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Consider the flow through a channel with grooved edges on one (or both) side(s). If heating
is applied to the boundaries, thermal drift is the flow generated by the interaction of the
groove and heating patterns. It is known that, if one side of a channel is smooth while the
other is grooved, the application of heating forms a so-called ‘thermal drift engine’. Two
thermal drift engines are activated if both surfaces are grooved, and these may reinforce or
oppose each other. Carefully choosing these engines can lead to an intensification of the
thermal drift. The interplay of two drift engines is explored using a horizontal slot with
grooves that have a sinusoidal profile with a prescribed wavenumber α. It is shown that
the strength of the flow decreases proportional to α as α → 0 and proportional to α−1 as
α → ∞. We determine the value of α corresponding to the strongest flow and characterize
how the conclusions should be modified if a uniform heating component is added to the
heating pattern.

Key words: buoyant boundary layers

1. Introduction

Several external mechanisms can influence the motion of a convective fluid within a
channel. If the sides of the channel are not flat, any topography may cause the fluid to move;
furthermore, a temperature distribution applied to one or both sides of the channel may
affect the flow. Thermal drift is the motion produced by combining a grooved geometry
of the boundaries and an imposed heating pattern (Abtahi & Floryan 2017a; Floryan
& Inasawa 2021; Inasawa, Hara & Floryan 2021). If the heating profile is periodic, the
consequent convection appears as counter-rotating rolls with a spatial structure dictated by
the heating wavenumber. The associated pressure field projects onto the geometry of the
grooves and produces a force that drives a net flow along the channel. The magnitude
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and direction of this flow depend on the relative positions of the heating and groove
patterns, and even though the applied heating is periodic, the convection generates a net
heat flow across the slot (Abtahi & Floryan 2017b). The drift is generated irrespective of
the heating intensity, so this effect is essentially a forced system response rather than any
form of bifurcation. The mechanism of thermal drift can be used for several processes
including fluid pumping (Floryan, Haq & Panday 2022) or propulsion (Floryan, Aman &
Panday 2024a). It should be emphasized that there is a slightly subtle difference between
thermal drift and thermal streaming, as the latter requires a sufficiently strong heating
intensity (Floryan, Panday & Aman 2023). Periodic heating may yield a propulsive effect
via streaming, but only if the spatial distribution is appropriately chosen and the heating
is sufficiently strong; in this regard, streaming is the upshot of a bifurcation behaviour
(cf. the earlier remarks regarding thermal drift).

Any analysis of the interaction of the two types of flow actuation (i.e. the boundary
topography and the heating pattern) requires an appropriate specification of these
distributions. For general periodic patterns, the forcing clearly ought to be written in
the form of a Fourier series. Except for very special situations, the solution for the
subsequent flow structure can then only be determined using fully numerical simulations.
One drawback of this approach is that it can be difficult to appreciate the important facets
of the underpinning mechanisms. Here, we adopt an alternative strategy and suppose that
a single Fourier mode describes both the channel geometry and the imposed heating.
While this may seem somewhat over-simplistic, we point out that in some previous studies
(Floryan 2007), it has been found that if a single Fourier component is used to approximate
a complicated geometry, the corresponding flow properties can often accurately capture
the main features of the system response. This is sometimes referred to as a reduced
geometry model but perhaps can be considered more generally as a reduced distribution
mode. This device neatly sidesteps the need to study numerous separate cases, as their
properties can be reliably estimated using the reduced model. We shall demonstrate later
that reduced distribution models can legitimately be used to study the interaction of
topography and temperature patterns.

It has been established that spatially patterned heating alone can reduce the pressure
losses observed in channel flows (Hossain, Floryan & Floryan 2012; Floryan & Floryan
2015; Hossain & Floryan 2016; Inasawa, Taneda & Floryan 2019). When combined with a
groove structure, a larger reduction is achievable if the relative positions of the grooves
and the heating are properly selected (Floryan, Shadman & Hossain 2018; Hossain &
Floryan 2020; Floryan, Aman & Panday 2024b). The reason for these reductions can
be traced to the properties of convection rolls present in the flow. The upshot is that
pressure reductions are only achievable when the flow is relatively modest; if it is too
strong, it completely washes the rolls away and the potential for pressure reduction is
lost. In practical terms, no resistance reduction can occur once the Reynolds number
exceeds approximately 100. Moreover, it should be remarked that periodic heating may
induce instabilities in a horizontal fluid layer driven by the spatial parametric resonance
(Hossain & Floryan 2013, 2015, 2022); the mechanism underpinning this is distinct from
the Rayleigh–Bénard instability (Bénard 1900; Rayleigh 1916; Drazin & Reid 2004).

Features of fluid pumping have also been observed in other contexts. In this regard, we
mention that the effect can be achieved using the difference in radiative effects induced
by surfaces of different colours. This process is of particular interest within the field of
rarified gas dynamics (Crookes 1874). This concept has been utilized in conduits subject
to patterns of spatial heat fluxes combined with a pattern of surface grooves, known as the
ratchet effect (Shahabi et al. 2017; Lotfian & Roohi 2019). The main driver in producing
an axial pumping force is a break in the axial symmetry within the flow. Most existing
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analyses seem to involve a series of case studies with a wider generalized picture that is
still somewhat obscure. Nevertheless, it has been shown that relatively large temperature
differences are required; the interested reader is directed to the excellent review by Lotfian
& Roohi (2019) for a comprehensive review of this field.

There has been relatively little previous work that directly addresses thermal drift. Of
what has been done, most of the analysis has focused on problems in which only one
side of the channel is grooved while the other edge is perfectly flat. When subjected to
a heating pattern, such a configuration can be thought of as forming a so-called ‘thermal
drift engine’ (hereafter referred to as a TDE). One of the main issues tackled in the present
work is understanding the system response when multiple patterns are used, i.e. when
multiple TDEs are present. Potentially, these TDEs may either reinforce or oppose each
other. We tackle this issue by allowing both sides of the channel to be grooved so that we
have the possibility of interplay between two geometrical and one thermal patterns. It is
far from clear at the outset whether the introduction of the third distribution will have only
minimal and inconsequential implications for the flow field or whether more substantial
modifications may arise. This is the central question that the remainder of this paper seeks
to answer.

In the simplest case, the spatial distributions of flow actuations are characterized by
three wavenumbers, with one for each of the surface topographies and temperature.
Depending on the selection of these wavenumbers, the resulting flow may have various
commensurate (periodic) and incommensurate (aperiodic) states (Seneta 1976; Laczkovich
& Revesz 1990; Keleti 1997; Hu 2013). The appearance of incommensurate states has been
recently recognized in hydrodynamic stability problems involving analysis of the stability
of spatially modulated flows (Panday & Floryan 2023). In this work, we consider all
patterns being characterized by the same wavenumber and focus on the effects of different
relative positions of these patterns.

