ON THE REPRESENTATION OF INTEGERS AS
SUMS OF DISTINCT TERMS FROM A
FIXED SEQUENCE

JON FOLKMAN

1. Introduction. Let 4 = (a1, @ a3 ...) be a sequence of positive
integers. We let

P() = {ia

n=1

e, = 0or 1, almost all ¢, = 0}

denote the set of integers that are sums of distinct terms of 4. If P(4) contains
all sufficiently large integers, we say that A4 is complete. We shall show that
certain classes of sequences that are characterized by their rate of growth are
complete.

TaeOREM 1.1. Let A = (a1 < az < a3 < ...) be an increasing sequence of
positive integers. Suppose that A satisfies

1.1) a, < Mn for all n where 0 < a < 1,
and

(1.2) for every imteger m, P(A) contains an element from each residue class
modulo m.

Then A is complete.

If we assume that the sequence 4 is strictly increasing, then condition (1.1)
may be weakened considerably.

THEOREM 1.2. Let A = (a1 < @z < a3 < ...) be a stricily increasing sequence
of positive integers that satisfies (1.2) and

(1.3) a, < Mn'*e  forall n where 0 < a < 1.
Then A is complete.
Erdos (2) proved Theorem 1.2 in the case where
a< (+v/5—1)/2 =0.6180.. .,

and conjectured that the result was true for e < 1.
We shall say that a sequence A4 is subcomplete if P(4) contains an infinite
arithmetic progression. Theorems 1.1 and 1.2 follow easily from condition (1.2),
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once we have established that the restrictions on the rate of growth of A4
ensure that A is subcomplete.

THEOREM 1.3. Let A be an increasing sequence of positive integers. If A satisfies
(1.1) or if A is strictly increasing and satisfies (1.3), then A is subcomplete.

2. Preliminary lemmas. The letters 4, B, C, ... will denote sequences
of positive integers {a,}, {b.}, {c.},.... We shall sometimes write a(n) for
ay.

LEMMA 2.1. Let A be an increasing sequence of positive integers with disjoint
subsequences B, C, and D. Suppose that

(2.1) for each m > 0,  lim 1 Dby = o,

n-c0 bn+m i=1
and that
¢n > d, for each integer n, and the sequence

(2.2) E defined by e, = ¢, — d, 1is subcomplete.
Then A is subcomplete.
To establish this lemma, we first need another result.

LEMMA 2.2. Let B be an increasing sequence satisfying (2.1). For each integer
r > 0, there is an integer m(r) such that for any k > 0, at least one of the numbers

4+ 1Dr,(k+2)r,..., 4+ m())r
is in P(B).

Proof. Let m > 0 be an integer. We claim that for some 7 and j with
0 <17 <j<r thesum

sy=b((n—Dr+i+1)+b((n—1)r+i+2)
o b= Dy + )

is divisible by . Consider the » sums

So1 = b((ﬂ —_ 1)7’ + 1),
s =b((m —1)r+ 1) +8((n — 1)r + 2),

Sor=b(m —Vr+1)+...4+06((n—1)r+7).

If they are distinct (mod 7), then one of them, so;, is divisible by r. On the
other hand, if

So; = So; (mod 7) for i < j,

then s;; = so; — So; is divisible by 7.
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Set ¢, = s, where s;; is divisible by ». Then

b(n—l)r+l < Cn < 7bn1-

Hence,
Cci >
Cntl =1 roayny, =1

1 1 -
=2 Z b1y ri1

2
r b(n+1)r i=1

b(i—l) r+1

1 1 (n—1) 741
b iy

-y
r b(n+l)r i=1

which tends to infinity with # by (2.1). Therefore, there is an %, such that

n
1 <D i form > mo.
=1
Let

no
M = Z Ci.
=1

If » > noand x is an integer with

n
0<x<) cy
i=1

then there is a y € P({c1,...,¢,}) such that x <y < x + M. For n = n,,
we take y = M. Suppose that the assertion is true for some 7 > n, and we

shall prove it for n + 1.

