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Abstract

We present a systematic and self-contained exposition of the generalized Riemann integral in a locally
compact Hausdorff space, and we show that it is equivalent to the Perron and variational integrals.
We also give a necessary and sufficient condition for its equivalence to the Lebesgue integral with
respect to a suitably chosen measure.
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C 05, 28 C 15.

1. Introduction

In this paper, we present a systematic, virtually self-contained and, in our
opinion, fairly complete development of the Riemann integral in a locally
compact Hausdorff space. Such an integral was first introduced by McShane
(seek [3, Example 6]), who also investigated its relationship to the Lebesgue
integral and gave sufficient conditions under which the integral depends only on
the integrand restricted to the integration domain (rather than to the closure of
it). We improve and unify the results of McShane by showing that the Riemann
integral induces a regular measure, and that the Lebesgue integral with respect to
this measure is equal to the Riemann integral if and only if the Riemann integral
depends only on the integrand restricted to the integration domain.

We believe that the completeness of our presentation has a substantial merit in
making McShane's idea accesible to a larger audience. Indeed in [3], the Riemann
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116 S. I. Ahmed and W. F. Pfeffer [2 ]

integral we study is mentioned only briefly as an example of a more general
theory, and it is difficult, if not impossible, to appreciate it fully without studying
the whole memoir. There are various places in the literature where the Riemann
integral of McShane is discussed in the real line or in a finite dimensional
Euclidean space (see, e.g., [4], [2], and [9]). However, this is an unnecessarily
restrictive setting in which some important points are left unnoticed: for example,
the dependence of the integral on values the integrand takes outside the integra-
tion domain (see Example 7.5). To our knowledge, a sufficiently detailed treat-
ment of the Riemann integral in a topological space has not been available.

The paper is organized as follows. After necessary preliminaries (Section 2), we
define the Riemann integral of McShane and we derive for it all those properties
which are considered standard for any integral worth the name (Sections 3-5).
The essential equivalence of the Riemann and Lebesgue integrals is established in
Sections 6 and 7. In Section 8, we show that the Riemann integral coincides with
the Perron integral associated to the natural convergence (see [6, Section 2] and [7,
Corollary 2.15]). We also show the equivalence of the Riemann integral and the
variational integral of Henstock (see [1]).

2. Preliminaries

By R we denote the set of all real numbers. If a, b e R, we let a V b -
max{a, b) and a A b = min{a, b).

If 5 is a set, then i^(S) is the family of all functions / : 5 -* R. The algebraic
operations, lattice operations (in particular, the partial order), and convergence in

are defined pointwise. If {/„} is a sequence in &(S) converging to an
), we write lim/n = / or / „ - » / ; if, in addition, the sequence {/„} is

increasing or decreasing, we write /„ / f or /„ \ / , respectively. For T c S, we
shall often identify a function / e & (S) and its restriction / f j e &(T).

Throughout this paper, X will be a locally compact Hausdorff space. If A c X,
we denote by A ~ and A° the closure and interior of A, respectively.

We fix a family J / of subsets of X, which satisfies the following conditions,
(i) If A ^s/, then A ~ is compact.

(ii) For each x e X, the collection s?(x) = {A e s/: x e 4̂°} is a neighbor-
hood base at x.

(iii) If A, B e J&, then A n B es/, and there are disjoint sets C1;. . . , Cn in J /
such that A - B = U?_1Ci.

For S c I , we let J / S = {A es/: A <z S). The next lemma summarizes some
basic properties of the family sf. For its simple proof, we refer to [5, Section 1].
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2.1 . LEMMA, (i) For every collection { ^ . . . . ^ j c j a f there is a disjoint
collection { Bx,..., Bn} c s/ such that U"= 1 B} = \J™=1 At, and each Bj is contained
in some A{.

(ii) For every A £ i and every collection {Av..., Am) c s/ there is a disjoint
collection {Bv..., B-} c stA with U " = 1 5 , = A - U™-! At.

