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Abstract
In this paper we consider positional games where the winning sets are edge sets of tree-universal graphs.
Specifically, we show that in the unbiased Maker-Breaker game on the edges of the complete graph Kn,
Maker has a strategy to claim a graph which contains copies of all spanning trees with maximum degree
at most cn/ log (n), for a suitable constant c and n being large enough. We also prove an analogous result
for Waiter-Client games. Both of our results show that the building player can play at least as good as
suggested by the random graph intuition. Moreover, they improve on a special case of earlier results by
Johannsen, Krivelevich, and Samotij as well as Han and Yang for Maker-Breaker games.
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1. Introduction
A positional game is a perfect-information game played by two players on a hypergraph denoted
asH= (X ,F), whereX is called the board, andF is a family of winning sets. In this type of game,
both players claim elements of the board X , following predefined rules. The victor is determined
based on the family of winning sets F . Over the past decades, positional games were extensively
studied (for a comprehensive overview, refer to [21]), and various variants have been considered.
In this paper, we focus on unbiased Maker-Breaker and Waiter-Client games played on the edge
set of the complete graph Kn with the winning sets being tree-universal graphs on n vertices, i.e.
graphs which contain a copy of every tree T on n vertices with the maximum degree �(T)≤ �(n)
bounded by a suitable function on n. Our results improve a result by Johannsen, Krivelevich,
and Samotij [24] from 2013, and make progress in answering a question by Ferber, Hefetz and
Krivelevich [15] from 2012.

1.1 Maker-Breaker games concerning spanning trees
A (1 : b) Maker-Breaker game on a hypergraph H= (X ,F) is played as follows: Maker and
Breaker take turns claiming elements of the board X that were not previously claimed. Maker
always takes one element per turn while Breaker takes b elements, except perhaps in his final
move. The value of b is referred to as the bias. Maker wins if she successfully claims an entire win-
ning set F ∈F , otherwise Breaker wins. It is easily observed that it is only beneficial for Breaker
to claim more elements, and thus there is a threshold bias bH such that Breaker wins if and only
if b> bH (excluding degenerate cases).
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Already in 1964, Lehman [26] discovered that Maker easily wins the (1 : 1) connectivity game
C on Kn, i.e. the game where the winning sets consist of all spanning trees of Kn, and she can
even do so, if the board only consists of two edge-disjoint spanning trees. There are different
natural related questions which have been investigated since then. Chvátal and Erdős [7] proved
in 1978 that the threshold bias bC for the connectivity game on Kn is of order n

log (n) , and suspected
that there is an interesting relation between Maker-Breaker games and random graphs. That is,
they formulated the intuition that for certain biased Maker-Breaker games the more likely winner
between two random players would be the same as the winner between two perfect players. This
relation is commonly referred to as the random graph intuition, and holds for several different
Maker-Breaker games. Indeed, Gebauer and Szabó [16] showed in 2009 that bC = (1+ o(1)) n

log (n)
which confirms the random graph intuition for the connectivity game.

Going one step further, one can also inspect whetherMaker can claim a copy of a fixed spanning
tree instead of just any spanning tree and if so, how fast she can do it. In particular, an intriguing
question was asked by Ferber, Hefetz, and Krivelevich [15] in 2012: What is the largest d = d(n) ∈
N such that Maker can claim any fixed tree T on n vertices with maximum degree �(T)≤ d for n
large enough?

In the unbiased case, following [25], the random graph intuition would suggest d(n)=
�( n

log (n) ). However, the current best-known results are quite far away from this desired value.
In 2009, Hefetz, Krivelevich, Stojaković, and Szabó [19] showed that Maker can claim a Hamilton
path in the (1 : 1) game within n− 1 rounds. Similarly, Maker can claim any fixed tree T with
�(T)=O(1) within n+ 1 rounds, provided n is large enough [8]. In 2012, Ferber, Hefetz and
Krivelevich [15] showed that Maker can claim any fixed tree T with �(T)≤ n0.05 within n+ o(n)
rounds, even in the biased version as long as b< n0.005. Johannsen, Krivelevich, and Samotij [24]
further improved thismaximumdegree for the unbiased setting, where their result (which is stated
more generally for expander graphs) is universal, giving that in a (1 : 1) game on Kn, Maker can
claim a single graph containing copies of all trees T on n vertices such that�(T)≤ cn1/3

log (n) , for some
suitable c and large enough n.

We further improve on this result, and show thatMaker can play asymptotically at least as good
as the random graph intuition suggests.

Theorem 1.1. There exists a constant c> 0 such that the following holds for every large enough
integer n. In the (1 : 1) Maker-Breaker game on Kn, Maker has a strategy to claim a graph which
contains a copy of every tree T with n vertices and maximum degree �(T)≤ cn

log (n) .

Our proof technique is different from the one in [24]. In [24], Maker in a (1 : 1) game on Kn
claims a proper expander tailored for the application of the Erdős-Selfridge criterion for Breaker’s
win (see Theorem 2.2 in the next section). A natural way for obtaining a stronger result with this
method would be to show stronger universality properties of expanders. Han and Yang [17] went
this route and showed that Maker in a (1 : 1) game onKn can claim a graph containing copies of all
spanning trees T with �(T)≤ cn1/2

log (n) . In our proof of Theorem 1.1, Maker claims a graph having
not only good expanding properties, but also other properties, which are not obtained by the
Erdős-Selfridge criterion. Let us add that an advantage of the method in [24] is that it generalises
easily to biased Maker-Breaker games (in fact the authors present their result for biased games,
played on expanders), while our method is less flexible in that sense.

1.2 Waiter-Client games concerning spanning trees
A (1 : b) Waiter-Client game on a hypergraph H= (X ,F) is played as follows: in each round,
Waiter picks b+ 1 elements of the board X that were not previously picked and offers them to
Client. Client chooses one of them for himself and returns the rest to Waiter. If in the last round
there are less than b+ 1 elements not picked yet, all the elements go to Waiter. Waiter wins if she
is able to force Client to fully claim some winning set F ∈F . Otherwise, Client wins.
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Concerning spanning trees, similar results are known for Waiter-Client games as for Maker-
Breaker games, where Waiter often can achieve better results because she has more control which
edges get blocked. Similar to Maker-Breaker games, Waiter wins the (1 : 1) connectivity game on
some graph G if G contains two edge-disjoint spanning trees [11]. Concerning the threshold bias,
the third author together with Krivelevich and Łuczak [6] showed that Waiter wins the (1 : b)
Waiter-Client connectivity game on Kn if and only if b≤ �n

2 � − 1. Moreover, in a (1 : 1) Waiter-
Client game on Kn with n large enough, Waiter can force Client to claim a Hamilton path within
n− 1 rounds, and she can force Client to claim any fixed tree T with�(T)≤ c

√
nwithin n rounds,

for some suitable c and n large enough [10]. Recently, we improved upon this result showing that
Waiter can force any tree T with �(T)< ( 13 − o(1))n [1].

Similar to the Maker-Breaker case, it is known that Waiter in the (1 : 1) game on Kn can force
Client to claim a graph that contains copies of all trees T with �(T)≤ cn1/3

log (n) , or even �(T)≤
cn1/2
log (n) , which follows from the above mentioned universality properties of expanders proved in
[24], [17] and the fact that the Erdős-Selfridge criterion has its Waiter-Client counterpart (see
[5]). We again improve upon this result by showing a Waiter-Client version of Theorem 1.1.

Theorem 1.2. There exists a constant c> 0 such that the following holds for every large enough
integer n. In the (1 : 1) Waiter-Client game on Kn, Waiter has a strategy to force Client to claim a
graph which contains a copy of every tree T with n vertices and maximum degree �(T)≤ cn

log (n) .

Organisation of the paper. In Section 2 we collect useful tools from probability theory, for posi-
tional games, and for embedding trees. In Section 3 we prove a sufficient condition for a graph to
be universal for trees of large maximum degree. In Sections 4 and 5 we then show that Maker and
Waiter, respectively, have a strategy for creating such a graph, hence proving Theorems 1.1 and
1.2. We add some concluding remarks in Section 6, in which we consider also the tree universality
problem in Client-Waiter and Avoider-Enforcer games.

1.3 Notation
Most of our notation is standard and follows that of [29]. Different to the notation therein,
we write v(G) for the number of vertices of a graph G, and for any sets A, B⊆V(G) we write
EG(A, B) := {vw ∈ E(G): v ∈A,w ∈ B}, and eG(A, B) := |EG(A, B)|. Additionally, having any dis-
tinct vertices v,w ∈V(G), we write dG(v,A) := |NG(v)∩A|, and we call |NG(v)∩NG(w)| the pair
degree of v and w. Let T be a tree. Then we write L(T) for the set of leaves, i.e. all vertices of degree
1 in T. Moreover, a path P in T is called a bare path if all of its inner vertices have degree 2 in T.

Assume that someWaiter-Client game is in progress, then we let C denote the graph consisting
of Client’s edges only, with the vertex set being equal to the graph that the game is played on.
Similarly, in a Maker-Breaker game, we use M and B to denote the graph consisting of, respec-
tively, Maker’s and Breaker’s edges. If an edge belongs to any player in the game, then we call it
claimed. Otherwise, we say that the edge is free. The graph consisting of the free edges will always
be denoted F.

We write Bin(n, p) for the binomial random variable with n trials, each having success inde-
pendently with probability p. We write X ∼ Bin(n, p) to denote that X is distributed like Bin(n, p).
We say that an event, depending on n, holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to 1 if n tends to infinity. For functions f , g :N→R, we write f (n)= o(g(n))
if limn→∞ |f (n)/g(n)| = 0. All logarithms are base e.