Suppose
n+1
0<x<K Z Ci
i=1
If
x < 2 ¢

i=1

the required y exists by assumption. If

n
x > E Ciy
=1

then
n n+1 n
0<x—Zci<x—cn+1<zci—cn+1=zlci.
i=1 i=1 i=
Hence, there is a vy € P({c1, ..., ¢,}) with
X = C1 <Y <X — g1+ M.
Now

Y+ o1 € Plcry ..oy cup1}) and x <y 4+ 1 < x + M.
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We have now shown thatif x > 0, thereisay € P(C) withx <y < x + M.
But P(C) C P(B) and every element of P(C) is divisible by r. Hence, we may
take m(r) = M/r + 1 and the lemma is proved. We can now use this result
to prove Lemma 2.1.

Proof of Lemma 2.1. Let » and 7, be integers such that o + kr € P(E) for
every k > 0. Let m(r) be as in Lemma 2.2. For some #, the integers

7’0,}’0"‘1’,...,1’0""7”(7)7

arein P({e1, ..., e}). Let

r1 = 1o+ m(r)r -I—Z d;.

i=1

Let 2 > 0. By Lemma 2.2, (k 4+ 2)r € P(B) for some 7 with 1 < 7 < m(r).

Now
ro + (m(r) — 2)r € P({er, ..., eu}).

Let

ro+ (m(r) — i)r = D e;(c; — d;), e, =0o0r 1.

=1
Then
Yo + (m(?’) _ 7/)7' +Zld] = Zl (d] + GjCj —_ doj)
= ; EjCj +; (]. —_ Ej)dj.

Hence,

r1+ kr

ro + m(r)r —i—zldj + kr
=

= (k+ )7+ (m@) —i)r+r +id,-

=1
= (k+ ) +Zlfjcj +Zl (1 — e)d;.
j= =

The first term is in P(B), the second is in P(C), and the third is in P (D).
Therefore, the sum is in P(4). This is true for any & > 0, so 4 is subcomplete.

LemMA 2.3. Let A be a sequence and let t be a non-decreasing function from the
positive integers to the positive integers. Suppose that for each r > 0, either
P({ay, ..., auqn}) contains an element from each residue class (mod r) or the
sequence @y, . . ., @y contains at least r terms not divisible by r. Then for each
r > 0, P({ay, ...,aun}) contains an element from each residue class (mod r).

Proof. Suppose the contrary. Let » be the smallest integer for which the
lemma fails. Then » > 1 and the sequence ay, .. ., @, contains 7 terms not
divisible by r. Let X = {x3, ..., x;} be representatives for the distinct residue
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classes (mod r) which appear in P({ay, ..., ayn}). Then s < r. By a lemma of
Erdés (2, Lemma 2), there is a subsequence by, . .., b of ay,. .., a,, with
k < s such that every element of X is congruent (mod 7) to a sum of distinct
terms from the sequence by, . .., b;.

Since £ < s < 7, there is a term a; in the sequence ay, . . ., @y that is not
in the subsequence and is not divisible by . Hence, if the residue class of x is in
X, so is the residue class of x + a;. By induction, the residue class of x 4+ pa;
isin X forall p > 0.

Letd = (r,a,). Then 1 < d < rand d = pa; + qr where p may be chosen
to be positive. By the choice of 7, the lemma holds for d. Hence, since d|r and
t(d) < t(r), X contains a representative from every residue class (mod d). Let
y be any integer. Then

y=x; (modd) for some x; € X.
Therefore,

y=ux,+1ld=ux;+Ilpa;,+ lgr = x; 4 lpa; (mod r)

for some /. But the residue class of x; 4+ Ipa; is in X. This is a contradiction
since ¥ is arbitrary.

LeEMMA 2.4. Let A be an increasing sequence satisfying (1.1). Then there is an
integer d > 1 such that all but a finite number of terms of A are divisible by d,
and for eachr > 1, at least r terms of A are divisible by d but not by rd.

Proof. Let S be the set of all integers d > 1 such that the number of terms of
A not divisible by d is less than d. Now .S is non-empty because 1 € S. Since
a < 1, there is an n, such that for n > n,,

a, < Mn* < n.

Hence if d > n,, then the first d terms of 4 are not divisible by d. Therefore,
S is finite.

Let d be the largest element of S. Clearly, all but a finite number of terms
of A are divisible by d. Let »r > 1. Then rd > d so rd ¢ S. Hence, at least rd
terms of 4 are not divisible by 7d. At most d — 1 of these terms are not
divisible by d, so there are at least

rd—@—1)=(@r—-1)d+1>r

terms of 4 which are divisible by d but not by rd.
If 4 is a sequence and r is an integer, we let I(r, 4) denote the number of
terms in 4 that are equal to 7. We may havel(r, 4) = .