(iii) For every A e sf and every open cover <Hl of A~ there is a disjoint collection
{A1,...,Am}<zji/ which refines <%, and is such that \J™-\Ai = A-

A gauge on A e j / is a map U which assigns to each x e A ~ a neighborhood
I /O) of x in X The family of all gauges on A is denoted by TA.

A division of A e J ^ is a disjoint collection {y^ , . . . , Am} <zs/ with UJ^x ^4, =
4̂. A partition of i 4 e i is a set P — {(A1,x1),...,(Ap,xp)} such that
{ Ax,..., Ap } is a division of A and { x 1 ; . . . , xp } c A ~. If U is a gauge on A, we
say that the partition P is t/-//ne whenever Atfc (7(x,) for / = 1,...,/>. By
&>(A,U)'we denote the family of all [/-fine partitions of A.

The following lemma is pivotal for our exposition.

2.2. LEMMA. If A (EstandU^ TA, then &(A, U)± 0.

PROOF. By 2.1 (iii), there is a division {Ax,..., Ap) of A which refines {U(x):
x e A~}. For each i = 1 , . . . ,p , find an x, e ,4~ with At c C/(x,). Now clearly,
{(Ax, xx),... ,(Ap, xp)} is a [/-fine partition of ̂ 4.

Finally, we select a non-negative function v e ^ " ( j / ) , called volume, such that
y(^4) = E™.1u(/4,) for each A ^s/ and each division {Ax,..., Am) of A.

Before proceeding further, we give a canonical example of the situation
described in this section.

2.3. EXAMPLE. Let A r =R, s/= {[a, b): a, i e R , a < b], and for each
[a, b) e s/, let u([a, fc)) = a(b) - a(a) where a e J^(R) is an increasing func-
tion. We say that the volume v is induced by a. If A e s/ and 8 e ^ ( y l " ) is a
positive function, we can define a gauge l/8 on A by letting C/S(X) = ( X - S ( J C ) , x
+ 8(x)) for each x & A~.

3. Definition of the integral and its basic properties

Let A e j ^ and f^^(A'). For each partition P = {(y41,x1),...,(y4/,) xp)}
of A, we set

When no confusion can arise, we write o(/) or a(P) instead of a(/ , P).
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3.1 DEFINITION. Let A e s& and / e &(A "). We say that / is integrable over
A if there is an / e R with the following property: given e > 0, there is a U e TA

such that \o(f, P) - I\ < e for each P e 0>{A, U).

Using Lemma 2.2, it is easy to see that the number / from Definition 3.1 is
uniquely determined by / . We call it the integral of / over A, and denote it by
jAf. The family of all functions / e J ^ ( / l " ) which are integrable over A is
denoted by

3.2. REMARK. If we want to emphasize that we are integrating with respect to
the volume v, we use the symbols a(f, P; v), fA fdv and £%(A; v) the meaning of
which is obvious (see Section 4).

The next proposition is a direct consequence of Definition 3.1.

3.3. PROPOSITION. Let A

(i) &?(A) is a linear subspace of &(A~), and the map f *-> jAf is a nonnegative
linear functional on @(A).

(ii) Ifc e R andf(x) = cfor each x^A', thenf^ @(A) and fAf= cv(A).
(iii) / / / e %(A), f > 0, and JAf=O, then g e ®(A) and JAg = O for each

The following lemma is a Cauchy test of integrability.

3.4. LEMMA. Let A £ s/ andf e &(A "). Thenfe @(A) if and only if for each
e > 0 there is a U e YA such that \o(f, P) - a(f, Q)\ < e for every P, Q e

PROOF. Suppose that the condition of the lemma is satisfied, and choose
Un e r , , n = 1, 2 , . . . , so that \a(P) - a(Q)\ < \/n for each P, Q e 0>(A, UJ.
Replacing Un(x) by D,".! U^x), we may assume that U^x) 3 U2(x) 3 • • • for
each x e A ". Now if Pn e &>(A, £/„), n = 1, 2, . . . , then the sequence {a{Pn)} is
Cauchy. Let / = ]imo(Pn), and choose an e > 0. There is an integer n0 > 2/e
such that |O(PBD) - I\ < e/2. If P e ^(.4, UnJ, then

and we see that JAf=L The converse is obvious.