To this end, the remainder of the presentation is organized as follows. In § 2, we
formulate the model problem: a horizontal slot bounded by plates with sinusoidal grooves.
The lower plate is exposed to a heating pattern, which is also of sinusoidal form, so
it has the form of a reduced distribution model. We adopt simple sinusoidal patterns
since this facilitates the identification of the main mechanisms responsible for the drift.
Appreciating the various processes at work is somewhat difficult to disentangle should
more complicated grooves and/or heating structures be chosen. Both the upper and lower
grooves activate two distinct TDEs and provide a vehicle for analysing a more involved
flow driven by multiple engines (or multiple pattern interaction effects).

Section 3 focuses on the flow produced by a single engine. Although the properties
of single engines are well known, it is helpful to set out the key properties before
we introduce the second engine; this is done in § 4. Sections 5 and 6 provide some
asymptotic justification for our findings. Section 5 examines the problem in an appropriate
long-wavelength limit, while § 6 discusses a weak convection case. We derive an
expression for the fluid flux and demonstrate that the result appears to be accurate for
a range of parameters far wider than might have been expected. Section 7 discusses the
effects of uniform heating, while § 8 comments on the effects of the Prandtl number.
Section 9 suggests modifying our basic problem, which involves grooves composed of
straight isothermal segments. Such a device can be readily manufactured for experiments
or applications in passive horizontal pumping and provides some insight into the
usefulness of adopting simplified geometry based on a single Fourier mode. The paper
closes with a few final remarks.
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Figure 1. A schematic of the flow system. The slot occupies the region yL(x) ≤ y ≤ yU(x) with the limits
defined by (2.1). The temperature of the lower edge y = yL(x) is defined by (2.2a). The heating and groove
oscillations are of wavenumber α; the phases ΩC and ΩTL govern the offsets between the positions of the two
boundaries and between the locations of the slots and applied heating.

2. Problem formulation

Consider an infinite horizontal slot formed by two corrugated plates as sketched in figure 1.
We introduce the coordinate axes so that the x-axis is directed from left to right, and the
positive y-axis points upwards. The geometry of the slot is then specified as

yL(x) = −1 + 1
2 AL cosαx, yU(x) = 1 − 1

2 AU cos(αx +ΩC), (2.1a,b)

where the subscripts U and L refer to the upper and lower plates, respectively, and lengths
have been made dimensionless based on the half mean slot opening h. In a practical
experiment, the topographies of the surfaces might likely be somewhat intricate, but here,
we model them using appropriate leading-order Fourier components. We shall revisit
the question as to the accuracy of using a reduced model to describe the performance
of arbitrary topographies in § 9. Both the lower and upper plates are supposed to be
corrugated, and the grooves have peak-to-trough amplitudes AL and AU , respectively. The
oscillations in the groove shape are of wavenumber α (or of wavelength λ = 2π/α) and
are offset by a relative phase shift ΩC. Changing the value of ΩC adjusts the geometry
of the slot; the largest possible slot opening is 2 + 1

2 AL + 1
2 AU while the smallest opening

2 − 1
2 AL − 1

2 AU .
The lower plate is heated, resulting in a periodic temperature profile, while the upper

plate is kept isothermal. This implies that the plates’ temperature distributions are given
by

θL(x) = Rauni + 1
2 Rap,L cos(αx +ΩTL) and θU(x) = 0, (2.2a,b)

where θ denotes the dimensionless temperature and (2.2a) consists of a single Fourier
mode. This temperature is defined to be θ = T − TU where the temperature of the upper
plate TU is used as a reference level, and θ has been scaled on κν/(gΓ h3); here, g
stands for the gravitational acceleration, Γ is the thermal expansion coefficient, ν denotes
the kinematic viscosity and κ stands for the thermal diffusivity. We emphasize that the
inclusion of the phase angle ΩTL allows us to examine the effect of varying the offset
between the heating pattern and the geometry of the bottom groove. The periodic Rayleigh
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number Rap,L sets the amplitude of temperature variations of the lower boundary of the
slot while the uniform Rayleigh number Rauni sets the intensity of the uniform heating
component.

We intend to examine how the interaction between the groove and heating patterns
can produce a net horizontal flow rate Q. To address this issue, we need to solve for the
two-dimensional convection of Boussinesq fluid within the slot. This is governed by the
continuity, Navier–Stokes, and energy equations, which we write in the form

∂u
∂x

+ ∂v

∂y
= 0, u

∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∇2u, (2.3a,b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v + Pr−1θ, u

∂θ

∂x
+ v

∂θ

∂y
= Pr−1∇2θ. (2.3c,d)

In this system (u, v) denotes the velocity components in the (x, y) directions,
respectively, scaled with Uv = ν/h, while p is the pressure relative to the hydrostatic
component and scaled on ρU2

ν . The parameter Pr = ν/κ is the Prandtl number, and in
most of our subsequent computations, we take Pr = 0.71 (the value appropriate to air). In
the derivation of the system (2.3), we have implemented the Boussinesq approximation;
this is a fairly standard procedure, but a discussion of the precise circumstances under
which it is appropriate has been given by Tritton (1977). The results of experiments under
thermal conditions similar to those used in the present analysis (Inasawa et al. 2019, 2021;
Floryan & Inasawa 2021) demonstrate that the Boussinesq approximation describes the
fluid response very well.

Equations (2.3) need to be supplemented by flow and temperature conditions. We
impose the no-slip, no-penetration and temperature conditions on the sides of the slot
so that

u(x, yL) = u(x, yU) = 0, v(x, yL) = v(x, yU) = 0,

θ(x, yL) = θL(x), θ(x, yU) = θU(x) = 0, (2.4a–d)

where yL and yU are defined in (2.1), and the temperature profile θL(x) is given by (2.2a).
The solution should be periodic in x (with the periodicity dictated by the heating and
groove patterns), eliminating the need for boundary conditions in the x-direction. We wish
to study the pumping effect resulting from pattern interactions and, thus, we eliminate any
external pressure gradient, which leads to the pressure gradient constraint of the form

∂p
∂x

∣∣∣∣
mean

= 0. (2.5)

The velocity components are expressed using the streamfunction ψ defined as
u = ∂ψ/∂y and v = −∂ψ/∂x, and the pressure is eliminated between (2.3b,c), thereby
giving the vorticity equation which is fourth order in ψ . The unknowns are expressed
as Fourier expansions in the x-direction, with the modal functions expressed in terms
of Chebyshev expansions in the y-direction. This form of discretization ensures that
x-periodicity conditions are automatically satisfied.

