
A NOTE ON PRE-INTERIOR OPERATORS

TENG-SUN LIU *

(Received 18 March 196S)

Let X be a non-empty set and denote by PX the set algebra consisting
of all subsets of X. An operator i: PX -*• PX is said to be pre-interior if

(i) iX = X;
(ii) i(A n B ) = iA n iB for all A, B in PX.

In this note we first establish the following propositions.

PROPOSITION 1. Let i be a pre-interior operator on X, then

T = {AePX :AC iA} is a topology on X;
I = {AePX : icA = X} is an ideal in PX.1

PROPOSITION 2. Let (X, T) be a topological space and let I be an ideal in
PX, then the mapping i: PX -> PX defined by

iA = {x e X: there exists V eTx
2 such that V—A el}

is a pre-interior operator on X.
The operator * obtained in Proposition 2 induces, by Proposition 1,

a topology M on X. Our discussion will be about this derived topology.

To prove the first assertion of Proposition 1, we observe first that
(ii) implies that T is closed under finite intersections. It also follows from
(ii) that the operator i is monotone and hence T is closed under arbitrary
unions. By (i) and the definition of T it is clear that X and the empty set 0
are in T. Thus T is a topology on X. For the second assertion we note that
(i) implies 0 e / and (ii) implies that / is closed under finite unions and the
formation of subsets. Thus I is an ideal in PX.

* This research was sponsored in part by the United States Army Research Office.
The author wishes to express his thanks to Professor A. Ionescu Tulcea and Professor C.
Ionescu Tulcea for many helpful discussions.

1 cA denotes the complement of A.
2 T, denotes the set of all V 6 T such that xeV.
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The operator i defined in Proposition 2 obviously satisfies (i) since
0 e / . Since i is clearly monotone, to show (ii) it suffices to prove
iA n iB Ci(A n B). Suppose xeiA n iB. Then there exist U eTx and
V e Tx such that U-A el and V-B el. Let W = U nV, then WeTx

and W—A nB = (W-A) u {W—B) el. Hence xei{AnB). Thus
iA n iB Ci(A n B) and t is pre-interior.

From now on we suppose (X, T) is a topological space, I is an ideal
in PX, i is the pre-interior operator on X induced by T and / and M is the
topology on X induced by i. Let d : PX -> PX be defined by

: for all V eTx, V c\A$I).

We see that x e dA if and only if for all V eTx, V—A £1, hence if and
only if a; e dcA. Thus dA = cicA. Hence by duality we know that the operator
d has the following properties.

(i') d0 = 0;
(ii') d(A u B) = dAudB for all A, B in PX.

PROPOSITION 3.

(1) M is finer than T.

(2) Int^ A = A niA and hence C\MA = A u <£4.

(3) rf is <Ae derived operator for M if and only if {x} el for all xeX.

PROOF. The assertion (1) is obvious. Since iA is in T, it is in M. There-
fore iA C UA. It follows that A niA CiA = iA n HA = i(A n JVI), hence
.4 n /̂ 4 is M-open. On the other hand, if a; e IntM A, then there exists U C A
such that xeU and UCiU. From J7C.4 we obtain iUCiA. Thus
a;e^4 nt.4. This proves (2).

Denote the derived operator for M by /, we have by (2) the following
equivalences:

xefAoxeC\M (A — {a;}) <>xed(A—{x}).

Therefore / = d if and only if for all x e X and A e PX, xedA implies
xed(A — {x}). But this is the case when and only when {x}el for all
xeX. This proves (3).

PROPOSITION 4. The following statements are •pairwise equivalent.

(1) *0 = 0.
(2) * is dominated by d.
(3) r n / = {0}.
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PROOF. Since d0 = 0, (2) implies (1). Since VeT nl implies VCi0,
we see that (1) implies (3). Finally suppose T n I = {0}, then for any ACX,
x e iA —dA would imply that there exists U eTx and V e Tx such that
U-A el and V n A el. But then U nV eTx and U n V C (U—A) u
u (V n A) e / . This is a contradiction. Hence î 4 — dA = 0 and therefore
i is dominated by rf. Thus (3) implies (2) and the proof is completed.