3.5. PROPOSITION. LetA^s/ andf e @(A). Thenfe @(B) for each B e s?A.
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PROOF. Let e > 0. By 3.4, there is a U G TA such that \a(P*) - a(Q*)\ < e for
each P*, Q* e 0>(A,U). If B<=rfA then by 2.1(ii), there are Clf...,Cn in sf
such that {B.Cj , . . . ,C n ) is a division of A. Use 2.2 to choose P, G ^ ( C , , t / ) ,
/ = 1 , . . . , n. Now if P, Q G ^ ( S , [/), then i " = ? U (Uf.! P,) and Q* = Q U
(U,".! P,) belong to ^ ( , 4 , I/). Hence

e>\o(P*)-o(Q*)\ = \

and the proposition follows from 3.4.

3.6. PROPOSITION. Let {Alf. . . , An} 6e a division of A e j ^ , and fer /

/ / / G *(><,.), i = 1 , . . . , n, thenf^ %{A) and JAf= EU fA> f.

PROOF. Choose e > 0, and find Ui G r^. so that \a{Pt) - jAJ\ < e/n for each
P, G @(A,, Ut), i = \,...,n.Ux<=A-, find a neighborhood V{x) of x such that
F(x) nAt= 0 wheneverx £ A~, and let

£/(*) =K(*) n(n{£/,(*): xe^r}) -

This defines a gauge £/ on ^4. Let P= {(B1,xl),...,(Bp,xp)} be a (/-fine
partition of .4. By our choice of U, we have At C\ Bj•= 0 whenever Xj £ A^. It
follows that

Pt = { ( ^ n By,xy): (S , , jcy.) G P, jcy. G AT)

is a fi-fine partition of At, i = l,...,n, and a(P) = L"=1ff(P,). Consequently

,=1
E
,=1

and the proposition follows.

Next we shall elaborate on Lemma 3.4.

3.7. LEMMA. LetA^st andf e &(A "). Then f G @(A) if and only if for each
e > 0 there is a U e T,, iwc/i //iaf |a(/ , P*) - a( / , Q*)| < e /or eyerv P* =
{(A,, Xl),..., (An, xn)} and Q* = {(Av yx),..., (An, yn)} from &{A, U).

PROOF. Choose an e > 0, and a l / G ^ s o that the condition of the lemma is
satisfied. If P = {(*! , X l ) , . . . , (B p ,x p )} and Q = {(Q, yj,...,(Cq, yq)} belong
to &>(A,U), then so do

P* = {(f i ,n Cj,x,): i = 1,...,/»; 7 = 1 , . . . , « } ,
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Moreover,

O(P*)= E £/(*>(*, n c,)
1-1 j-\

= E fix,) £ viB, n Cj) = E /(*>(*,) = c-(P),
i = l 7=1 i = l

and similarly, a(<2*) = a(Q). Thus

and / e <%{A) by 3.4. The converse is obvious.

3.8. PROPOSITION. LetA&sf andf e J^(^4 ~). Then f e ^ ( ^ ) //and o«/y ///or
e > 0, there is U &YA such that

tt\f(xi)-f(yi)\v(Ai)<e
i=i

for every P = {(A1,xl),...,(An,xn)) and Q = {(Alt yj,.. .,(An, yn)} from

PROOF. Let / e 9t{A), let e > 0, and choose U e TA so that the condition of
Lemma 3.7 is satisfied. Let P = {(Aly x{), . . . , (An, xn)} and g =
{(Alt yx), ...,(An, yn)} be in &>(A,U). After a suitable reordering, we may
assume that there is an integer k, 0 < k < n, such that /(*,) > f(yt) for
/ = 1, . . . , k and /(*,•) < / ( # ) for i = k + 1, . . . , n. Clearly