The analysis of flow physics requires solutions for flow equations in a wide range of
irregular domains that can arise from variations in groove wavenumbers and amplitudes.
The variability of the geometry represents the main computational challenge. Typical
solution strategies involve numerical grid generation, which has to be repeated with each
change of the slot geometry. The immersed boundary conditions method provides better
geometric flexibility and was selected for this study. The main idea of this method is to

998 A41-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.924


J.M. Floryan, W. Wang and A.P. Bassom

use a regular computational domain with the slot immersed in its interior. The form of
the discretized flow equations remains the same for all geometries. The classical boundary
conditions are replaced by the constraints (Szumbarski & Floryan 1999; Husain & Floryan
2008, 2010; Husain, Szumbarski & Floryan 2009), which are included using the τ -method
(Canuto et al. 1992) and need to be changed as geometry changes. The groove shape
is encoded within the algorithm using appropriate Fourier expansions with changes in
the expansion coefficients accounting for variations of the slot geometry. This method
bypasses the need for numerical grid construction and omits the need for grid convergence
studies. All the elements of the discretization have spectral accuracy. Global accuracy is
controlled by selecting the number of Fourier modes and Chebyshev polynomials. All
reported results are at least four digits. Details of this of this algorithm are presented in
Panday & Floryan (2021).

The net horizontal flow rate Q defined as

Q =
∫ yU(x)

yL(x)
u(x, y) dy (2.6)

is determined during the postprocessing phase; Q defines the Reynolds number based on
the mean horizontal velocity Um, i.e. Re = Umh/ν = Q.

The flow mechanics are most conveniently explained by analysing forces acting on the
fluid at the bounding plates. The stress vector σ L at the lower plate takes the form

σ L = [σx,L σy,L] = [nx,L ny,L]

⎡
⎢⎢⎣

2
∂u
∂x

− p
∂u
∂y

+ ∂v

∂x
∂u
∂y

+ ∂v

∂x
2
∂v

∂y
− p

⎤
⎥⎥⎦

y=yL

, (2.7)

where the normal unit vector nL pointing outwards can be expressed as

nL = [nx,L ny,L] = NL

(
∂yL

∂x
,−1

)
, NL =

[
1 +

(
∂yL

∂x

)2]−1/2

. (2.8a,b)

The x-component of the stress vector is written as

σx,L = σxv,L + σxp,L = NL

[
2
∂yL

∂x
∂u
∂x

∣∣∣∣
yL

−
(
∂u
∂y

+ ∂v

∂x

)∣∣∣∣
yL

]
− NL

∂yL

∂x
p
∣∣∣∣
yL

, (2.9)

where σxv,L and σxp,L denote the viscous and pressure components, respectively. The
x-component of the total force Fx,L (per unit length and unit width of the slot) is expressed
as

Fx,L = Fxv,L + Fxp,L = λ−1
∫ x0+λ

x0

[
2
∂yL

∂x
∂u
∂x

∣∣∣∣
yL

−
(
∂u
∂y

+ ∂v

∂x

)∣∣∣∣
yL

]
dx

− λ−1
∫ x0+λ

x0

∂yL

∂x
p|yL dx, (2.10)
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where x0 is a reference point, Fxp,L denotes the pressure force while Fxv,L stands for the
viscous force. A similar process applied to the upper plate yields

nU = [nx,U ny,U] = NU

(
−∂yU

∂x
, 1

)
, NU =

[
1 +

(
∂yU

∂x

)2]−1/2

, (2.11a,b)

σx,U = σxv,U + σxp,U = NU

[
−2
∂yU

∂x
∂u
∂x

∣∣∣∣
yU

+
(
∂u
∂y

+ ∂v

∂x

)∣∣∣∣
yU

]
+ NU

∂yU

∂x
p
∣∣∣∣
yU

, (2.12)

Fx,U = Fxv,U + Fxp,U = λ−1
∫ x0+λ

x0

[
−2
∂yU

∂x
∂u
∂x

∣∣∣∣
yU

+
(
∂u
∂y

+ ∂v

∂x

)∣∣∣∣
yU

]
dx

+ λ−1
∫ x0+λ

x0

∂yU

∂x
p|yU dx. (2.13)

We remind the reader that all presented results are for Pr = 0.71 (unless otherwise noted).

3. Grooves on the lower plate

We shall begin our investigation by looking at the pattern interaction effect. To appreciate
its main properties, we remove unnecessary complications and reduce the number of
actuation patterns, i.e. the number of temperature and surface distributions contributing to
the flow generation, to just two. This is achieved by assuming the upper plate is smooth, i.e.
AU = 0, and attempt to describe the interaction of the lower groove pattern and the heating
pattern. We note that there is nothing particularly special about choosing the upper plate
to be flat. If we transform the governing system using the changes u → −U, v → −V ,
p → P, θ → −Θ , x → −X, y → −Y , Q → −Q, ΩTL → ΩTU + π, the problem with a
smooth upper plate can be related to an equivalent case in which the lower plate is flat.
Hence, for a one-groove problem, we can choose either surface to be smooth and be safe in
the knowledge that the important properties of the solution are independent of the precise
geometry.

The flow and temperature fields for four values of the phaseΩTL are displayed in panels
(a–d) of figure 2, while the flow and pressure fields are shown in panels (e–h). Hot spots
overlap with the groove peaks in the first column of figure 2, are located to the left of
peaks in the second column, overlap with groove troughs in the third column and are
located to the right of groove peaks in the fourth column. The positioning of the hot spots
controls the location of the flow pattern with respect to the grooves, as this is where the
fluid is driven upwards. The pressure and flow fields are tightly coupled, so the pressure
field moves with respect to the grooves when the heating pattern moves. This results in
different projections of the pressure field onto the surface topography, and this produces a
net horizontal pressure force at the lower plate, as illustrated in figure 3(a). When the hot
spots are located either at the groove peaks or troughs, the convection produces symmetric
counter-rotating rolls, and the pressure field is symmetric with respect to the location of
groove peaks and troughs (see the first and third columns in figure 2). The result is that
there is a zero mean pressure force acting on the fluid at the lower plate (see figure 3a).
The pressure field is not symmetric with respect to the groove position if the hot spots are
located elsewhere and this gives rise to a non-zero mean pressure force at the lower plate.
This force drives a net horizontal fluid movement by forming a stream tube that weaves
between convection rolls. This movement is directed to the right (left) when the hot spots
are located to the left (right) of groove peaks, as shown in the second and fourth columns
of figure 2. The flow rate Q is antisymmetric with respect toΩTL = 0 andΩTL = π as the
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Figure 2. The flow and temperature fields (a–d) and the flow and pressure fields (e–h) when Rap,L = 500,
Pr = 0.71, α = 1, AL = 0.1, AU = 0 and Rauni = 0. In all the plots, the temperature has been normalized with
its maximum θmax.