2. Preliminaries
2.1 Probabilistic tools
In some of our probabilistic arguments, we will use Chernoff bounds (see e.g. [23]) to show
concentration for binomially distributed random variables. Specifically, we will use the following.
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Lemma 2.1. If X ∼ Bin(n, p), then

• P(X < (1− δ)np)< exp
(
− δ2np

2

)
for every δ > 0, and

• P(X > (1+ δ)np)< exp
(−np

3
)
for every δ ≥ 1.

2.2 Maker-breaker game tools
For the discussion of the Maker-Breaker tree universality game, we will use several tools from
positional games theory. The first one is the famous Erdős-Selfridge-Criterion [14], stated as e.g.
in Theorem 2.3.3 in [21].

Theorem 2.2 (Erdős-Selfridge-Criterion [14]). Let (X,F) be a hypergraph satisfying∑
F∈F

2−|F|+1 < 1.

Then Breaker wins in the (1 : 1)Maker-Breaker game on (X,F).

We will also use statements ensuring that Maker can achieve sufficiently large degrees.

Lemma 2.3 (Mindegree game, Lemma 10 in [20]). Let H be a graph of minimum degree d, then in
a (1 : 1) Maker-Breaker game played on the edges of H, Maker can claim a spanning graph M with
minimum degree at least �d/4�.
Lemma 2.4 (Degree game, Corollary of Lemma 6 in [2]). Playing a (1:2)Maker-Breaker game on
the edges of Kn, Maker can ensure that every vertex reaches degree at least 1

3n− 3
√
n log (n) in her

graph.

Moreover, we will use the following lemma which allows Maker to distribute her elements
nicely over all sets of a given family F .

Lemma 2.5 (Corollary of Lemma 2.3 in [3]). Let X be a set and let δ ∈ (0, 1). Let H= (X,F) be a
hypergraph, and k=minF∈F |F|. If k> 4δ−2 ln (|F |), then in a (1 : 1) Maker-Breaker game on H,
Maker has a strategy to claim at least ( 12 − δ)|F| elements of every set F ∈F .

Finally, we will use the following corollary of a recent result by Liebenau and Nenadov [27].

Lemma 2.6 (K5-factor game, Corollary of Theorem 1.1 in [27]). There exist constants c, C > 0
such that the following holds for every large enough integer n divisible by 5. Playing a (1 : b)Maker-
Breaker game on Kn, with b≤ cn2/7, Maker has a strategy to claim a spanning K5-factor of Kn within
at most Cn12/7 rounds.

Proof. Let n be large enough. By Theorem 1.1 in [27] there is a constant c> 0 such that Maker can
claim a spanning K5-factor of Kn against a bias b∗ = �cn2/7�. Let C = 1

c . By the trick of fake moves
(see e.g. Lemma 2.4 in [9]) it follows that Maker can claim a spanning K5-factor of Kn against any
bias b≤ b∗ within �(n2)/(b∗ + 1)� ≤ Cn12/7 rounds. �

2.3 Waiter-Client game tools
When describing strategies for Waiter we will make use of the following variant of the Erdős-
Selfridge Criterion.

Theorem 2.7 (Corollary 1.4 in [5]). Let (X,F) be a hypergraph satisfying∑
F∈F

2−|F|+1 < 1.

Then Waiter wins in the (1 : 1)Waiter-Client game on (X,F).
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Moreover, we will use that Waiter has a strategy to force large pair degrees.

Lemma 2.8. If β ∈ (0, 1), then for every large enough integer n the following holds. Let G be a graph
on n vertices such that for every two vertices v,w ∈V(G) there is a set Nv,w of at least βn common
neighbours. Playing a (1 : 1) Waiter-Client game on G, Waiter can force Client to claim a graph C
that satisfies the following:

|NC(v)∩NC(w)∩Nv,w| ≥ βn
500

for every v,w ∈V(G).

Proof. Before the game starts, we split the edge set of the graph G in order to obtain two graphs
G1 and G2 such that

|NG1 (v)∩NG2 (w)∩Nv,w| ≥ βn
5

for every v,w ∈V(G).

That this is possible can be proven by taking a partition G=G1 ∪G2 uniformly at random and
then showing with the help of a standard Chernoff argument (Lemma 2.1) that the above holds
a.a.s.

Then, for a Stage I, Waiter plays on G1 considering the family

F1 :=
⎧⎨
⎩A:

A⊆ EG1 (v,NG1 (v)∩NG2 (w)∩Nv,w) for some distinct v,w ∈V(G)

and |A| = 0.9|NG1 (v)∩NG2 (w)∩Nv,w|

⎫⎬
⎭ .

It holds that∑
F∈F1

2−|F| ≤
∑
v,w

( |NG1 (v)∩NG2 (w)∩Nv,w|
0.1|NG1 (v)∩NG2 (w)∩Nv,w|

)
· 2−0.9|NG1 (v)∩NG2 (w)∩Nv,w|

≤
∑
v,w

(10e)0.1|NG1 (v)∩NG2 (w)∩Nv,w| · 2−0.9|NG1 (v)∩NG2 (w)∩Nv,w|

<
∑
v,w

0.8|NG1 (v)∩NG2 (w)∩Nv,w| ≤ n20.80.2βn = o(1).

Thus, by Lemma 2.7, Waiter can ensure that Client claims an element in each set of F1. By this, it
follows that Client’s subgraph C1 ⊆G1 at the end of Stage I satisfies

|NC1 (v)∩NG2 (w)∩Nv,w| ≥ βn
50

for every v,w ∈V(G).

Afterwards, for a Stage II, Waiter plays on G2 considering the family

F2 :=
⎧⎨
⎩A:

A⊆ EG2 (w,NC1 (v)∩NG2 (w)∩Nv,w) for some distinct v,w ∈V(G)

and |A| = 0.9|NC1 (v)∩NG2 (w)∩Nv,w|

⎫⎬
⎭ .

Note that so far, no edge of G2 was claimed. It analogously holds that
∑

F∈F2 2
−|F| = o(1). Thus,

by Lemma 2.7,Waiter can ensure that Client claims an element in each set ofF2. By this, it follows
that Client’s subgraph C2 ⊆G2 at the end of Stage II satisfies

|NC1 (v)∩NC2 (w)∩Nv,w| ≥ βn
500

for every v,w ∈V(G).

Hence, the statement is proven. �
Finally, we will use that Waiter can force a perfect matching on K5,5. Indeed, the statement

below is an easy exercise, and it also follows from Stage II in the proof of Theorem 2.1 in [10].

Lemma 2.9 (WC Perfect Matching, [10]). Playing a (1 : 1)Waiter-Client game on K5,5, Waiter has
a strategy to force a perfect matching of K5,5.
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2.4 Structural properties of trees
When we want to embed spanning trees into some graph, we may first care about a small subtree
with suitable properties. For this, the following lemmas will turn out to be useful.

Lemma 2.10 (Small subtree lemma). Let k ∈N and let T be a tree on n≥ 2k vertices. Then there
exists a set-cover V(T)=VA ∪VB such that T[VA] and T[VB] are trees, |VA ∩VB| ≤ 1, and k≤
|VA| < 2k.

Proof. Fix any vertex r ∈V(T) as the root of T and orient the edges of T such that every ver-
tex except the root has exactly one ingoing edge. Moreover, for each vertex v ∈V(T) denote with
Tv = (Vv, Ev) the tree which is induced by all the vertices which can be reached from v by a directed
path. Now, choose a vertex w ∈V(T) such that Tw is a smallest tree among all trees Tv with at least
2k vertices. Such a tree must exist, as by assumption |Vr| = n≥ 2k. Let w1, . . . ,wt be all outgo-
ing neighbours of w. For each i ∈ [t] we have that Twi ⊆ Tw and hence, by the choice of Tw, we
conclude that |Vwi | < 2k. If there exists i ∈ [t] such that |Vwi | ≥ k, then we can set VA := Vwi and
VB := V(T) \Vwi . Otherwise, we have |Vwi | < k for every i ∈ [t]. Then let � be the smallest integer
such that 1+ ∑

i∈[�] |Vwi | ≥ k. Such an � must exist, as |Vw| ≥ 2k. Moreover, by the sizes of the
subtrees Twi , we know that 1+ ∑

i∈[�] |Vwi | < 2k. That is, we can choose VA := {w} ∪ ⋃
i∈[�] Vwi

and VB := (V(T) \VA)∪ {w}. �
Lemma 2.11 (Small subtree cover lemma). Let k ∈N and let T be a tree. Then there exists a set-
cover V(T)=V1 ∪V2 ∪ . . . ∪Vt with t ≤ � v(T)

k−1 � + 1 such that the following holds:

(i) T[Vi] is a tree for every i ∈ [t].
(ii) |Vi| < 2k for every i ∈ t.