P* = {iA1,x1),...,(Ak,xk),iAk+1,yk+1),...,(An,yn)},

Q* = {(A>.Fi)>"->(-4*..)'*)>(^*+i>**+i)>---.(^«>-O}

belong to &(A, U), and so by our choice of U,

e>\o(P*)-o(Q*)\

= £[fix,)-fiy,)]viAl)+ t [fiyJ-fix.flviA,)
1=1 i=k+l

-i\f(*,)-fiy,)MA,).
i = i

The converse follows directly from Lemma 3.7.

3.9. C O R O L L A R Y . Let A e ^ andfe@(A). Then | / | e @(A) and \jAf\<

un
PROOF. Since | | f(x)\ - \f(y)\ \ < \f(x) -f(y)\, the integrability of | / |

follows from 3.8. The inequality is a consequence of 3.3(i).

https://doi.org/10.1017/S1446788700028123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028123


[7 ] A Riemann integral in a locally compact Hausdorff space 121

3.10. COROLLARY. If A e ^ , then @(A) is a linear sublattice of&(A~).

This corollary follows immediately from 3.9 and 3.3(i).

3.11. PROPOSITION. Let A G J / , and let fe&(A~) be continuous. Then

PROOF. Choose an e > 0, and find a U e TA so that, given x e A ~, we have
\f(x) ~f(y)\ < e for each y e A~n U(x). Let P = {(Al,xl),...,(A«,x*)} and
g = {(Ax, yx),...,(An, yn)} belong to &>(A,U). With no loss of generality, we

may assume that all the A,'s are nonempty; for the volume is finite and additive,

and hence v(0) = 0. Now for i = 1 , . . . , n, choose z, e At. Since At c f/(jCj) n

yi), we obtain

The proposition follows from 3.8.

4. Change of volume

Let A e s/. A subpartition of A is a set S = {(^4i, ̂ q),.. . , (As, xs)} such that
Ax,..., As are disjoint sets from sfA and xv...,xs are points from A ~. Thus for
a subpartition S we do HO/ require that V)s

i=lAt — A. If U e 1^, we say that the
subpartition 5 is U-fine whenever At c U(xt) for / = 1, . . . , 5. Given a function

) , we let

4.1. LEMMA. Ler A ^s/ and U ̂  TA. Each U-fine subpartition of A is a subset of
a U-fine partition of A.

PROOF. If S = {(A1,x1),...,(As,xs)} is a l/-fine subpartition of A, then by
2.1(ii), we can find sets Blt..., Bn in sfA so that {A x , . . . , As, Bx,..., Bn) is a
division of A. By Lemma 2.2, there are <2, e ^{Bt,U), i = l,...,n, and so
P = S U (Uf_! Qi) is a CZ-fine partition of A.

Next we shall prove an important proposition which is sometimes referred to as
the Henstock lemma.
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4.2. PROPOSITION. LetA<=s/ andf <= @(A). For each e > 0 there is a U e TA

such that

) - / / < e

for every U-fine subpartition {(Av xx),..., (As, xs)} of A.

PROOF. Let e > 0. By the definition of integrability, there is a U e TA such that
\a(P) - JAf\< e/3, for each P e &{A, U). In view of 4.1, it suffices to consider
only U-fine partitions of A. So choose {(Av JCj),..., (An, xn)} in ^(A, U). After
a suitable reordering, we may assume that there is an integer k, 0 < k < n, such
that f(xi)v(Ai) — fA f is nonnegative for i = l,...,k and negative for i = k +
1, . . . , n. Using 3.5, we can find Pt e ^(^4,-, f/) so that \a(Pt) - fA. f\ < e/3n,
i = 1,...,«. Now

{ ( x 1 ) , . . . , ( / l , . , x , ) } u J P / t + 1 U ••• UP,,

belong to ^(/f, [/). Thus

e
3> o(P)

k

/

and similarly,

/

>(<

e
3

k

1-11

* A

/ ( -

, •

n

> E
i = k + l

y ) - / /

From this we obtain T.?-i\f(xi)v(Ai) - fA> f\ < e, and the proposition is proved.