10 1.2

0.6
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0Q
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0

0 0 2ππ0.5 1.0

π

3π/2

π/2 ΩTL = 0

ΩTL
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4.44

–4.44

x/λ

(a) (b)

Figure 3. (a) The x-component of the pressure force σxp,L acting on the fluid at the lower plate and (b) the
flow rate Q as a function of the phase difference ΩTL. Other parameters are given by Rap,L = 500, Rauni = 0,
Pr = 0.71, α = 1, AL = 0.1 and AU = 0. The dashed lines in (a) show the non-zero mean values.

magnitude of the net flow is the same but has an opposite direction. It may be concluded
that thermal drift is created by applying the heating pattern to break the symmetry between
the grooves and the heating.

4. Grooves on both plates

Using grooves on both plates potentially activates two interactions: one between the
heating and the lower grooves and the second between the heating and the upper grooves.
These are two TDEs, and the properties of the interplay between these two engines are
of primary interest here. Heating is essential for creating thermal drift, so any interaction
between the two sets of grooves is of no direct interest. Each interaction is a function of
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Figure 4. The flow rate Q as a function of the phase shifts ΩC and ΩTL when Rap,L = 500, Rauni = 0,
Pr = 0.71, α = 1 and AL = 0.1. In the three cases, we vary the upper groove amplitude so that in (a)
AU = 0.5AL, (b) AU = AL and (c) AU = 1.5AL. In each case, the circles indicate the phase shifts that give
the maximum flow rate. In (a) ΩC = 3.0567, ΩTL = 1.7406; in (b) ΩC = 3.0567, ΩTL = 1.7406; and in (c)
ΩC = 2.9718, ΩTL = 1.7406. The flow, temperature and pressure fields for conditions corresponding to the
circle in (b) are displayed in figure 5. The blue and red lines identify the cuts used in figure 12.

the relevant phase difference; the reader is reminded that the lower plate interaction is
governed byΩTL, while the upper plate process depends onΩTL −ΩC, i.e. on the relative
position of the upper grooves and the heating. In general, neither interaction obeys the
superposition rule.

The results displayed in figure 4 illustrate how the flow rate Q varies with ΩTL and
ΩC. We notice that there is some symmetry in the phase angle ΩTL; since Q(ΩTL,ΩC) =
−Q(2π −ΩTL, 2π −ΩC) it is sufficient to restrict ourselves to the range ΩTL = 〈0,π〉
for the remainder of this discussion. We remark that the most effective positioning of the
heating and the upper groove patterns corresponds toΩTL ≈ π/2, 3π/2 andΩC ≈ π. We
shall subsequently focus on ΩTL = π/2 as taking ΩTL = 3π/2 produces the same Q with
a change of sign being the only difference.

The positioning of the grooves that achieve the greatest flow rate gives the appearance
of a wavy slot, as shown in figure 5. The hot spot is located to the left of the groove peak
(figure 5a) and generates a low-pressure zone (figure 5b). The lower plate has an upward
inclination at this location with the pressure projection creating a positive x-pressure force
(see figure 5c). The fluid rises and impacts the upper plate to the right of the groove peak
gives rise to a high-pressure zone. The upper plate has an upward slope at this location with
the pressure projection again creating a positive x-pressure force (figure 5c). This force is
smaller at the upper plate as the magnitude of the pressure there is slightly reduced, and
the region of pressure rise is marginally narrower than the zone of pressure reduction at
the lower plate. The pressure force accelerates the fluid until it reaches the velocity where
the pressure force is balanced by friction resistance. The direction of friction periodically
changes along the two plates, with the mean friction at the lower plate being more than
twice that on the upper (figure 5d). We remark that the amplitude of these variations is
larger than the mean by an order of magnitude. As the geometry of the slot is nearly
symmetric with respect to the groove peak, the symmetry breaking of the flow is almost
entirely due to the positioning of the heating pattern.

The spatial patterning of the grooves and heating appear to have a strong effect on the
flow rate, as illustrated in figure 6. A wavenumber around α ≈ 1 appears to be the most
effective, but the size of the resulting Q strongly depends on the relative position of grooves
and can vary by as much an order of magnitude asΩC changes between 0 and 2π. Section 3
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Figure 5. Details of the flow when Rap,L = 500, Rauni = 0, Pr = 0.71, α = 1, AL = AU = 0.1,ΩC = 3.0567
and ΩTL = 1.7406, which corresponds to the maximum flow rate in figure 4(b). Shown in (a) are the flow
and temperature fields; in (b) the flow and pressure fields; in (c) the distribution of the x-component of
pressure forces at both plates; and in (d) the distributions of the x-component of shear force at both plates.
The temperature has been normalized with the condition θmax = 1.

described the most basic form of the engine with grooves and heating applied at the lower
plate. Adding grooves at the upper plate adds the second engine. The effectiveness of each
engine is a joint function of the relative positions of the grooves and the heating combined
with the strength of convection near each plate. An important element is the wavenumber
α as it determines the ability of convection to penetrate the interior of the slot.

The results presented in figure 6 demonstrate that the engines decouple when α → ∞.
The forms of the flow field, together with the temperature and pressure fields, are displayed
in figure 7; they suggest that, in the short-wavelength limit, the upper part of the flow field
becomes isothermal. This effectively switches off the second engine, and the flow rate
becomes almost independent of the position of the upper groove. These properties are
further illustrated by the temperature distributions across the slot, as shown in figure 8(b),
which shows a thermal boundary layer formation near the lower plate and an isothermal
zone above. The pressure variations are confined to this boundary layer, as illustrated in
figure 8(c), and there is no mean pressure gradient above this thin zone. The buoyancy
force drives fluid movement within the boundary layer, as shown in figure 8(a). The flow at
the edge of the boundary layer appears to the fluid above as a moving wall, thereby creating
a velocity distribution reminiscent of that of Couette flow. There are thin boundary layers
in the pressure and velocity fields attached to the upper plate, but they are inconsequential
to the flow rate. Both drift engines become active when α = O(1) as convection fills the
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Figure 6. Variations of the magnitude of the flow rate |Q| as a function of α when AL = AU = 0.1,
Rap,L = 500, Rauni = 0, Pr = 0.71 and ΩTL = π/2. Solid and dashed lines indicate positive and negative
values, respectively. The labels ‘Engine 1’ and ‘Engine 2’ identify the forms of Q(α) when only the lower or
upper side is grooved, respectively.
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Figure 7. Flow structure in the large wavenumber limit. The (a) flow and temperature fields and (b) the
pressure and temperature fields when AL = AU = 0.1, Rap,L = 500, Rauni = 0, α = 9, Pr = 0.71, ΩC = π

and ΩTL = π/2. The temperature has been normalized with the condition θmax = 1.

entire slot. The behaviour of Q seems to drop proportional to α with α → 0 as horizontal
temperature gradients responsible for convection decrease. We shall explore this further in
the coming section.