Proof. We do an induction on v(T). If v(T)< 2k, there is nothing to do, as we can set t = 1
and V1 =V(T). So, let v(T)≥ 2k. Then by Lemma 2.10 we can find a set-cover V(T)=VA ∪VB
such that T[VA], T[VB] are trees, |VA ∩VB| ≤ 1, and k≤ |VA| < 2k. In particular, |VB| ≤ v(T)−
k+ 1. We set V1 := VA and by induction we can find a set-cover VB =V2 ∪ . . . ∪Vt with
t ≤

(
� v(T)−k+1

k−1 � + 1
)

+ 1= � v(T)
k−1 � + 1 and such that T[Vi] is a tree with |Vi| < 2k for every

i ∈ {2, 3, . . . , t}. Putting everything together, we obtain a set-cover V(T)=V1 ∪V2 ∪ . . . ∪Vt as
required. �
Lemma 2.12 (Lemma 2.1 in [25]). Let k, �, n> 0 be integers. Let T be a tree on n vertices with at
most k leaves. Then T contains a collection of at least n−(2k−2)(�+1)

�+1 vertex-disjoint bare paths of
length �.

Corollary 2.13. Let � be a positive integer. Then there exists a constant γ ′ > 0 such that the following
holds. Every tree T has at least γ ′v(T) leaves or a collection of at least γ ′v(T) vertex-disjoint bare
paths of length � each.

Proof. Set γ ′ = 1
4(�+1) . LetT be any tree. If the number of leaves inT is k< γ ′v(T), then by Lemma

2.12 there are at least

v(T)− (2k− 2)(� + 1)
� + 1

>
v(T)
� + 1

− 2k>

(
1

� + 1
− 2γ ′

)
v(T)> γ ′v(T)

bare paths of length �. �
Lemma 2.14 (Classifying trees lemma). For every � ∈N, δ ∈ (0, 1) and C ∈N there exist constants
γ , c ∈ (0, 1) such that the following is true for every large enough n. Let T be a tree on n vertices with
maximum degree �(T)≤ cn

log (n) . Then at least one of the following properties hold:
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(i) T has at least γ n vertex-disjoint bare paths of length �.
(ii) |L(T)| ≥ Cγ n and there is a tree T′ ⊆ T with v(T′)≤ δn and |V(T′)∩NT(L(T))| ≥

C log (n).

Proof. Having �, δ and C fixed, we first choose γ ′ = γ ′(�) according to Corollary 2.13. We then
set c= γ

′
δ

10C and γ = γ
′

2C . Now, let T be a tree on n vertices with maximum degree �(T)≤ cn
log (n) .

Provided n is large enough, we show that if T does not satisfy (i), then property (ii) must hold.
Since (i) does not hold and γ ′ > γ , there is no collection of at least γ ′n vertex-disjoint bare

paths of length � in T. Hence, by Corollary 2.13 we can conclude |L(T)| ≥ γ ′n, which in particular
gives

|L(T)| ≥ Cγ n and |NT(L(T))| ≥ |L(T)|
�(T)

≥ γ ′c−1 log (n),

since �(T)≤ cn
log (n) . Now, we apply Lemma 2.11 to the tree T with k := �0.4δn�, and we find

a set-cover V(T)=V1 ∪V2 ∪ . . . ∪Vt such that t ≤ � n
k−1� + 1< 5δ−1, and T[Vi] is a tree with

|Vi| < 2k< δn for all i ∈ [t]. By the Pigeonhole Principle there must exist i∗ ∈ [t] such that

|Vi∗ ∩NT(L(T))| ≥ |NT(L(T))|
t

≥ 0.2γ ′c−1δ log (n)≥ C log (n)

by the choice of c. Hence, (ii) follows by setting T′ := T[Vi∗]. �

2.5 Tree embedding lemmas
For the embedding of almost spanning trees, we may use the following variant of an embedding
result due to Haxell [18].

Lemma 2.15 (Embedding almost spanning trees; variant of Theorem 1 in [18]). Let T be a tree
with maximum degree d, and let S⊆ T be a subtree of T. Moreover, let G be a graph and let
g :V(S)→V(G) be an embedding of S into G. Assume that the following properties hold for some
k ∈N:

(P1) |NG(X) \ g(V(S))| ≥ d|X| + 1 for every X ⊆V(G) with 1≤ |X| ≤ 2k,
(P2) |NG(X)| ≥ d|X| + v(T) for every X ⊆V(G) with k< |X| ≤ 2k.

Then the embedding g can be extended to an embedding of T into G.

Sketch of proof. Let T0 =∅⊆ T1 ⊆ T such that S⊆ T1 and T1 is a tree which can be obtained
from T by removing leaves only. We first note that (P1) and (P2) imply the properties (0)–(2)
from Theorem 1 in [18], when we set � := 1, d1 := d. Moreover, (P1) implies that

|NG(X) \ g(V(S))| ≥ d1|X ∩ g(V(S))| + d1|X \ g(V(S))|
≥

∑
x∈X∩g(V(S))

(
dT(g−1(x))− dS(g−1(x)

) + d1|X \ g(V(S))|

holds for every X ⊆V(G) such that |X| ≤ 2k. Because of this, in the proof of Theorem 1 in [18],
the embedding g would be called a Type-1 embedding of S into G. Now, let S =: S0 ⊆ S1 ⊆ S2 ⊆
. . . ⊆ Sr := T1 be any sequence of trees such that Si+1 is obtained from Si by attaching one new
leaf. By Claim 3 in [18] it follows iteratively that for every i ∈ [r] we can extend g to a Type-1
embeddings of Si into G. Moreover, by Claim 4 in [18] (applied with � = 1) it follows that the
Type-1 embedding of Sr = T1 can be extended to an embedding of T into G. Note that the proofs
of these claims only use the fact that G satisfies the properties (0)-(2). �
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Finally, we will use the following lemma, which is helpful for finishing the embedding of span-
ning trees with many leaves. This lemma is a consequence of a generalisation of Hall’s Marriage
Theorem.

Lemma 2.16 (Star matching lemma, Lemma 3.10 in [24]). Let d,m ∈N and let G be a graph.
Suppose that two disjoint sets U,W ⊆V(G) satisfy the following three conditions:

(i) |NG(X)∩W| ≥ d|X| for all X ⊆U with 1≤ |X| ≤m,
(ii) eG(X, Y)> 0 for all X ⊆U and Y ⊆W with |X| = |Y| ≥m,
(iii) |NG(w)∩U| ≥m for all w ∈W.

Then, for every map k:U → {1, . . . , d} that satisfies ∑
u∈U k(u)= |W|, the set W can be partitioned

into |U| disjoint subsets {Wu}u∈U satisfying |Wu| = k(u) and Wu ⊆NG(u)∩W.

As in [24] we call the set of edges between the vertices of U and their respective parts in W a
star matching.

3. A tree universal graph
The following theorem provides a sufficient condition for a graph to be universal for all trees of
almost linear maximum degree. In the next two sections we will then prove thatMaker andWaiter
have strategies to claim a graph satisfying such a condition.

Theorem 3.1. Let α ∈ (0, 1), and C0 > 0 be any constants. There exist constants γ ′, c> 0 and a
positive integer n0 such that the following is true for every γ ∈ (0, γ ′) and every integer n≥ n0.

Let G= (V , E) be a graph on n vertices with a partition V =V1 ∪V2 of its vertex set such that
the following properties hold:

(1) Partition size: |V2| = 500�γ n�.
(2) Suitable star: There are a vertex x∗ and disjoint sets R∗, S∗ ⊆V1 such that the following holds:

(a) |S∗| = �25C0 log (n)� and S∗ ⊆NG(x∗).
(b) |R∗| ≤ 25 and for each v ∈ R∗ the following holds: If v is not adjacent with x∗, then v is

adjacent with a vertex sv ∈ S∗, such that sv �= sw if v �=w.
(c) For all w ∈V \ (R∗ ∪ S∗), we have dG(w, S∗)≥ 2C0 log (n).

(3) Pair degree conditions: For every v ∈V(G) there are at most log (n) vertices w ∈V(G) such
that |NG(v)∩NG(w)∩V1| < αn.

(4) Edges between sets: Between every two disjoint sets A⊆V1 and B⊆V of size �C0 log (n)�
there is an edge in G.

(5) Suitable clique factor: In G[V2] there is a collection K of 100�γ n� vertex-disjoint K5-copies
such that the following holds:

(a) There is a partition K =Kgood ∪Kbad such that |Kbad| = �γ n�.
(b) Every vertex v ∈V which is not in a clique of Kgood satisfies dG(v,V2)≥ 40�γ n�.
(c) For every clique K ∈Kgood there are at most γ n cliques K ′ ∈Kgood such that G does not

have a matching of size 3 between V(K) and V(K′).

Then G contains a copy of every tree T on n vertices and with maximum degree �(T)≤ cn
log (n) .

The overall idea of the proof will be as follows. We will distinguish the desired trees by their
containment of many bare paths or many leaves. When a tree has many bare paths, we will first
embed the tree minus the bare paths intoV1, by using thatG has good expanding properties which
are guaranteed by properties (3) and (4). By making use of the clique factor in (5), we will then
manage to complete the embedding of T. Similarly, when caring about trees with many leaves, in a
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first step we will embed everything except from the leaves into V1 by using properties (3) and (4),
and only afterwards we will care about the leaves by applying the star matching lemma. In order to
succeed with this application, we need to do the first embedding step more carefully. We do so by
distinguishing two cases, depending on whether there exists a vertex x which is adjacent to many
neighbours of leaves. If such a vertex x exists, we use property (2), embed this particular vertex
onto x∗ andmake sure that each vertex in S∗ becomes the image of a leaf neighbour. Property (2.c)
together with the expanding properties then helps to verify the conditions of the star matching
lemma. Otherwise, if such a vertex x∗ does not exist, we apply a random embedding argument
together with property (3) to ensure the properties needed for the star matching lemma.