LEMMA 2.5. Let A be an increasing sequence satisfying (1.1). Suppose that
Wr,d)/ry,  r>1,

is unbounded. Then A is subcomplete.
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Proof. 1f I(r, A) = o for some 7 > 1, the conclusion is immediate. Suppose
I(r,A) < o forall» > 1. Let d be as in Lemma 2.4. Let N be the number of
terms of A not divisible by d. Let a,,, ay,, @, . . . be the subsequence of 4
consisting of those terms divisible by d. Then n;, < k& 4+ N.

We define a sequence B by

by = ay,/d.
This sequence has the following properties:
(2.3) by < M(N 4+ 1)k
We have
be < an, < Mk + N)Y* < M(N + 1) (fver) < MV + DB
If d does not divide 7, then I(r, 4) < N. Hence,
I(rd, 4)

(rd)a ’ r > 17
is unbounded. But

so
(2.4) 2, r>]

is unbounded.

Choose nyso thatforn > ng, M(N + 1)n® < n.If r > ny, then by, b2, ..., b,
are not divisible by . By Lemma 2.4, forevery r > 1, at least » terms of B are
not divisible by r. Choose 7o so that for each r with 1 < r < n,, the sequence

bl; b2y---ybro

contains at least » terms not divisible by ». If we let t(r) = max(r, o), then
the sequence B and the function ¢ satisfy the hypotheses of Lemma 2.3. Hence,

(2.5) if » = max(r, 7o), then P({by, ..., d,}) contains an element from each
residue class (mod 7).

We claim that there is an integer  with the following properties:

(2.6) r > 7o,
2.7) b, < in forn > r
[n/2]
(2.8) > bi> by forn > r,
i=1
(2.9) rl(r,B) > 2D b..
=1
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By (2.3),
by <K M(N + n= < in
for n sufficiently large. Furthermore,
[n/2]
2 5> /21> MN + D+ D> b

for n sufficiently large. Hence, conditions (2.6)—(2.8) are satisfied by all
sufficiently large 7.
On the other hand, by (2.4), there are arbitrarily large r that satisfy

rl(r, B) > 2M (N + 1)rite,
But

2M(N + 1) > 2izrjl by;
so there are arbitrarily large r satisfying (2.9).
Let! = I(r, B) and let m be the integer such that
b1 < by = bppg1 = ... = bpyi1o1 = 7.
By (2.7),
b, L r<r=b,

Therefore, since B is increasing, r < m. It now follows from (2.7) that
r = by < tmor
(2.10) 4r < m.

The remainder of the proof consists of two assertions, which we prove by
induction.

Assertion A. Letr < n < m — 1. If x is an integer satisfying

T

Dbhi<x<lr+ X by
i=1 i=r+1

then x € P({b]_, ceey bn, bm, bm+1, ey bm+l—1})-

First let » = ». By (2.5) and (2.6), there is a vy € P({by,..., d,}) with
x — vy = 0 (mod r). Now

Therefore,
x—v€1{0,7,2r,...,0r} = P({bu, bty - - -y bmzi-1}),

and the conclusion follows.
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Assume that the assertion is true for some # with r < # < m — 1, and we
shall prove it for » 4+ 1. We may assume that

l?’+ Z bi<x,

i=r+1

since otherwise our assertion follows from the inductive assumption. Hence,

x>0+ X bi> 23 b+ 2 b= bi+ 2 b,
i=1 i=1

i=r+1 i=r+ i=1

by (2.9). Therefore,

x_bn+l>;bi+;bi_bn+l>zbi

by (2.8).
On the other hand,
n-+1 n
x—bn+1<lr-|— Z bi—bn+1=h’+ Z bi.
i=r+1 i=r+1
Thus, x — byy1 € P({b1, ..., buy by b1y« « «y buyi—1}) by the inductive

assumption. The conclusion now follows.

Assertion B. Let m + 1 — 1 < n. If x is an integer satisfying

T n
2 bi<x< X by
i=1

i=r+41

then x € P({dy, ..., b,}).

If » = m + I — 1, the conclusion follows from Assertion A withz = m — 1.
Assume that the assertion is valid for some # > m 4+ [ — 1; then we shall
prove it for » 4 1.