The role of the second engine can be explained by reference to the forms of the
x-component of pressure force at the lower and upper plates, as displayed in figure 9. The
propulsive force created by the first engine appears unaffected by the presence of the upper
grooves and is nearly the same as the force generated by this engine acting alone. The force
generated by the second engine changes with the position of the upper grooves, and it can
either support the first engine, be neutral or be oppose it. The optimal performance of the
dual-engine system is achieved when both engines propel the fluid in the same direction.
The reader may note that Q for the second engine with ΩC = π/2, 3π/2 is zero as hot
spots overlap with groove peaks and troughs.

Results presented in figure 10 permit assessment of the effects of heating intensity. The
flow rate Q increases proportionally to Rap,L until approximately Rap,L ≈ 1000, and then
a saturation process appears to take place, slowing down the rate of increase of Q with
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Figure 8. The distributions of some key flow variables at the four streamwise locations x = 0, λ/4, λ/2 and
3λ/4, denoted by red, green, blue and black lines. The particular flow has AL = AU = 0.1, Rap,L = 500,
Rauni = 0, α = 9, Pr = 0.71, ΩC = π and ΩTL = π/2. The plots show (a) the x-velocity component u,
(b) the temperature θ and (c) the pressure p as functions of y. The temperature has been normalized with
the condition θmax = 1.
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Figure 9. Distributions of the x-component of pressure forces at the (a) lower and (b) upper plates when
Rap,L = 500, Rauni = 0, Pr = 0.71, α = 1, AL = AU = 0.1 and ΩTL = π/2. Dotted lines illustrate mean
values, and dashed lines correspond to grooves on only one plate. The labels ‘Engine j’ identify the form
of Q when only the lower ( j = 1) or upper plate ( j = 2) is grooved.

further increase of Rap,L. This process is similar for all configurations considered but
occurs for the smallest Rap,L for the configuration that gives the highest flow rate, i.e. when
ΩC = π. The analysis was not continued to larger Rap,L due to the possible formation of
secondary states (Hossain & Floryan 2013, 2022).

The strengths of the two drift engines are governed by the amplitudes of the two groove
patterns. Figure 11(a) illustrates the amplitudes’ relative importance. When either AU → 0
or AL → 0, it is clear that the other set of grooves becomes mainly responsible for the
flux through the slot. As a measure of this effect, superimposed in figure 11(a) are the
combinations of amplitudes for which 95 % of the flux can be ascribed as being due to
the larger set of grooves. Shown also are the amplitudes of single groove systems that can
generate a prescribed flux; Q = 0.4 was used for this illustration. The companion results
presented in figure 11(b) suggest that Q grows linearly with groove amplitudes, at least for
relatively small values.
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Figure 10. Variations of the magnitude of the flow rate |Q| as a function of Rap,L for AL = AU = 0.1,
Pr = 0.71, α = 1, Rauni = 0 and ΩTL = π/2. Solid and dashed lines indicate positive and negative values,
respectively. Labels ‘Engine 1’ and ‘Engine 2’ identify variations of Q when grooves are applied only on the
lower or upper plate, respectively.
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Figure 11. (a) The dependence of the flow rate Q as a function of the two corrugation amplitudes AL and
AU when Rap,L = 500, Pr = 0.71, α = 1, ΩC = π and ΩTL = π/2. The area between the red dotted lines
identifies conditions for which each set of grooves generates at least 5 % of the total flux. The green dotted lines
identify the groove amplitude required to ensure Q = 0.4 if only one surface is grooved. (b) The magnitude
of the flow rate |Q| as a function of the amplitude A(= AL = AU) when α = 1, Rap,L = 500, Rauni = 0 and
ΩTL = π/2. Solid and dashed lines indicate positive and negative values, respectively. The labels ‘Engine j’
identify the form of Q when only the lower ( j = 1) or upper plate ( j = 2) is grooved.

Further insight into the variations in Q can be gleaned from appropriate slices taken
through the contour plots displayed in figure 4. Figure 12 shows the effect on Q of adjusting
the two phases for a variety of groove sizes. There is a regular change in the flow direction
when ΩTL changes by π. The value of ΩTL giving the largest Q increases away from
ΩTL = π/2 when AU increases, as shown in figure 12(a). At the same time, the value
of ΩC giving the largest Q decreases away from ΩC = π (see figure 12b). No special
symmetries can be identified.
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Figure 12. The dependence of rate Q (a) as a function ofΩTL whenΩC = π and (b) as a function ofΩC when
ΩTL = π/2. Calculations performed with Rap,L = 500, Rauni = 0, Pr = 0.71, α = 1, AL = 0.1 and selected
amplitudes of the upper grooves. The solid black lines identify conditions that give the maximum flow rate.
Furthermore, the flow conditions used in these plots are identified in figure 4 using blue and red lines.

5. The long-wavelength limit α → 0

We noted in connection with figure 6 that it seems that the flux Q ∼ O(α) as α → 0. To
probe this further, it is helpful to introduce the new coordinates

X = αx and η = −1 + β( y − yL) where β(X) ≡ 2/( yU − yL). (5.1)

The edges of the slot are then located at η = ±1, and the flow variables develop according
to

u = αu1(X, η)+ · · · , v = α2v2(X, η)+ · · · ,
p = p0(X, η)+ · · · , θ = θ0(X, η)+ · · · . (5.2a–d)

The energy equation (2.3d) at leading order gives θ0ηη = 0 whose solution subject to the
boundary conditions at η = ±1 is simply

θ0(X, η) = 1
2 (1 − η)θL(X). (5.3)

The cross-channel momentum equation βp0η = Pr−1θ0 can be integrated to give

p0(X, η) = 1
4β Pr

η(2 − η)θL(X)+ G(X), (5.4)

for some function G(X). If we use this result in the streamwise balance u1ηη = β−2p0x,
then its solution subject to u1 = 0 at η = ±1 may be written

u1 = (1 − η2)

[
1

48 Pr β2

(
θL

β

)′
(1 − 4η + η2)− G′(X)

2β2

− β ′θL

24 Pr β4 (5 − η2)− θLy′
L

12 Pr β2 (η − 3)
]
, (5.5)

in which a dash denotes differentiation with respect to X. If we integrate the continuity
equation across the channel and impose the constraints that u1 = v2 = 0 at η = ±1, it
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follows that