PROPOSITION 5. Suppose i0 = 0 and Y is a regular space. Then, if
g:X-±Y is M-continuous, g is T-continuous. (cf. [5]).

PROOF. Take any x in X and let W be an open neighborhood of g{x).
Let Wx be an open neighborhood of g(x) such that W1 C Wx C W. Consider
g~1(Y—W1), since it is Af-closed, there exists U e Tx such that U n g~x

) el. If U n g'1 (Y—W) ^ 0, let x' be a point in it.JThen since
is M-closed there exists U' e Tx, such that CP n g - 1 ^ ) e / . But

then Un U'elsinceUn U'C (UnU'ng-^Wj}) u {Un U'ng-^Y-WJ).
Also U nU' =£0. This contradicts the assumption «0 = 0. Therefore
U n g-1{Y—W) = 0 and J7 C g - 1 ^ ) . Thus g is T-continuous at x. Since
a; is arbitrarily taken, the proof is completed.

We have seen in Proposition 3 that M is always finer than T. Let M'
be the topology on X generated by T and the complements of elements
in / . Since for every A e I, dA C A and hence A is M-closed, we have proved
the following proposition.

PROPOSITION 6. TCM'CM.

COROLLARY 1. / / i0 = 0, then the spaces (X, T), (X, M') and (X, M)
have the same continuous functions.

PROOF. Use Propositions 5 and 6.

PROPOSITION 7. If iA—A el for all A eM (hence if iA—A el for
all A e PX), then M = M'.

PROOF. AeM => A=iAn c(iA—A) eM'.

PROPOSITION 8. M = T if and only if every A in I is T-closed.

PROOF. If M = T, then since every A in I is M-closed, it is T-closed.
Conversely suppose every A in I is T-closed. li B eM, then for any xeB,
x is in iB. Hence there exists V e Tx such that V—B el. Since V—B is T-
closed, V nBeT. Thus BeT. This proves M = T.

COROLLARY 2. The topology induced by M and I is M itself.

PROOF. Every A el is M-closed.
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We close this note with some examples.

Example 1. If I = PX, then M is the discrete topology. If / e {0},
then M = T.

Example 2. Let (X, T) be a topological space. If / is the ideal of all
nowhere dense subsets of X, then «0 = 0 and iA — A e I for all .4 C X.
Thus M' = M and 7" and M' have the same continuous functions. It can
be shown that in (X, M') the ideal of nowhere dense sets is still I.

Example 3. Let (X, T) be second countable and let J be a <r-ideal in
PX, then iA-A el for all A CX (cf. [5]).

Example 4. Let X be a locally compact group and let / be the ideal
of all subsets of X with Haar measure 0. Then «0 = 0 and iA—A el for
all A C X. If X is ff-compact and separable, then M = M' is of the first
category (cf. [4]).

Example 5. Let X = RKJ {p} where R is an infinite set and p $ R.
Let F be an ultrafilter on R containing all subsets of R whose complements
are finite. We define a topology T on X by stipulating a set U to be in T
if and only if U C R or p e U and U—{p} e F. Next we define an ideal /
in PX by A el ii and only if A—{p} $ F. Then the topology M induced
by T and I is T itself. This can be deduced either from the fact that T is
a maximal Xj-topology (see [3]) or from Proposition 8.

References

[1] P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
[2] J. L. Kelley, General Topology, Van Nostrand, New York, 1955.
[3] Teng-sun Liu, A Note on Maximal r,-topologies, Portugal Math. 18 (1959), 235—236.
[4] Teng-sun Liu, On Vanishing Algebras, Proc. Amer. Math. Soc. 14 (1963), 162 — 165.
[5] N. F. G. Martin, Generalized Condensation Points, Duke Math. J. 28 (1961), 507-614.

University of Pennsylvania and University of Massachusetts

https://doi.org/10.1017/S1446788700028512 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028512