Proof of Theorem 3.1. In the following we prove Theorem 3.1. Let α and C0 be given by the
statement of Theorem 3.1. Choose δ := 0.5α, and let � := 502. Let m := �C0 log (n)�. Choose
C1 := max{100C0α

−1, 501}. Let c0 and γ0 be given by Lemma 2.14 with input �, δ, andC1. Further,
choose γ ′ := min{10−5, γ0}, and γ ∈ (0, γ ′), and let c := min{c0, α

10C0
, γ
10C0

}. Let d := cn
log (n) . In

the following, we assume n to be large enough whenever necessary, e.g. to apply Lemma 2.14 with
the specified inputs.

Let G be a graph with a partition V(G)=V1 ∪V2 satisfying the properties (1)–(5) from
Theorem 3.1. We want to show that G contains a copy of every tree T with maximum degree
�(T)≤ d. Consider any such tree T. Because of Lemma 2.14 (with the inputs and outputs above)
we know that T contains γ0n≥ γ n vertex-disjoint bare paths of length �, or T has at least C1γ0n≥
C1γ n leaves and contains a small subtree T′ ⊆ T with v(T′)≤ δn and |V(T′)∩NT(L(T))| ≥
C1 log (n). In the following, we will show for each of these two cases separately how we can embed
T into G.

Case 1: T has at least γ n vertex-disjoint bare paths of length 502. In this case, roughly speaking,
we embed all of T but some of the bare paths intoV1 using Lemma 2.15, and finish the embedding
by using the clique factor (property (5)) to embed the bare paths and absorb the left-over vertices
of V1.

Let P be a family of exactly �γ n� vertex-disjoint bare paths of length 502. We form a new tree
T1 from T as follows: for each path P ∈P we delete the inner vertices of the path and join the
endpoints by an edge. Note that �(T1)≤ d and v(T1)= n− 501�γ n�. We want to embed T1 into
G[V1] using Lemma 2.15 (with S being the empty graph and k=m). To do so, we have to check
the following properties:

(P1) |NG(X)∩V1| ≥ d|X| + 1 for every X ⊆V1 with 1≤ |X| ≤ 2m.
(P2) |NG(X)∩V1| ≥ d|X| + v(T1) for every X ⊆V1 withm< |X| ≤ 2m.

By property (3) we conclude that |NG(v)∩V1| ≥ αn for all v ∈V1. Hence, for every X ⊆V1
with 1≤ |X| ≤ 2m we obtain |NG(X)∩V1| ≥ αn− |X| ≥ 0.9αn≥ d · 2m+ 1 by the choice of d
andm, and for n large enough. In particular, (P1) holds.

Now consider any set X ⊆V1 with m< |X| ≤ 2m. Then, by property (4), less than m vertices
in V1 \ X are not in the neighbourhood of X. Therefore,

|NG(X)∩V1| > |V1 \ X| −m≥ |V1| − 3m= n− 500�γ n� − 3m
> 2d ·m+ n− 501�γ n� ≥ d|X| + v(T1)

by the choice of d and m. That is, (P2) holds. As G satisfies (P1) and (P2), we can embed T1
into G[V1] using Lemma 2.15, resulting in an embedding g:V(T1)→V1. Note that this also is an
embedding of the tree obtained from T by deleting the inner vertices of all paths in P .

Hence, we are left with embedding the 501�γ n� inner vertices of the family of bare pathsP . Let
R := V1 \ g(V(T1)) be the set of �γ n� vertices ofV1 which were not used for the embedding of T1.
For each path P ∈P , denote by vP and wP the images of the endpoints of P under g. Further, since
|P| = |R| = �γ n�, we can fix exactly one distinct vertex rP ∈ R for every path P ∈P . Similarly,
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since |P| = |Kbad| = �γ n�, we can fix exactly one distinct clique KP ∈Kbad for every path P ∈P .
In each of these cliques we fix two arbitrary vertices xP, yP ∈V(KP).

As a first step towards embedding the inner vertices of P , we choose a collection of six cliques
KP = {KP

1 , . . . ,K
P
6 } ⊆Kgood for every P ∈P such that the following properties are satisfied:

(1) KP ∩KP′ =∅ for all P′ ∈P \ {P},
(2) eG(vP,V(KP

1 ))> 0,
(3) eG(rP,V(KP

2 ))> 0,
(4) eG(rP,V(KP

3 ))> 0,
(5) eG(xP,V(KP

4 ))> 0,
(6) eG(yP,V(KP

5 ))> 0,
(7) eG(wP,V(KP

6 ))> 0.

Note that we can find such cliques greedily by property (5.b). Indeed, this property ensures
that each of the relevant vertices rP, vP,wP, xP, yP is adjacent to at least 8�γ n� cliques fromK, and
hence to at least 7�γ n� cliques from Kgood, while for the properties above we only need to choose
6�γ n� cliques in total.

Moreover, based on (2)–(7), let kP1 ∈V(KP
1 ) be a neighbour of vP, let k

P
2 ∈V(KP

2 ) be a neighbour
of rP, and so on, until reaching a neighbour kP6 ∈V(KP

6 ) of wP.
Next, we consider the following auxiliary graph H: its vertex set is Kgood and we put an edge

between two vertices K,K ′ ∈V(H) if and only if in G there is a matching of size 3 between the
cliques K and K′. For the graph H′ ⊆H induced on K′ =Kgood \ ⋃

P∈P KP we then have v(H′)=
93�γ n� and δ(H′)≥ v(H′)− γ n> v(H′)/2 by property (5.c). Hence, by Dirac’s Theorem (see e.g.
[29]), we can find a Hamilton cycle in H′, and we can split this Hamilton cycle into 3�γ n� vertex-
disjoint paths each having exactly 31 vertices. Denote with PH the collection of these paths.

We then define an auxiliary bipartite graph F = (A∪ B, E(F)) with partite sets

A := {(KP
i ,K

P
i+1): i ∈ {1, 3, 5}, P ∈P} and B := PH ,

where we put an edge between a vertex (KP
i ,KP

i+1) ∈A and a vertex Q ∈ B if and only if in H
there is a perfect matching between the endpoints of the path Q and the vertices KP

i ,KP
i+1 (which

means that Q can be extended to a longer path in H with endpoints KP
i ,KP

i+1). We then have
|A| = |B| = 3�γ n� and δ(F)≥ |A| − γ n> |A|/2. Indeed, a vertex (KP

i ,KP
i+1) ∈A and a vertex Q ∈

B with endpoints (KQ
1 ,K

Q
2 ) are connected in F unless there are at least two edges missing between

the vertices KP
i ,KP

i+1 and the vertices KQ
1 ,K

Q
2 in the auxiliary graph H. This can happen at most

γ n times per vertex v ∈V(F) since δ(H)≥ v(H)− γ n by (5.c). By a standard application of Hall’s
condition (see e.g. [29]) it follows that F has a perfect matching. Denote withQP

i,i+1 the path which
is matched to the pair (KP

i ,KP
i+1) in this matching, for every i ∈ {1, 3, 5} and P ∈P .

QP
i,i+1KP

i KP
i+1

to a path Q̂P
i,i+1 in Gfrom a path QP

i,i+1 in H

KP
i KP

i+1

kP
i kP

i+1
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Note that this path QP
i,i+1 describes a sequence of 31 cliques from Kgood, such that between KP

i
and the first clique in the sequence, between two consecutive cliques in the sequence, and between
the last clique in the sequence and KP

i+1 there is a matching of size 3 in the graph G.
It is then easy to find a path Q̂P

i,i+1 on 165 vertices which has endpoints kPi and kPi+1, and which
goes through all the vertices of KP

i , KP
i+1 and all the cliques in QP

i,i+1. Indeed, from each of the
mentioned matchings pick greedily one edge such that all these edges are independent and not
incident with kPi or kPi+1; then connect kPi , kPi+1 and these matching edges with paths of length 4
that are fully contained in one of the relevant cliques.

We now have everything that we need to describe how we can embed the paths P ∈P into
R∪V2 (with fixed endpoints vP,wP), and thus finish the embedding of T. Given P ∈P , let QP

xy be
any path of length 4 in KP with endpoints xP and yP. Then we embed P to the path given by the
sequence (vP, Q̂P

1,2, rP, Q̂
P
3,4,QP

xy, Q̂P
5,6,wP). Note that this way, the inner vertices of P are embedded

into R∪V2, disjointly from the images of all other paths in P .

vP

KP
1 KP

2 KP
3 KP

4 KP
5 KP

6

KP

wP

xP yP
rP

︸ ︷︷ ︸

Q̂P
1,2 Q̂P

3,4 Q̂P
5,6

︸ ︷︷ ︸ ︸ ︷︷ ︸

Case 2: T has at least C1γ n leaves and contains a subtree T′ ⊆ T with v(T′)≤ δn and |V(T′)∩
NT(L(T))| ≥ C1 log (n). Let N1 ⊆V(T′)∩NT(L(T)) be any subset of size �C1 log (n)�.

In this case, we start by embedding the subtree T′ minus the leaves L(T) in such a way that
the vertices of N1 are embedded in a suitable way. Afterwards, we extend that embedding to an
embedding of T − L(T) by an application of Lemma 2.15. Lastly, we use Lemma 2.16, to embed
the leaves L(T). More precisely, we set T1 := T′ − L(T), T2 := T − L(T), and we distinguish two
cases, depending on how the vertices of N1 are distributed in T1.