β

∫ 1

−1
u1X dη = β ′

∫ −1

−1
u1 dη, (5.6)

and use of (5.5) shows that

G′(X) = 1
20Pr

(
θL

β

)′
− 2β ′θL

5 Pr β2 + θLy′
L

2 Pr
− 3

2
Kβ3, (5.7)

for some constant K. Substituting this result in (5.5) then implies that

u1 = (1 − η2)

[
1

240 Pr β2

(
θL

β

)′
(5η2 − 20η − 1)

+ β ′θL

120 Pr β4 (5η
2 − 1)− θLy′

L
12 Pr β2 η + 3

4
Kβ

]
. (5.8)

We refer to the pressure expression (5.4) to close the analysis. Since θL(X) is a periodic
function, it follows that the pressure has zero mean gradient over a wavelength if∫ 2π

0
G′(X) dX = 0. (5.9)

We remark in passing that the analysis to this stage is independent of the geometry of the
slot, and it is only at this point that the shape of the edges affects the results. If we use
the values of yL(X) and yU(X) as given by (2.1) and with the lower plate temperature θL
defined by (2.2a), the substitution of (5.7) in (5.9) gives

K = Rap,L[16 −Λ]5/2

3840Pr[32 +Λ]
[2AU sin(ΩC −ΩTL)+ 3AL sinΩTL], (5.10)

in which Λ ≡ A2
U + A2

L + 2AUAL cosΩC. Now, the flux through the channel

Q = α

∫ yT

yL

u1 dy = α

β

∫ 1

−1
u1(X, η) dη

= α
Rap,L[16 −Λ]5/2

3840Pr[32 +Λ]
[2AU sin(ΩC −ΩTL)+ 3AL sinΩTL] + O(α3). (5.11)

We can gauge the accuracy of this result using the results shown in figure 13. These
demonstrate that the theoretical prediction (5.11) is in excellent accord with the numerical
simulations for small values of α and that the error in (5.11) appears to be O(α3).

6. Weak convection

Further insight into the flow structure can be deduced by examining the case when the
convection is relatively weak and the size of the grooves is small. To this end, we suppose
that the applied heating and the groove amplitudes are written

Rap,L = �R̂ap,L, (AL,AU) = �(ÂL, ÂU) where � � 1. (6.1)

It is important to emphasize that the intention is to develop the solution of the problem
in ascending powers of �; this is feasible assuming that the value of Rap,L is acceptably
small. One important issue is how large it is possible to take Rap,L before the series solution
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Figure 13. A comparison between the numerically determined flux (solid lines) and the analytical prediction
(5.11) (dotted) for small values of α. Over much of the wavenumber domain, the solid and dotted lines are
indistinguishable and the difference�Q between the numerical and analytical values is very small (denoted by
the dashed line). These calculations are performed with AL = AU = 0.05, Rap,L = 200, Rauni = 0, Pr = 0.71
and ΩC = ΩTL = π/2.

loses accuracy but this question can only be settled a posteriori. In the meantime, we
suppose that the flow variables develop according to

(u, v, p, θ) = �(u1, v1, p1, θ1)+�2(u2, v2, p2, θ2)+ · · · , (6.2)

where all the unknowns are functions of X = αx and η as defined by (5.1). The
leading-order problem reduces to a standard calculation with the solution of the form

[u1, v1, p1, θ1] = [U11(η) sin(X +ΩTL),V11(η) cos(X +ΩTL),P11(η)

× cos(X +ΩTL),Θ11(η) cos(X +ΩTL)], (6.3)

and it is easily shown that

Θ11(η) = M sinh[α(1 − η)] where M ≡ R̂ap,L/(2 sinh 2α). (6.4)

The remaining flow variables satisfy

αU11 + V ′
11 = 0, αP11 + U′′

11 − α2U11 = 0 and P′
11 = V ′′

11 − α2V11 + 1
Pr
Θ11,

(6.5)

in which dashes denote derivatives with respect to η. These equations can combined to
obtain

V ′′′′
11 − 2α2V ′′

11 + α4V11 = α2

Pr
Θ11, (6.6)

which needs to be solved subject to the boundary conditions that V11(±1) = V ′
11(±1) = 0

that follow from (6.5). Given the form of (6.4) it can be shown that

V11 = M
8Pr

{[
η2 − 1 + 1

2
R1(1 − η)+ 1

2
R2(1 + η)

]

×sinhα(1 − η)+ αR2(η − 1) coshα(1 − η)

}
, (6.7)
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in which we have defined the three constants

R1 ≡ 2αN cosh 2α, R2 ≡ N sinh 2α and N ≡ 4 sinh 2α

cosh22α − 1 − 4α2
. (6.8)

The forms of U11 and P11 can then be inferred from the relations (6.5); we do not write
out the expressions in the interest of brevity.

It is easily verified that the mean flux through the channel vanishes at O(�). To
determine its value, we need to concern ourselves with the X-independent part of
the O(�2) component of the streamwise velocity U2M(η). The streamwise momentum
equation rewritten in terms of the transformed coordinates shows that

d2U2M

dη2 = α

8
(η − 1)(P′

11 − αU′
11)ÂL sinΩTL

+ α

8
(η + 1)(P′

11 + αU′
11)ÂU sin(ΩTL −ΩC)

+ 1
4

[ÂU sin(ΩC −ΩTL)− ÂL sinΩTL]U′′
11. (6.9)

We can then write U2M = γU11 + Û2M for some γ (whose value is immaterial) where
the function Û2M satisfies

d2Û2M

dη2 = α

8
(η − 1)[P′

11 − αU′
11]ÂL sinΩTL

+ α

8
(η + 1)[P′

11 + αU′
11]ÂU sin(ΩTL −ΩC). (6.10)

We can integrate this twice, subject to the requisite boundary conditions Û2M(±1) = 0,
and remark that the mean flux becomes

Q = �2
∫ 1

−1
Û2M dη + O(�3). (6.11)

Lengthy calculations lead to the result that, at leading order,

Q = Rap,L

128 Pr α sinh 2α
[AU sin(ΩTL −ΩC)× G1(α)+ AL sinΩTL × G2(α)]�2, (6.12a)

where the two functions

G1(α) ≡ N
[

3
2

(
cosh 4α − 2

α
sinh 4α

)
− 4(α2 + 3) cosh 2α

+ 6
α
(1 + 3α2) sinh 2α + 4α2 + 21

2

]

+ 32
α

cosh 2α − 12
(

1 + 3
α2

)
sinh 2α + 8α + 40

α
, (6.12b)

G2(α) ≡ N(cosh 4α − α sinh 4α − 1 − 4α2)+ 8α cosh 2α − 4 sinh 2α, (6.12c)

with N given by (6.8).