In view of the inductive assumption, we may as well assume that

x > Z bi-

i=r+1
By (2.10), » > m > 4r. Therefore,

n

n 27
x>Zbi=Ebi+th

i=r+1 i=r+1 i=2r+1
T n
>2 b+ 2, b
i=1 i=[n/21+1
[n/2]

> bit+ 2 be
Hence, by (2.8),

T
X — Dyy1 > Zl by
j=
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But
n+1 n
x—bn+1< Z bi—‘bn-;-l: Z bir
i=7+1 i=r+1
$0 X — byp1 € P({by, ..., b,}). The conclusion now follows.

Assertion B implies that B is complete. If x € P(B), then dx € P(4), so 4
is subcomplete. Lemma 2.5 has now been proved.

LEMMA 2.6. Let A be a sequence of positive integers. There is an increasing
sequence B such that P(B) C P(4) and

for any n.

Proof. Let b, be equal to the nth smallest term of 4, where the smaller of
two terms with the same value is taken to be the one with the smaller index.
Clearly B is increasing. We have P(B) C P(A) because B is a permutation
of a subsequence of 4.

Since by, by, . . ., b, are equal to the # smallest terms of 4, their sum is less
than or equal to the sum of any 7 terms of 4. In particular,

n

Zbi<2ai.

i=1 i=1
3. Proofs of the theorems.

Proof of Theorem 1.3. First suppose that A is increasing and satisfies (1.1).
Let I denote the set of a, 0 < a < 1, for which the theorem holds. If « = 0,
then A is bounded, so it contains infinitely many terms with the same value.
In this case A4 is clearly subcomplete, so 0 € I. If 0 < B < @ and a € I, then
B8 € I because n? < n= for all » > 1. Hence, if ay = sup I, it suffices to show
that Qg = 1.

Suppose 0 < ap < 1. Let

a = 2qy+ 3.

Then 0 < @ < 1, but a ¢ I because a > a. Hence, there is an increasing
sequence A that is not subcomplete but satisfies

3.1) a, < Mn> forall n

for some M.
In view of Lemma 2.5, [(r, A)/7> is bounded. Hence, there is an N such that

3.2) I(r,A) < Nr~ for all .
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We define disjoint subsequences B, C, and D of 4 as follows:
by = @snyo,
¢ = a@B[n + NMena® - 1] 4 1),
d, = Az

Here [x] denotes the greatest integer in x. For each m,

n
nm,z_:lb 7 M@3n+ 3m+ 2)*"

The right-hand side tends to infinity with s, so B satisfies (2.1).
We have ¢, > d, because 4 is increasing. Suppose that ¢, = d, for some 2.
Then by (3.1) and (3.2),

Hasy, A) > 3[n + NMepe* + 1]+ 1 — 3n
= 3[NMene® + 1] + 1

SNMen=® + 1

N(M@3Bn)*)= + 1

> N(as.)*+ 1

> las, 4) + 1.

This is a contradiction, so ¢, > d, for all .
Let e, = ¢, — d, and let F be the increasing sequence obtained from E by
Lemma 2.6. Then for each n > 0,

AR %

\%

2n 2n
nfu < Z fi< Z E €
i=n+1 = i=1
= Z c; — Z di
i=1 i=1
[2n+N M%(20)¢%41] 2n
< @341 — Z(lai
i=1 i=1
2n—1 [2n4-N M%(2n) 24-1]
Z ((laz+1 - aaz+3) + Z a3zit1

=en
< IVM*@2n)™ + 2Ja@(2n + NM*@n)™ + 1] + 1)
< O M (Rn)* = MORn*+,
where Q = NM=22* 4+ 2 and R = 10 + 3NM=2>*, Hence, for each =,
Jo € MQRnot—1 < MQRen?1.
We have f, > 1forall #,s020¢ — 1 > 0. On the other hand,

20— 1=2C0+3) —1 =50 —%=ay+ 3a— 1) < .
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Therefore, 2 — 1 € I, so F is subcomplete. Now P(F) C P(E), so E is
subcomplete. By Lemma 2.1, 4 is subcomplete, which is a contradiction.

Now suppose 4 is strictly increasing and satisfies (1.3). Define disjoint
subsequences B, C, and D by

bn = A3p+2 Cn = QA3p+1, dn = QA3p.
Since B is strictly increasing, for each m
1 & (1/2)n(n + 1)
bt 200> M@Bn 4 3m + 2)7F"

Hence, B satisfies (2.1).