Case 2.1: Assume that there is a vertex x ∈V(T1) with dT1 (x,N1)≥ 0.5C1 log (n). Then we do
the embedding of T1 as follows: we embed x onto x∗, and we embed the vertices ofNT1 (x,N1) into
NG(x∗)∩V1, which has size at least αn≥ dT1 (x,N1) by property (3), in such a way that all vertices
of (R∗ ∩NG(x∗))∪ S∗ are used, which is possible since dT1 (x,N1)≥ |R∗ ∪ S∗| by properties (2.a)
and (2.b), and by choice of C1. Afterwards, embed the rest of T1 greedily into V1, which is possible
since by (3) all vertex degrees into V1 are at least αn> v(T1). Because of (2.c), the result then is
an embedding g :V(T1)→V1 into G[V1] such that the following holds: every vertex w ∈V(G) \
(g(V(T1))∪ R∗) satisfies dG(w, g(N1))≥ 2C0 log (n).

Next, we extend this to an embedding of T2 into G[V1]. For this, we use Lemma 2.15 (with
S := T1, k := m and with T being replaced with T2). To do so, we have to check the following
properties:

(P1) |(NG(X)∩V1) \ g(V(T1))| ≥ d|X| + 1 for every X ⊆V1 with 1≤ |X| ≤ 2m.
(P2) |NG(X)∩V1| ≥ d|X| + v(T2) for every X ⊆V1 withm< |X| ≤ 2m.

By property (3) we know that |(NG(v)∩V1) \ g(V(T1))| ≥ αn− δn≥ 0.5αn for all v ∈V1.
Hence, for every X ⊆V1 with 1≤ |X| ≤ 2mwe obtain |(NG(X)∩V1) \ g(V(T1))| ≥ 0.5αn− |X| ≥
0.4αn≥ d · 2m+ 1, by the choice of d and m, and for n large enough. In particular, (P1) holds.
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Now consider any set X ⊆V1 with m< |X| ≤ 2m. Analogously to Case 1, since v(T2)≤ n−
C1γ n≤ n− 501�γ n�, we get |NG(X)∩V1| ≥ d|X| + v(T2), and hence (P2). As G satisfies (P1)
and (P2), we can extend g to an embedding of T2 into G[V1].

We are left with embedding the leaves of T. Set U := g(NT(L(T))) andW := V \ g(V(T2)).
We first embed the vertices of R∗ \ g(V(T2)) one by one. Let w ∈ R∗ \ g(V(T2)), then w does

not belong to NG(x∗), since otherwise it would be used for the embedding of T1. With (2.b) it
follows that there is a distinct vertex sw ∈ S∗ ⊆ g(N1) such that wsw ∈ E(G). Since g−1(sw) ∈N1 ⊆
NT(L(T)) we can find a leaf w′ in T which is adjacent with g−1(sw). We then extend g by embed-
ding w′ to w. Moreover, we then remove w from W, and if w′ was the only leaf at g−1(sw), we
remove sw from U. Note that in this procedure we delete at most |R∗| vertices from each of the
sets U andW.

Finally, we want to find a star matching between the updated sets U andW using Lemma 2.16
applied with d, m, and with k(u) being the number of leaves in T which are adjacent with g−1(u)
but are still not embedded, for every vertex u ∈U. Then, by extending g such that for every u ∈U
we embed the remaining k(u) leaves which are adjacent with g−1(u) to the set Wu, as given by
Lemma 2.16, the embedding will be finished. Hence, it remains to be shown that we can apply
Lemma 2.16. We need to verify that the following three conditions hold:

(i) |NG(X)∩W| ≥ d|X| for all X ⊆U with 1≤ |X| ≤m.
(ii) eG(X, Y)> 0 for all X ⊆U and Y ⊆W with |X| = |Y| ≥m.
(iii) |NG(w)∩U| ≥m for all w ∈W.

By property (5.b) and since U ⊆V1 and V2 \ R∗ ⊆W, it follows that |NG(X)∩W| ≥ 40�γ n� −
|R∗| ≥ dm for every X ⊆U, by the choice of d and m, and thus (i) holds. By property (4) and
since U ⊆V1, we can immediately conclude (ii). Lastly, (iii) follows directly from the fact that
dG(w, g(N1))≥ 2C0 log (n) for all w ∈V(G) \ (g(V(T1))∪ R∗), and since R∗ ∩W =∅.

Case 2.2: Assume that there is no vertex x ∈V(T1) with dT1 (x,N1)≥ 0.5C1 log (n). This case
works essentially the same way as Case 2.1; the main differences will be that we embed T1 in a
random way, and that we do not need to care separately about the vertices of R∗. For the first step
we claim the following.

Claim 3.2. There is an embedding g :V(T1)→V1 of T1 into G[V1] such that every vertex w ∈
V(G) \ g(V(T1)) satisfies dG(w, g(N1))≥ 2C0 log (n).

Before proving this claim, let us quickly explain how to finish the argument then. Using Lemma
2.15 analogously to Case 2.1 we can extend the embedding to the tree T2. Afterwards, we embed
the leaves of T as follows. We again set U := g(NT(L(T))) and W := V \ g(V(T2)), but this time
we do not embed the vertices of R∗ \ g(V(T2)) separately. In this case, by the above claim, we
know that even these vertices have degree at least 2C0 log (n) into g(N1)⊆U, and hence, without
updating U and W, the properties (i)–(iii) can be checked as in Case 2.1. Thus, we can finish the
star matching with appropriate sizes for the stars and finish the embedding of T.

Hence, it remains to prove Claim 3.2. For this, we embed T1 in a random way into V1:
Let t := v(T1), and fix an arbitrary ordering v1, v2, . . . , vt of the vertices of T1 such that every
vertex vi has exactly one neighbour of smaller index; denote this neighbour v−

i . Furthermore,
set Ti := T[{v1, . . . , vi}]. We consider the following simple randomised embedding g: Choose
g(v1) ∈V1 uniformly at random. Then, for i ∈ {2, . . . , t}, choose g(vi) uniformly at random from
the set (NG(g(v−

i ))∩V1) \ g(V(Ti−1)).
We first observe that surely we succeed in embedding T. Indeed, in each step of the algorithm

we have

|(NG(g(v−
i ))∩V1) \ g(V(Ti−1))| ≥ |(NG(g(v−

i ))∩V1)| − |g(V(Ti−1))| ≥ αn− δn≥ 0.5αn,

and we thus never run out of candidates for embedding a vertex vi.
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Hence, it remains to check that a.a.s.

(D) for every w ∈V(G) \ g(V(T1)) we get dG(w, g(N1))≥ 2C0 log (n).

In order to do so, let us define P1 := {v−: v ∈N1} as the set of parents of the vertices in N1, and
note that |P1| ≤ |N1| ≤ C1 log (n). Moreover, for a vertex w ∈V(G) say that v ∈ P1 is bad in the
embedding g if |NG(g(v))∩NG(w)∩V1| < αn. We first prove that a.a.s. the following holds:

(B) for every vertex w ∈V(G) there is at most one bad vertex in P1 throughout the embedding
process.

Fix any w ∈V(G). Whenever we embed a vertex v ∈ P1, we have a candidate set of size at least
0.5αn, as shown above. However, because of property (3), there are at most log (n) candidates
whose choice would make v a bad vertex for w. Hence, the probability that v becomes bad for w
is bounded by 2 log (n)

αn . It follows that the probability that at least two vertices in P1 become bad

for w is bounded by
(|P1|

2
) ·

(
2 log (n)

αn

)2
< n−1.5, provided n is large enough. Hence, doing a union

bound over all vertices w ∈V(G), it follows that (B) fails with probability at most n · n−1.5 = o(1).
From now on, let us condition on (B), and prove that (D) a.a.s. holds. Again, fix any w ∈V(G).

Since by the assumption of Case 2.2 no vertex in T1 is adjacent with more than 0.5C1 log (n)
vertices fromN1, it follows that the parent of at least �0.5C1 log (n)� vertices v ∈N1 is not bad forw
(where these parents do not need to be distinct), e.g. |NG(g(v−))∩NG(w)∩V1| ≥ αn. Therefore,
whenever we embed one of these vertices fromN1 into V1, say it is a vertex vi, then the probability
that it ends up in NG(w) is at least

|(NG(g(v−
i ))∩NG(w)∩V1) \ g(V(Ti−1))|

|(NG(g(v−
i ))∩V1) \ g(V(Ti−1))|

≥ αn− δn
n

≥ 0.5α,

and this bound of 0.5α holds independently of the embeddings of other vertices fromN1. Thus, the
random variable Xw counting the number of vertices from N1 ending up in NG(w) stochastically
dominates the binomial random variable X ∼ Bin(�0.5C1 log (n)�, 0.5α) with expectation about
0.25αC1 log (n)≥ 4C0 log (n). By Lemma 2.1 we conclude

P(Xw < 2C0 log (n))≤ P(X < 0.5E(X))≤ e−
1
8E(X) < e−0.03αC1 log (n) < e−2 log (n),

by the choice of C1. Now, doing a union bound over all w ∈V(G), we see that (D) fails with
probability at most ne−2 log (n) = o(1).

4. Maker’s strategy

Proof of Theorem 1.1. Maker’s goal it to claim a graph M which satisfies the properties (1)–
(5) from Theorem 3.1, with α, γ , c, C0, and the partition V(M)=V1 ∪V2 being chosen in an
appropriate way, as this theorem then ensures that Maker claims a graph as required.

