that for all prime ideals q € Ds NV (p),

err(q) <emk(p)+e.

Proof. If R is not F-finite, consider the extension R - R®p B. Since B is excellent, the natural
map B — B is regular. So, by [Mat80, Lemma 4, p. 253], R — R ®p B satisfies the conditions
of Lemma 12. Hence, by Proposition 9 and Lemma 12, we assume that B is complete.

Note that the considered classes of rings are stable under taking quotients. So, by
Proposition 10 we can assume that R is a domain.

By Theorems 19 and 22 there exist an element s ¢ p and a fixed power gy = p® such that
for all g € D; NV (p),

0R, (Ry/q Ry) /qg" " — e ()] < /2.

In particular,
[0k, (Ry /P Ry) /a0 P — enre(p)] < 2/2.
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We can now use Proposition 6 and obtain a nonempty open subset p € U C V(p) such that
for any q € U,

Cry(Ra/a Rq) /a5 = f4o(a) = fao (P) = Cr, (Rp /P Ry) /5" "

For completeness we give a construction of such U below. The argument is inspired by the proof
of [HY02, Theorem 3.3].

Since R/pl®) is excellent, its Cohen—Macaulay locus is open [EGAIV, 7.8.3(iv)]. Thus we can
find an open subset p € U C V(p) such that (R/pl%l), is Cohen-Macaulay and (R/p), is regular
for all q € U.

Let g be an arbitrary prime in U. Since Rq/pRq is regular, qR, is generated by a regular
sequence x modulo pRy. Then, by the associativity formula,

gRq (Rq/q[qO]Rq) — ﬁRq(Rq/(p[qO], (@[qo])Rq) _ e((@[qo],Rq/p[qo]) _ qgtq/png(Rp/p[qo}Rp).

Thus, we obtain that on U N Dy, /g, (Rp/p[qo]Rp)/q(})ltp is within /2 of both eyx(p) and
ek (q), and the statement follows. O

COROLLARY 24. Let R be a locally equidimensional ring. Moreover, suppose that R either
is F-finite or is an algebra of essentially finite type over an excellent local ring B. Then the
Hilbert-Kunz multiplicity is upper semi-continuous on Spec R.

We note the following corollary of semi-continuity.

COROLLARY 25. Let R be a Noetherian ring and suppose the Hilbert—Kunz multiplicity is upper
semi-continuous on Spec R. Then the Hilbert—-Kunz multiplicity satisfies the ascending chain
condition on Spec R, i.e. any increasing sequence e1 = efi(p1) < e2 = egr(p2) < --- stabilizes.
In particular, the Hilbert—Kunz multiplicity attains its maximum on Spec R.

Proof. Since ey is upper semi-continuous, U; = {p | egx (p) < €;} form an increasing sequence
of open sets, so it stabilizes. O

Remark 26. In [Tucl2], Tucker asked if F-signature is lower semi-continuous in F-finite rings.
One might hope that the ideas of this paper are extendable to F-signature, but, at the present
moment, we know nothing about the convergence rate of the F-signature of a local ring.

In fact, one could even ask if the splitting numbers can be written as

ac=rpq" +0(¢" ),

where rp is the F-splitting ratio, h = a(R) + dim(R/P), and P is the splitting prime of R; see
[Tucl12] for more details.

Remark 27. We conclude by discussing the further difficulties that prevent us from proving
Conjecture 4 in full generality, for an arbitrary excellent ring.

The problem stems from the known proof of existence of the Hilbert—Kunz multiplicity; both
the original paper [Mon83] and its refinement [Tucl2] prove the existence of the limit for a local
ring by reducing to a faithfully flat F-finite extension obtained by extending the residue field.
Thus, there is not much connection between these objects for different localizations, so the results
and methods of the present paper cannot be applied.

Furthermore, it is not enough to have a global faithfully flat F-finite extension; we needed
to use the gamma construction in order to have an extension with suitable properties.
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