Let g e^F(X) be a nonnegative function such that g e 3$(A; v) for each
A e s? (see Remark 3.2). In view of 3.3(i) and 3.6, we can define a volume vg by
setting vg(A) = JAgdv for each / i e ^ . The following proposition relates the
integrals with respect to volumes v and vg.

4.3. PROPOSITION. Let A ^standf^&iA'). Then f e @(A; vg) if and only
iffg &@{A; v), in which case fA fdvg = JA fgdv.

PROOF. Choose e > 0, and use 4.2 to find Un e TA, n = 1, 2 , . . . , so that

https://doi.org/10.1017/S1446788700028123 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028123


[9 ] A Riemann integral in a locally compact Hausdorff space 123

for each £/n-fine subpartition {(Avxx),...,{AS,xs)} of A. If En = {x & A~:
n - 1 < | / O ) | < n}, n = 1, 2 , . . . , then ^ ~ is a disjoint union of the £M's. Thus
we can define a ( / e ^ by setting f/(x) = Un(x) whenever x e En. Let <2 =
{(*!, * ) , • • • . (*,.>>,)} be in &(A,U). For n = 1, 2 , . . . , the set

j , e £„} is a f/n-fine subpartition of ^4. Thus

a(fg,P;o)-a(f,P;vg)\<

= E
n - l

and the proposition easily follows.

5. The convergence theorems

We begin with the fundamental monotone convergence theorem.

5.1. THEOREM. Let A 6 st, / e J^(^ "), and let fn e 9t{A\ « = 1, 2 , . . . . / /
/„ /• fund lim /^ /„ < + oo, r/ien/ e * ( ^ ) a«rf L / = Um /^ /„.

PROOF. Choose an e > 0, and using Proposition 4.2, find Un e ^ , n = 1,
2 , . . . , so that LUi\fn(yi)v(Si) ~ /«,/„! < e2~" f°r e a c r i t^-fine subpartition
{(fi1; j j ) , . . . , (Bs, ys)} of 4̂. Let / = lim fA fn, and select an integer n0 > 1 with
fAfn > I — e. Finally, for each x e A~, find an integer n(x) > n0 such that
l/n(x)(;c) ~ / ( x ) l < e- Now define a. U e YA by setting U{x) = Un(x){x) for every
x e A ", and let P = {(y4x, Xj),..., (Ap, xp)} be in &>(A, U). We shall prove the
theorem by showing that \o(f, P)- I\ < e[2 + v(

To this end, we first observe that

°(/^)-£W*>K)
i=i

p

The integers «(JC,) need not be distinct. Let
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where k1 < • • • < kg. Then {1, . . . , />} is the disjoint union of the sets Tj = {/:
n(xi) = kJ}, j=\,...,q. Moreover, the set {(A^X/): i e 7}} is a l^-fine
subpartition of A; for if / e TJy then

A, c U(xt) = Un(Xi){Xi) = Ukj(x,).

Therefore

p

(**) fkj(x,)v(A,) - jjkj

e £ 2"* = e.

Since « 0 < «(JC,) < k for / = 1 , . . . , p, using 3.5 and 3.6, we obtain

1-1 J*> 1 = 1

and consequently | Ef_x jA.fn(X) — / | < e. This in conjunction with (*) and (**)
implies the desired inequality.

5.2. COROLLARY. Let A e r f , /„, g e &(A), and \fn\ < g for n = 1, 2, . . . .
sup/n and inf/„ belong to

By a standard argument, this corollary follows directly from 3.10 and 5.1.
Omitting the familiar proofs, we list the Fatou lemma and the dominated

convergence theorem.