998 A41-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.924


J.M. Floryan, W. Wang and A.P. Bassom

The expression (6.12a) has been derived on the assumption that the wavenumber
α = O(1). Two natural limits arise: first, we notice that the small groove amplitude limit
of (5.11) (i.e. Λ → 0) takes the form

Q → α Rap,L

120 Pr
[2AU sin(ΩC −ΩTL)+ 3AL sinΩTL], (6.13)

which is the same as the small α limit of (6.12a). In the opposite large α limit of (6.12),
N ≈ 8e−2α and so

Q ≈ Rap,L

64 Pr α

[
2AL sinΩTL +

(
4
α

− 18
α2

)
AU sin(ΩTL −ΩC)

]
. (6.14)

The small and large wavenumber results help explain several of the features that were
observed in connection with figure 6. We saw that, for the various phase values used in
figure 6, all the lines seem to coincide as α grows, with the obvious exception of the result
corresponding to engine 2. We see from (6.14) that the leading-order term when AL /= 0
depends only onΩTL and notΩC, and the various lines in figure 6 correspond to changing
ΩC but keeping ΩTL fixed. Hence, the coefficient of the α−1 term does not change from
case to case, explaining why all the large-α lines merge. Of course, it is engine 2 that is the
one exception; then there are no grooves on the lower wall so AL = 0. Result (6.14) then
shows that Q ∝ α−2 and the numerical evidence in figure 6 confirms this much more rapid
reduction in Q. We point out that this argument does not apply in the case of engine 1; then
AU = 0 so that Q is still proportional to α−1. This difference in behaviour is an interesting
result; it is recalled that for engine 1 the heating and grooving occur on the same side of the
slot but, in the instance of engine 2, the surface topography and the thermal distribution
are located on opposite sides.

An inspection of the results summarized in figure 6 suggests the greatest value of Q
occurs at a value of α slightly bigger than unity but with little variability from case to
case. This can be explained by reference to the form of (6.12a). Simple calculations reveal
that the maximum value of G1(α)/α sinh 2α occurs at α ≈ 1.12 while G2(α)/α sinh 2α
is greatest at α ≈ 1.25. Thus, the linear combination in (6.12a) predicts a maximum flux
around α ≈ 1.2 irrespective of the precise choices of ΩC and ΩTL.

We also comment that the form of the velocity component V11(η) becomes exponentially
small away from the bottom wall, which suggests formation of a boundary layer attached
to this edge. This layer is of extent O(α−1) and, once α ∼ �−1, the boundary layer will be
comparable to the size of the grooves. Then, a complete rescaling will be required, and, in
fact, the boundary layer that forms is a fully nonlinear structure whose solution cannot be
determined by analytical means.

In order to judge the applicability of our formula (6.12), it is helpful to compare its
performance against numerical results. Such calculations are summarized in figure 14.
Here, we show that the analytical prediction performs exceptionally well; it is noted that
the difference between the numerical and theoretical values of Q is quite small over the
entire range of α.

Further evidence as to the potential usefulness of the result (6.12) is provided in
figure 10. The analytic prediction suggests that Q ∝ Rap,L, and the conclusion to be drawn
from figure 10 is that the value of Q appears to be proportional to Rap,L, at least up to
approximately 1000.
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10–2

10–3

10–1 100 101

Q

α

Figure 14. A comparison of the numerically determined value of Q (solid lines) and the predictions (6.12)
(dotted lines) as functions of the wavenumber α for AL = 0.05, AU = 0.025, Rap,L = 10, Rauni = 0, Pr = 0.71,
ΩTL = 3π/8, ΩC = π/8.

7. Effect of the uniform heating

Adding uniform heating to the lower plate is a simple way to affect the flow rate.
Some sample results presented in figure 15 provide a means to quantify its effectiveness.
Increasing heating from Rauni = 0 to Rauni = 200 while Rap,L = 500 approximately
doubles Q, while cooling has the opposite effect. The range of Rauni used in this figure is
limited to prevent the formation of secondary states whose effect on the flow rate remains
to be determined. It is known that secondary states are formed when Rauni > 213.8 (Drazin
& Reid 2004). The situation is more complex in the case of combined uniform and periodic
heating and remains to be studied. It is known, however, that, in the case of a smooth
plate exposed to sinusoidal heating, the critical conditions required for the formation of
secondary states depend on the heating wavenumber α with the periodic Rayleigh number
being Rap,L>∼2400 (Hossain & Floryan 2013, 2022).

8. Effects of the Prandtl number

The results sketched in figure 16 illustrate how the system response changes as a function
of the Prandtl number. Flow rates decrease with Pr as would be expected since an enhanced
Pr strengthens the convection, which then smooths out horizontal temperature variations,
thereby weakening the buoyancy gradients. The results demonstrate that Q decreases
almost exactly proportionally to Pr−1 as Pr → ∞ in agreement with the theoretical
conclusion (6.12). The flow rate Q changes by nearly four orders of magnitude over the
range of Pr used in figure 16.

9. The horizontal chimney effect

In the preceding sections we have outlined the mechanics of the flow response by
supposing that the surface topography and heating patterns can be analysed using reduced
distribution models. We can use this information to develop a system that serves twin
objectives. On the one hand, it may suggest an apparatus that should be relatively easy to
construct to facilitate experimental verifications of our results and, on the other hand, it
may prove to have some practical application. The proposed system is a simple device that

998 A41-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.924


J.M. Floryan, W. Wang and A.P. Bassom

100
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1.65

1.21
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0.46

–0.63

ΩC = π

ΩC = 0, π

3π/2

π/2

Engine 1
Engine 2

Rauni

1.08
Q

Figure 15. Variations of the flow rate Q as a function of the intensity of the uniform heating Rauni for
AL = AU = 0.1, Pr = 0.71, α = 1, Rap,L = 500 andΩTL = π/2. Dashed lines identify negative values. Labels
‘Engine 1’ and ‘Engine 2’ identify variations of Q when grooves are applied only on the lower or upper plate,
respectively.

101

100

10–1

10–2

10–1 100 101 102

Engine 1

Engine 2

0

Pr–1

Pr

Q

ΩC = π

ΩC = 0, π

3π/2

π/2

Figure 16. Dependence of the flow rate Q on the Prandtl number Pr. Calculations performed for values
AL = AU = 0.1, α = 1, Rap,L = 500, Rauni = 0 and ΩTL = π/2. Dashed lines identify negative values.

can be used for horizontal fluid pumping, often called the ‘horizontal chimney effect’
(Floryan et al. 2022). The device may not be as efficient as a typical chimney effect
(Naylor, Floryan & Tarasuk 1991; Straatman, Tarasuk & Floryan 1993; Straatman et al.
1994; Novak & Floryan 1995; Shahin & Floryan 1999) but remains of interest due to its
passive nature. This particular system represents a case study of interest in applications,
which also allows us to validate the effectiveness of the reduced distribution models.