Choose α := 10−8 andC0 := 2000, let γ ′ and c be given according to Theorem 3.1, and let γ :=
min{γ ′, 10−5}. Whenever necessary, we assume that n is large enough.Maker’s strategy consists of
two main stages that split into several subgames in which she cares about the required properties
(1)–(5) of Theorem 3.1 separately. If at any point in the game she is unable to follow her strategy,
she forfeits the game (we will later see that this does not happen). In the following, we will first
describe the overall strategy. In the strategy discussion wewill then show thatMaker can follow the
proposed strategy and claim a graph G with a partition V(G)=V1 ∪V2 satisfying the properties
(1)–(5).
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Strategy description: Maker’s strategy consists of two main stages between which there is an
additionally preparatory step in which no move is made, but the free edges are partitioned in a
suitable way into several subboards.

Stage I: This stage consists of two substages:
Stage I.a: Maker chooses an arbitrary vertex x∗ and claims edges incident to x∗ until
NM(x∗)= �25C0 log (n)�. Let S∗ := NM(x∗) at the end of this substage.
Stage I.b: Afterwards consider all vertices v ∈V with dB(v, S∗)> C0 log (n). Let R∗ =
{v1, v2, . . . , vr} be the union of those vertices. For every i ∈ [r], in the ith round of this
substage, Maker claims the edge vix∗ if possible, otherwise she claims an edge visvi such
that svi ∈ S∗ and dM(svi)= 1. Details are given in the strategy discussion.

Preparatory step: Fix a partition V =V1 ∪V2 with |V2| = 500�γ n� and such that Kn[V2] does
not contain any edges claimed so far by Maker or Breaker. Moreover, find a partition of the graph
induced by EF(Kn) \ EF(V2) into five graphsG1 ∪G2 ∪G3 ∪G4 ∪G5 such that all of the following
properties hold:

(G1) For every v ∈V \ (R∗ ∪ S∗) it holds that dG1 (v, S∗)> 4C0 log (n).
(G2) For every v ∈V1 it holds that dG2 (v,V2)> 80γ n.
(G3) For any two disjoint sets A⊆V1, B⊆V of sizes |A| = |B| = �C0 log (n)� it holds that

eG3 (A, B)≥ 0.1C2
0( log (n))2.

(G4) For every v ∈V it holds that dG4 (v,V1)> n
10 .

(G5) For any two disjoint sets A⊆V1, B⊆V of sizes |A| = n
40 , |B| = �log (n)� it holds that

eG5 (A, B)>
n log (n)
250 .

Details on why such a partition exists are given in the strategy discussion.

Stage II:We split Stage II into six subgames which are played simultaneously on disjoint boards.
During this stage, whenever Breaker claims an edge in one of the boards, Maker reacts on the
same board by claiming one edge according to the correspondent strategy. Only in case that
there is no free edge left of the relevant board, Maker claims an arbitrary free edge of another
board.

Maker’s boards and goals in these subgames are described in the following.
Subgame 1: Playing on G1, Maker ensures that by the end of the game for every v ∈V \
(R∗ ∪ S∗) it holds that dM(v, S∗)≥ 2C0 log (n).
Subgame 2: Playing on G2, Maker ensures that by the end of the game for every v ∈V1 it
holds that dM(v,V2)≥ 40γ n.
Subgame 3: Playing on G3, Maker claims at least one edge between any two disjoint sets
A⊆V1 and B⊆V of sizes |A| = |B| = �C0 log (n)�.
Subgame 4: Playing on G4, Maker ensures that by the end of the game for every v ∈V it
holds that dM(v,V1)≥ n

40 .
Subgame 5: Playing on G5, Maker ensures that by the end of the game for any two disjoint
sets A⊆V1, B⊆V of sizes |A| = n

40 , |B| = �log (n)� it holds that eM(A, B)> n log (n)
2500 .

Subgame 6: Playing on E(V2), Maker considers two substages.
Substage I:Within atmost n1.8 rounds on E(V2),Maker claims aK5-factor onV2 and simul-
taneously makes sure that for every v ∈V2 it holds that dB(v,V2)≤ 0.4|V2| + dM(v,V2).
Let K be the collection of K5-copies that form the K5-factor at the end of this substage,
let Kbad denote a subset of �γ n� of these K5-copies with the most adjacent Breaker edges
within V2, and let Kgood =K \Kbad. Substage II: Maker makes sure that by the end of the
game
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(i) every vertex v which belongs to a clique in Kbad satisfies dM(v,V2)≥ 40�γ n�,
(ii) for every clique K ∈Kgood there are at most γ n cliques K ′ ∈Kgood such that M does

not have a matching of size 3 between V(K) and V(K′).

The details on how Maker can achieve these goals will be given in the strategy discussion.
Before coming to the strategy discussion let us first check that, if Maker can follow the strategy

without forfeiting the game and can reach all the described goals, her graphM with the partition
V(M)=V1 ∪V2 fulfils the properties (1)–(5) of Theorem 3.1 by the end of the game. Property (1)
is true by the choice ofV1 andV2 in the preparatory step. (2.a) is ensured in Stage I.a. For property
(2.b) note that |R∗| ≤ 25, by the definition of R∗ and since Stage I.a lasts �25C0 log (n)� rounds.
The rest of (2.b) follows from the goal of Stage I.b. Moreover, (2.c) is ensured in the Subgame 1.
Property (3) is given by the following reason: For any v ∈V we have dM(v,V1)> n

40 by Subgame
4, and hence, by the outcome of Subgame 5, there are less than log (n) vertices which have at most
αn neighbours into NM(v)∩V1. Property (4) is obtained in the Subgame 3. For property (5.a)
note that in the first substage of Subgame 6, we obtain K, and a partition K =Kgood ∪Kbad as
desired. Property (5.b) follows from the outcome of Subgame 2 and (i) in Subgame 6; property
(5.c) is ensured by (ii) in Subgame 6.

Strategy discussion:We discuss all of the stages separately.

Stage I: Maker can clearly follow Stage I.a, provided n is large enough. So, consider Stage I.b
from now on. Note that e(B)= |S∗| and dM(s)= 1 for every s ∈ S∗ when Maker enters Stage I.b.
If r = |R∗| = 1, then between the unique vertex v1 ∈ R∗ and the set {x∗} ∪ S∗ there must be at
least one free edge. Hence, Maker can play as suggested. If otherwise r > 1 then, at the beginning
of this stage, every vertex vi ∈ R∗ satisfies dB(vi, S∗)< e(B)− C0 log (n)= |S∗| − C0 log (n), and
hence, Maker in each of the at most 25 rounds of Stage I.b can find a vertex svi ∈ S∗ as described
by the strategy and such that visvi is still free, if vix∗ is already blocked by Breaker.

Preparatory step: Provided n is large enough, it is clear that we can find a partition V =V1 ∪
V2 with |V2| = 500�γ n� and such that Kn[V2] does not contain any edges claimed by Maker or
Breaker during Stage I, since so far at most 25C0 log (n)+ 25 rounds have been played and hence
at most 51C0 log (n) edges are claimed. In order to show that there is a partition G1 ∪G2 ∪G3 ∪
G4 ∪G5 of the graph induced by EF(Kn) \ E(V2) as desired, we show that a randomly chosen
partition G1 ∪G2 ∪G3 ∪G4 ∪G5 a.a.s. satisfies the properties (G1)–(G5). To be more precise, for
each edge e ∈ EF(Kn) \ E(V2) we decide independently with equal probability 1/5 in which of the
graphsG1,G2,G3,G4,G5 it will be included.We consider each of the desired properties separately.

(G1) Let v ∈V \ (S∗ ∪ R∗), then dM(v, S∗)= 0 at the end of Stage I. Moreover, we
have dB(v, S∗)≤ C0 log (n)+ 25, as v /∈ R∗ and Stage I.b lasts at most 25 rounds.
Hence dF(v, S∗)> 23C0 log (n). For the random variable XG1

v = dG1 (v, S∗) we have
XG1
v ∼ Bin

(
dF(v, S∗), 15

)
with expectation E(XG1

v )= 0.2dF(v, S∗)> 4.6C0 log (n). Applying
Chernoff (Lemma 2.1) we find that P

(
dG1 (v, S∗)< 4C0 log (n)

)
< exp

(−0.05C0 log (n)
)
.

With a union bound over all v ∈V \ (S∗ ∪ R∗) we see that (G1) fails with probability at
most n exp (− 0.05C0 log (n))= o(1), by the choice of C0.

(G2) Let v ∈V1. At the end of Stage I we have dF(v,V2)> |V2| − e(B)> 495γ n, provided n is
large. Hence, for the random variable XG2

v = dG2 (v,V2) we have XG2
v ∼ Bin

(
dF(v,V2), 15

)
with expectation E(XG2

v )> 99γ n. Applying Chernoff (Lemma 2.1) and union bound as
before, we see that (G2) fails with probability o(1).

(G3) Let A⊆V1 and B⊆V be disjoint sets of size �C0 log (n)�. Then eF(A, B)≥ |A| · |B| −
51C0 log (n)> 0.99C2

0( log (n))2, provided n is large enough. For the random vari-
able XG3

A,B = eG3 (A, B) we have XG3
A,B ∼ Bin

(
eF(A, B), 15

)
with expectation 1

5eF(A, B)≥
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0.19C2
0( log (n))2. Applying Chernoff (Lemma 2.1) and a union bound over all possible

pairs of sets A, B we find that (G3) fails with probability o(1).
(G4) This can be verified analogously to (G2), using that for every v ∈V we have dF(v,V1)≥

|V1| − 51C0 log (n)≥ n− 501γ n> 0.9n, provided n is large enough.
(G5) This can be verified analogously to (G3), using that for every A⊆V1, B⊆V of sizes |A| =

n
40 and |B| = �log (n)� we have dF(A, B)≥ |A| · |B| − 51C0 log (n)≥ n log (n)

41 , provided n is
large enough.