Now ¢, = @341 > a3, = dy. Let ¢, = ¢, — d, and let F be the monotonic
sequence obtained from E by Lemma 2.6. By Lemma 2.1 and what we have
already proved, it now suffices to show that for some N,

fo < N2 for all n.

We have

2n—1

< @1 + Z:l (@341 — @3it3)
=

| < oy < M(6n + 1) < 7 Mn™e,
Therefore,
fn < 71+aMna,
and the proof of Theorem 1.3 is complete.

Proof of Theorem 1.1 and 1.2. Let A be an increasing sequence satisfying (1.2).
Suppose that either A satisfies (1.1) or A4 is strictly increasing and satisfies
(1.3). We shall call these two situations Case I and Case II, respectively.

Suppose we can find sequences B and C that are disjoint subsequences of 4
and have the properties that P(B) contains an element from each residue class
(mod ) for each 7, and C is subcomplete. Let 7y and » be integers such that

ro + rk € P(C) for each £ > 0.
Let {x1, %2, ..., %x,} C P(B) where x; = ¢ (mod r). If x is an integer and
x > ro + max(xi, X2, . . ., X,),
then x — 7o = x; (mod r) for some 1, so

X — 7y

x=xi+7’o+7’( r‘_—xi>€P(A)-
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Hence, to show that A4 is complete it suffices to construct the sequences B
and C.
Choose #, so large that

AM(An)* < n for n > n,.

By (1.2), P(4) contains an element from each residue class (mod 7) for each 7.
Hence, we can choose 7q so that P({a1, as, . . ., a,}) contains an element from
each residue class (mod 7) for 1 < 7 < n,.

Define sequences B and C by

p = {a,, if n < 2r,
Qa—rp—1  if m > 27y,
and ‘
Cn = Qantro)-
Then B and C are disjoint subsequences of 4. We have
e = Qagupre) < M2(n + 10))7 < M (2 + 2r0)"n7

where v = ain Case [, and in Case II, C is strictly increasing and v = 1 + a.
By Theorem 1.3, C is subcomplete.

Let ¢(r) = max(ro, 47). We claim that the sequence B and the function ¢
satisfy the hypotheses of Lemma 2.3. If » < #,, then

P({bl, e ey b;(y)}) D P({d], PR ,(Z,o}),

which contains an element from each residue class (mod 7). Suppose r > n,.
Note that

Gy = beia if 20— 1 < 27,
LT Vbigre if 26— 1> 27,

Furthermore, if 2¢ — 1 > 27y, then ¢ 4 7o < 22 — 1. Hence, the sequence
A = (a1, as as, ..., a4,-1) is a subsequence of (by, by, . .., bs;) which is a
subsequence of (by, b2, ..., byn).

In Case I each term of A4 is less than or equal to a4,, and

a4, < MAr)r < 4AMA4r)= < r.

Hence, each of the 27 terms in A is not divisible by 7.

Now suppose we are in Case II. If fewer than  terms of A are not divisible
by 7, then more than 7 terms of A are divisible by 7. The terms of A4 are distinct
because 4 is strictly increasing, so for some a; € A, a; > 72 Therefore,

1< a; < agy < M@Ar)He = 4M(4r)r < 7.

This is a contradiction.
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By Lemma 2.3, P(B) contains an element from each residue class (mod 7)
for each 7. This completes the proof.

4. Remarks. Let « > 1. It is easy to construct an increasing sequence 4
that satisfies -

a, < ne
but is such that
4.1) SUP Uppy — D Gy = .
X n =1

Such a sequence clearly is not subcomplete. A similar construction yields a
strictly increasing sequence A4 that satisfies (4.1) and

a, < n 1+a.

These examples show that our theorems are false for & > 1. Cassels (1)
constructs counter-examples to Theorem 1.2 and Theorem 1.3 in the strictly
increasing case for a > 1. His sequences satisfy the additional regularity
condition that

Apt1 = Ay + o(an%-‘—e);

where € is an arbitrary preassigned positive number. Hence, these results
are false for @ > 1, even in the presence of rather strong ‘‘smoothness’
conditions.

The following questions remain open:

If 4 is an increasing sequence satisfying

a, < Mn for all n,

then is A subcomplete?
If A4 is a strictly increasing sequence satisfying

a, < Mn? forn > ng
where M < 1/2, then is A subcomplete? (We must require M < 1/2 in this
case to ensure that 4 does not satisfy (4.1).)
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