Consider a slot made of straight segments, as shown in figure 17. The positions of the
lower and upper plates are defined to be

yL(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2AL

λ
x − 1

2
AL − 1

)
for x ∈ (0, λ/2),(

−2AL

λ
x + 3

2
AL − 1

)
for x ∈ (λ/2, λ),

(9.1a)
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AU

yU (x)

yL(x)

θL(x)AL

x, u

y, v

g

1

0

–1

λ/2

λ

Figure 17. A schematic of the proposed flow system with the grooves comprised of suitable linear segments.

yU(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2AU

λ
x − 1

2
AU + 1

)
for x ∈ (0, λ/2),(

−2AU

λ
x + 3

2
AU + 1

)
for x ∈ (λ/2, λ).

(9.1b)

We can express these as Fourier expansions of the form

yL(x) = −1 + ALHL(x) = −1 + AL

n=+NL∑
n=−NL

H(n)
L einαx, (9.2a)

yU(x) = 1 − AUHU(x) = 1 − AU

n=+NU∑
n=−NU

H(n)
U einαx, (9.2b)

where HL and HU are suitable shape functions. In these definitions, AL and AU are the
corrugation amplitudes, NL and NU denote the number of Fourier modes required to
accurately describe each topography, α = 2π/λ and the reality conditions require that
H(n)

L = H(n)∗
L and H(n)

U = H(n)∗
U , with asterisks denoting complex conjugates.

The plates are subjected to heating given by

θL(x) =
{

RaL for x ∈ (0, λ/2)
0 for x ∈ (λ/2, λ) θU(x) = 0, (9.3a,b)

where RaL is the Rayleigh number describing the heating intensity applied along the
heated segments of the lower plate. This temperature distribution can be written as a
Fourier expansion and gives rise to both periodic and uniform heating components. This
Fourier expansion exhibits the well-known Gibbs phenomenon (Gibbs 1898, 1899), which
can be eliminated by introducing some small rounding of the corners in the plate geometry
and replacing the rectangular temperature profile with a trapezoid distribution.

The results displayed in figure 18 demonstrate that the flow pattern is qualitatively
similar to that produced by sinusoidal heating as it consists of a plume of relatively hot
fluid rising above the heated plate segment and descending above the unheated segment.
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Figure 18. (a) The flow and temperature fields and (b) the flow and pressure fields when α = 1.25,
Pr = 0.71, AL = AU = 0.1, RaL = 500. The temperature has been normalized with the condition θmax = 1.

2.25

2.20

2.15

2.10

Q

2.05
0.8 1.0 1.2 1.4 1.6 1.8

α

Figure 19. The flow rate Q as a function of α for triangular grooves with AL = AU = 0.1, Pr = 0.71,
RaL = 500.

The performance of the slot, which is made of straight heated and unheated elements, is
illustrated in figure 19. Segments corresponding to a wavenumber α ≈ 1.2 give the highest
flow rate, similar to the optimal value observed in the case of sinusoidal grooves and
heating and mentioned in § 6. The magnitude of the resulting flow rate is also quite similar.
These results suggest that a reliable estimate of the performance of easily constructed
practical systems can be gleaned by looking at the analysis of an idealized system with
geometry and heating patterns described by a single Fourier mode. In other words, if an
actual surface topography and temperature distribution is modelled using the leading mode
from its full Fourier expansion, the relatively simple analysis detailed above can be used
to deduce how the actual physical system is likely to perform. This gives further credence
to the usefulness of working with the reduced models as first suggested in Floryan (2007).

10. Closing remarks

Thermal drift is the term used to describe flow in a system generated by the interaction
of groove and heating patterns. Previous studies of this effect have been restricted to the
problem when one side of a channel is grooved and heated; this constitutes a TDE. In
the current work we have taken things further and, in particular, have explored systems
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that allow for the activation of multiple TDEs. Once this occurs, the various engines may
reinforce or oppose each other, and careful use of these engines may intensify the thermal
drift.

Our study has analysed thermal drift driven by two grooved surfaces and assessed
their potential use for magnifying the intensity of the resulting flow. The model problem
consisted of a horizontal slot comprising a pair of grooved plates, each with a sinusoidal
shape. The lower plate is exposed to a sinusoidal heating pattern. It has been shown that
each set of grooves gives rise to a TDE; the essence of the engine is the projection of the
convection pressure field on the groove geometry, which provides a driving force. Changes
in the position of the heating pattern determine the position of the convection flow field
and, thus, the position of the convection pressure field, which, in turn, changes the driving
force. When only one heating source is available, as in our model, the relative positioning
of both grooves becomes important. Depending on the configuration, the resulting flow
may change direction and magnitude. The individual strength of each TDE is determined
primarily by the relevant groove amplitude. It increases proportionally to this amplitude,
as well as proportionally to the heating intensity, with the location of the heating source
being of less significance. The strongest flow is obtained for patterns characterized by
wavenumber close to α = 1.2; its strength decreases proportionally to α for α → 0 and is
proportional to α−1 for α → ∞.

Our analysis of a model problem forms the basis for a straightforward extension to more
complicated groove shapes and heating distributions. Our consideration of a corrugated
channel with bounding surfaces composed of straight sections shows that the performance
of that system is not too dissimilar to our idealized model with grooves represented by a
single Fourier mode. In that regard, the thermal drift observed in a more intricate geometry
may have properties akin to our findings outlined above, although this tentative conclusion
would need to be verified by detailed computations for any particular case.
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Appendix A. Derivation of equations (2.8)–(2.10)

In this appendix we outline the derivation of the expressions (2.8)–(2.10). First, we note
that the normal to the lower surface f (x, y) = y − yL(x) = 0 is parallel to the gradient of
f (x, y). Thus this direction is parallel to

±
(
∂yL

∂x
,−1

)
, (A1)

and if we choose the sign appropriate to the outward direction and if we scale the vector
so that it of unit length we are left with (2.8). The x-component of the stress vector σx,L
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follows from (2.7) so that

σx,L =
(

2
∂u
∂x

− p
)

nx,L +
(
∂u
∂y

+ ∂v

∂x

)
ny,L, (A2)

which simplifies to (2.9). Finally, if we integrate this stress along the arc of the surface and
over a wavelength we obtain the total force per unit length as stated in (2.10).
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