Stage II:We discuss the 6 subgames separately.
Subgame 1: Maker can reach her goal by (G1) and simply using a pairing strategy for the
edges in EG1 (v, S∗) for every vertex v ∈V \ (R∗ ∪ S∗).
Subgame 2: Maker can reach her goal by (G2) and simply using a pairing strategy for the
edges in EG2 (v,V2) for every vertex v ∈V1.
Subgame 3: Maker can reach her goal by (G3) and the Erdős-Selfridge-Criterion (see
Theorem 2.2) as follows: Consider the family

F3 := {EG3 (A, B):A⊆V1, B⊆V , |A| = |B| = �C0 log (n)�,A and B disjoint},
and note that for large enough n, using (G3), we get

∑
F∈F3

2−|F|+1 ≤ (nC0 log (n))2 · 2−0.1C2
0( log (n))

2+1 ≤ e2C0( log (n))2−0.1C2
0( log (n))

2+1 < 1,

by the choice of C0. Hence Maker (taking the role of Breaker) can claim an edge of every
edge set in F3.
Subgame 4: LetH4 ⊆G4 be the graph induced by all edges ofG4 that intersectV1, and note
that by (G4), δ(H4)> n

10 . Maker can reach her goal by an application of Lemma 2.3 to H4.
Subgame 5: Maker can reach her goal by (G5) and the criterion in Lemma 2.5 as follows:
We choose δ := 1

5 and consider the family

F5 = {EG5 (A, B) :A⊆V1, B⊆V , |A| = n
40

, |B| = �log (n)�,A and B disjoint}.

Then k := minF∈F5 |F| > n log (n)
250 > 100 log (4n)> 4δ−2 log (|F5|) for large enough n.

Thus, by Lemma 2.5, Maker can claim at least 3
10 · n log (n)

250 >
n log (n)
2500 edges in each set of

F5.
Subgame 6: For Substage I, Maker plays on Kn[V2] alternating between the strategies from
Lemma 2.4 to Lemma 2.6, applied with b := 2 (since Breaker claims two edges between
any two moves of Maker for any of these lemmas). Lemma 2.6 ensures that Maker obtains
a K5-factor on V2 before n1.8 rounds are played on V2. Lemma 2.4 ensures that throughout
this stage, dB(v,V2)≤ 0.4|V2| + dM(v,V2) holds for every v ∈V2, because of the following
reason: Assume that Breaker could reach dB(v,V2)> 0.4|V2| + dM(v,V2) for some ver-
tex v ∈V2 at some point, then by claiming only edges in EF(v,V2) from that moment on,
Breaker could maintain the inequality dB(v,V2)> 0.4|V2| + dM(v,V2), eventually leading
to dB(v,V2)≥ 0.7|V2| by the end of the game, contradicting Lemma 2.4 for large enough
n.
At the end of Substage I, let K =Kgood ∪Kbad be given according to the strategy descrip-
tion, and let Vgood and Vbad be the vertices of all cliques in Kgood and Kbad, respectively.
Moreover, let

K(2)
good := {(K,K ′):K,K ′ ∈Kgood, K �=K ′, eB(V(K),V(K ′))= 0}.
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Note that, since Breaker has at most n1.8 edges within V2 at the end of Substage I, and
by definition of Kbad, we have that for every K ∈Kgood there are less than γ n cliques K′ ∈
Kgood such that (K,K ′) /∈K(2)

good.
Now, in Substage II, Maker considers the disjoint boards EF(Vgood) and EF(Vgood,Vbad),
and always makes her move on the same board that Breaker made his previous move on.
On the first board EF(Vgood), Maker makes sure to get a matching of size 3 between any
pair (K,K ′) ∈K(2)

good. Note that this is done easily, since no edge between V(K) and V(K′)
is blocked by Breaker yet. This way, property (ii) of Substage II is ensured. On the second
board EF(Vgood,Vbad), Maker plays a degree game as follows: Let v belong to a clique in
Kbad. If by the end of Substage I, we already have dM(v,V2)≥ 40γ n, then there is nothing
to be done. Otherwise, by the outcome of Substage I, it holds that

dB(v,V2)≤ 0.4|V2| + dM(v,V2)< 240γ n.

Then, by pairing the edges in EF(v,Vgood), Maker can ensure to get dM(v,V2)≥ 40γ n.
Hence, property (i) of Substage II is ensured as well. �

5. Waiter’s strategy
Proof of Theorem 1.2. Waiter’s goal it to force Client to claim a graph C which satisfies the prop-
erties (1)–(5) from Theorem 3.1, with α, γ , c, C0, and the partition V(C)=V1 ∪V2 being chosen
in an appropriate way, as this theorem then ensures that C contains a copy of every tree T on n
vertices with �(T)≤ cn

log (n) .
Choose α := 10−8 and C0 := 2000, let γ ′ and c be given according to Theorem 3.1, and let

γ := min{γ ′, 10−5}. Whenever necessary, we assume that n is large enough. Waiter’s strategy
consists of five stages in which she cares about the required properties (1)–(5). If at any point in
the game she is unable to follow her strategy, she forfeits the game (we will later see that this does
not happen). In the following, we will first describe the overall strategy. In the strategy discussion
wewill then show thatWaiter can follow the proposed strategy and force a graphGwith a partition
V(G)=V1 ∪V2 satisfying the properties (1)–(5).

Strategy description: Waiter’s overall strategy consists of five stages, and a preparatory step
between Stage II and Stage III, in which no move is made, but the free edges are partitioned in
a suitable way into several subboards. Before the game starts, fix a partition V =V1 ∪V2 such
that |V2| = 500�γ n�, and fix an equipartitionV2 =V2,1 ∪ . . . ∪V2,100, i.e. |V2,j| = 5�γ n� for every
j ∈ [100].

Stage I:Waiter chooses an arbitrary vertex x∗ ∈V1. Offering only edges in EKn(V1) incident to x∗
for �25C0 log (n)� turns she claims a star with centre x∗. Once this is done, let S∗ := NC(x∗) and
R∗ = ∅. Afterwards she continues with Stage II.

Stage II: This stage consists of two substages:
Stage II.a: For every j ∈ [100], Waiter forces a K5-factor on the graph Kn[V2,j]. The details
will be given in the strategy discussion. Having done so, label the K5-copies in these factors
with Ki,j and i ∈ [�γ n�]. Let K := {Ki,j: i ∈ [�γ n�], j ∈ [100]}.
Stage II.b: For every j1 �= j2 and i1, i2 ∈ [�γ n�], Waiter forces a perfect matching between
V(Ki1,j1 ) and V(Ki2,j2 ). Details will be given in the strategy discussion. Afterwards, Waiter
does a preparatory step and afterwards proceeds with Stage III.

Preparatory step: Fix a partition of the graph induced by EF(Kn) \ EKn(V2) into G1 ∪G2 ∪G3 ∪
G4 such that the following holds:
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(G1) For every pair of vertices v,w ∈V it holds that |NG1 (v)∩NG1 (w)∩V1| ≥ 0.05n.
(G2) For every v ∈V1 we have dG2 (v,V2)> 80�γ n�.
(G3) For every disjoint sets X ⊆V1, Y ⊆V of size |X| = |Y| =m := �C0 log (n)�, it holds that

eG3 (X, Y)> 0.2m2.
(G4) For every v ∈V \ (S∗ ∪ {x∗}) it holds that dG4 (v, S∗)≥ 4C0 log (n).

Details on why such a partition exists are given in the strategy discussion.

Stage III: Playing on G1, Waiter forces Client’s graph to satisfy that |NC(v)∩NC(w)∩V1| ≥ αn
holds for every v,w ∈V . The details on how Waiter can achieve this goal will be given in the
strategy discussion. Waiter proceeds with Stage IV.

Stage IV: Playing on G2, Waiter forces Client’s graph to satisfy that for every v ∈V1 it holds that
dC(v,V2)≥ 40�γ n�. The details on how Waiter can achieve this goal will be given in the strategy
discussion. Waiter proceeds with Stage V.

Stage V: Playing on G3, Waiter forces Client’s graph to satisfy that between every two disjoint sets
A⊆V1 and B⊆V of size �C0 log (n)� there is an edge in C. The details on howWaiter can achieve
this goal will be given in the strategy discussion.

Stage VI: Playing onG4, for every v ∈V \ (S∗ ∪ {x∗})Waiter ensures that by the end of this stage it
holds that dC(v, S∗)≥ 2�C0 log (n)�. The details on howWaiter can achieve this goal will be given
in the strategy discussion.

Now, before coming to the strategy discussion, let us first check that, if Waiter can follow the
strategy without forfeiting the game and can reach all the described goals, the final Client’s graph
C with the partition V(C)=V1 ∪V2 fulfils the properties (1)–(5) of Theorem 3.1.

Property (1) is true by the initial choice of V1 and V2. (2.a) and (2.b) are ensured in Stage I,
while (2.c) is given by the outcome of Stage VI. Property (3) is obtained in Stage III, and property
(4) is done in Stage V. Moreover, we can distribute the collection of cliques K arbitrarily into
K =Kgood ∪Kbad such that |Kbad| = �γ n�. This way, (5.a) holds trivially. For property (5.b) note
that by the outcome of Stage IV every vertex v ∈V1 satisfies dC(v,V2)> 40�γ n�. Moreover, using
the matchings from Stage II.b, we also obtain such a bound for every vertex v belonging to Kbad.
Finally, property (5.c) follows from Stage II.b.

Strategy discussion: We discuss all of the five stages separately. Note that the boards of these
different stages are disjoint from each other.

Stage I:Waiter can easily follow this strategy for large enough n.

Stage II: Waiter can force a K5-factor on each Kn[V2,j] by Theorem 1.2 in [13]. Let K = {Ki,j: i ∈
[�γ n�], j ∈ [100]} be the set of cliques in the union of these K5-factors. Additionally, for every
j1 �= j2 and i1, i2 ∈ [�γ n�], letGi1,j1,i2,j2 ⊆Kn be the complete bipartite graph between V(Ki1,j1 ) and
V(Ki2,j2 ). Then all edges of Gi1,j1,i2,j2 are still free when Waiter enters Stage II, and for different
tuples (i1, j1, i2, j2) �= (i1′, j1′, i2′, j2′) the graphs Gi1,j1,i2,j2 and Gi1′,j1′,i2′,j2′ are edge-disjoint. Hence,
Waiter can apply the strategy from Lemma 2.9 to each of the graphs Gi1,j1,i2,j2 separately, and thus
claim a matching of size 5.

Preparatory step: In order to show that there is a partition G1 ∪G2 ∪G3 ∪G4 of the graph
induced by EF(Kn) \ EKn(V2) as desired, we show that a randomly chosen partition G1 ∪G2 ∪
G3 ∪G4 a.a.s. satisfies the properties (G1)–(G4). To be more precise, for each edge e ∈ EF(Kn) \
EKn(V2) we decide independently with equal probability 1/4 in which of the graphsG1,G2,G3,G4
it will be included. We consider each of the desired properties separately.
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(G1) Let v,w ∈V , then |NKn(v)∩NKn(w)∩V1| = |V1 \ {v,w}|. Since so far edges intersecting
V1 have only been claimed in Stage I, we conclude that

|NF(v)∩NF(w)∩V1| ≥ n− 500γ n− 2− 50C0 log (n)> 0.99n,

by the choice of γ , for large n. For the random variable XG1
v,w = |NG1 (v)∩NG1 (w)∩V1| we

have XG1
v,w ∼ Bin

(|NF(v)∩NF(w)∩V1|, 1
16

)
with expectation E(XG1

v,w)> 0.06n. Applying
Chernoff (Lemma 2.1) and union bound we find that (G1) fails with probability o(1).

(G2) Checking (G2) can be done analogously, using that for every v ∈V1, we have dF(v,V2)≥
|V2| − 50C0 log (n)> 499γ n.

(G3) This can be checked analogously to property (G3) in the proof of Theorem 1.1, using that
for every every disjoint sets X ⊆V1, Y ⊆V of size |X| = |Y| =m= �C0 log (n)�, it holds
that eF(X, Y)≥ |X| · |Y| − 50C0 log (n)≥ 0.9m2.

(G4) This can be checked analogously to property (G2), using that dF(v, S∗)= |S∗| for every
v /∈ S∗ ∪ {x∗}.

Stage III: In this stageWaiter only offers edges of G1 which are incident with V1. Waiter plays the
strategy from Lemma 2.8 with β = 0.05, and N{v,w} := NG1 (v)∩NG1 (w)∩V1 for every set {v,w}
of two vertices inV . By Lemma 2.8,Waiter then ensures that |NC(v)∩NC(w)∩N{v,w}| ≥ βn

500 ≥ αn
holds for every v,w ∈V .

Stage IV: By property (G2) it holds that dG2 (v,V2)> 80�γ n� for every v ∈V1. With a simple
pairing strategy, Waiter reaches the described goal.

Stage V:Waiter reaches the described goal by an application of Theorem 2.7. To be more precise,
let

F := {EG3 (A, B) :A⊆V1, B⊆V , |A| = |B| = �C0 log (n)�,A and B disjoint}.
Using (G3) and the choice of C0, we obtain

∑
F∈F 2−|F|+1 ≤ n2m · 2−0.2m2+1 = o(1) analogously

to the discussion of Maker’s strategy. In particular, Waiter can force Client to claim an element of
each edge set in F .

Stage VI: By property (G4) it holds that dG4 (v, S∗)> 4C0 log (n) for every v ∈V \ (S∗ ∪ {x∗}).
Again, with a simple pairing strategy, Waiter reaches the described goal. �

6. Concluding remarks
Though we presented no � such that Maker in the (1 : 1) game on Kn cannot obtain a graph
which is universal for spanning trees of degree �, we believe that the degree order n/ log n in
Theorem 1.1 is optimal. More precisely, we pose the following conjecture.

Conjecture 6.1. There exists a constant C > 0 such that the following holds for every large enough
integer n. In the (1 : 1) Maker-Breaker game on Kn, Breaker has a strategy to prevent Maker from
claiming a graph which contains a copy of every tree T with n vertices and maximum degree�(T)≤
Cn

log (n) .

In contrast, we believe that the maximum degree order in Theorem 1.2 can be improved.

Conjecture 6.2. There exists a constant c> 0 such that the following holds for every large enough
integer n. In the (1 : 1) Waiter-Client game on Kn, Waiter has a strategy to force Client to claim a
graph which contains a copy of every tree T with n vertices and maximum degree �(T)≤ cn.
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6.1 Tree universality in Client-Waiter games
Together with Picker-Chooser games Beck also introduced Chooser-Picker games (cf. [4]), later
studied under the name Client-Waiter (cf. [12], [22]). In a (1 : 1) Client-Waiter game on a hyper-
graph H= (X ,F) Waiter picks 2 elements of the board X and offers them to Client. Client
chooses one of them for himself and returns the remaining one to Waiter. If there is only one
element left in the last round, it goes to Client. Client wins if she fully claims a winning set F ∈F ;
otherwise, Waiter wins.

It is well known (and observed already by Beck) that the Erdős-Selfridge criterion can be
adapted for Client-Waiter games and if

∑
F∈F

2−|F| < 1,

then in the (1 : 1) Client-Waiter game on (X,F), Client has a strategy to claim at least one element
in each of the sets in F . As in Maker-Breaker games, we can use this criterion to prove that Client
can claim a good expander in Kn. Roughly speaking, we define a family F of edge sets in Kn with
the property that if Client has at least one edge in every set from F , then every vertex set of her
graph has a big neighbourhood, and there is a Client’s edge between every pair of not too small
sets. In view of expander properties from [24], one can deduce that Client in the (1 : 1) game onKn
can claim a graph that contains copies of all trees T with �(T)≤ cn1/3

log (n) . We can further relax the

last inequality to �(T)≤ cn1/2
log (n) , if we apply a result from [17]. Unfortunately, we do not see how

to adapt our proof of Theorem 1.2 to the Client-Waiter version; still, we suspect that the following
is true.

Conjecture 6.3. There exists a constant c> 0 such that the following holds for every large enough
integer n. In the (1 : 1) Client-Waiter game on Kn, Client has a strategy to claim a graph which
contains a copy of every tree T with n vertices and maximum degree �(T)≤ cn

log (n) .

The degree order in the above conjecture cannot be improved since it is known [1] that there
exists a constant C > 0 and a tree T with n vertices and maximum degree Cn/ log (n) such that
Client cannot claim a copy of T in Kn.

6.2 Tree universality in Avoider-Enforcer games
Finally, let us mention another class of positional games, called Avoider-Enforcer or Avoider-
Forcer games (cf. [4], [21]). For simplicity, let us focus on the symmetric and so-called strict
version only. In a (1 : 1) Avoider-Enforcer game on a hypergraphH= (X ,F) Avoider (who starts)
and Enforcer claim in turns one not yet claimed element of the board X , until all elements are
claimed. Enforcer wins if at the end of the game all elements of at least one set F ∈F belong
to Avoider; otherwise Avoider is the winner. Lu [28] proved that the Erdős-Selfridge condition
on H implies that Avoider has a winning strategy in the (1 : 1) Avoider-Enforcer game on H.
Furthermore, it is known that the assertion holds also when Enforcer starts the game. In view of
that, we can say that the Erdős-Selfridge condition implies that the second player in the (1 : 1)
Avoider-Enforcer game on H can force the first player to claim at least one element in each of
the sets in H. It is now enough to add expander properties from [17] to infer that Enforcer in
the (1 : 1) game on Kn can force Avoider to claim a graph that contains copies of all trees T with
�(T)≤ cn1/2

log (n) . It seems challenging to improve this result.
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6.3 Waiter-Client minimum pair degree game
In Lemma 2.8, we prove that Waiter can force Client in the (1 : 1) Waiter-Client game on Kn to
claim a graph where each pair of vertices has pair degree αn for some suitable α. We believe that
this result might be of independent interest. Furthermore, we want to pose the following problem:

Problem 6.4. Find the maximum α such that for every large enough n Waiter has a strategy in a
(1 : 1)Waiter-Client game on Kn to force Client to claim a graph with the following property: for any
two vertices v,w ∈V(Kn) we have |NC(v)∩NC(w)| ≥ αn.

Note that in the Maker-Breaker version, Breaker can easily ensure that |NM(v)∩NM(w)| = 0 for
two fixed vertices v,w ∈V(Kn).
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