5.3. PROPOSITION. Let A e r f , /„, g e 3t(A), and \fn\ < g for n = 1, 2 , . . . .
Then limsup/n and liminf/n belong to @(A) and

[ liminf/„ < liminf / /„ < limsup I fn < I limsup/n.
JA JA JA JA

5.4. COROLLARY. Let A e r f , /„, g e @(A), and | / n | ^ g for n = 1,2,.... If

fn - / , then fea(A) and JA f = lim fA fn.
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From this, and from 3.11 and 3.3(ii), we obtain the following corollary.

125

5.5. COROLLARY. Let A

integrable over A.
. Then each bounded Baire function on A~ is

For the definition of the Baire functions we refer to [8, (3-13), page 41].
Let T be a set. A family Sd&iT) is called directed upward or downward if

§ ¥= 0 and for each / , g £ ^ there is an h e S such that / V g < A or
h < / A g, respectively.

5.6. THEOREM. Let A £ J ^ , g &^(A~), and let £<z^(A~) be an upward
directed family of continuous functions. Ifg = sup S and sup{ jA / : / e <?} < + oo,
/ten g e <#(,4) am/ fAg = sup{ JAf:fe*}.

PROOF. Choose an e > 0, and for each / e $ find an Uf e 1^ so that, given
x e A~, we have |/(x) — f(y)\ < e for every y e A~C\ Uf(x). It follows from
3.3(i), (ii) that \f(x)v(B) - fBf\ < ev(B) for each B e j / ^ . Let / = sup{ jA f:
f& £}, and select a n A G ^ with fAh > I — e. Finally, for each x e A ~, find an
fx^& such that fx> h and /^(x) > g(x) — c. Now define a f/ e F^ by setting
f/(x)= Uf(x) for every X G ^ " , and let P = {(,41,x1),-.-,(^,,,*/,)} be in

7). We shall prove the theorem by showing that |a(g, P) —1\ <
l + 2v(A)].
First we have

1 = 1
fx,

1 = 1

for Ai c (/(JC,) =

and 3.6,
/ = 1,...,/». There is a with ^ >VP=JXj. By 3.5

and consequently | E/7.! jAj fx-I\<e. The desired inequality follows.
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5.7. COROLLARY. Let A G j / . Then each bounded lower or upper semicontinuous
function on A~ is integrable over A.

This corollary follows from Theorem 5.6 and [8, (3.5), page 32].

6. The relationship to the Lebesgue integral

We begin with the definition of a lower derivative of a set function. For this
purpose it will be convenient to introduce the extended real numbers R U
{-00, + 00}, and for a G R let a/0 = + 00 if a > 0, and a/0 = -00 if a < 0.

Let A G j / and M e 3F{s/A). For x G A ~, we set

,M(x) = sup inf
V(x)

where the supremum is taken over all neighborhoods V{x) of x. The map
x •-> 1(!M(;t) is an extended real-valued function on A ~, denote it by »M.

6.1. LEMMA. Let A e j / and M e J^(sfA). Then +M is lower semicontinuous.

PROOF. Let x e A ', and let mM(x) > c for some c e R. Then there is an open
neighborhood V(x) of x such that

and it follows that mM{y) > c' > c for each y e

6.2. LEMMA. Let A &sf and f e @(A) be bounded from above. Then for each
e > 0 there is a bounded lower semicontinuous function g e 9${A) such that f < g
and jAg< JAf+ e.

PROOF. Choose an e > 0 and using 4.2, find a U G TA so that EJ
— jB f\ < e/3 for each {/-fine subpartition {(Bv y^,...,^Bs, ys)} of A. For
B G J*^, let M(B) — supsa(/, 5), where the supremum is taken over all [/-fine
subpartitions S = {(B^ yx),.. .,(BS, ys)} of A for which UJ_i^ = B. If S is
such a subpartition of ^ , then |a(/ , S) - / B / | < LUlfiyM^) - jB, f\ < « A
and it follows that \M(B) - jBf\ < e/3. In particular, the map B -» Af(5)
belongs to ^(jnfA).

For x G v4~, we have *M(x) > / (x ) . Indeed if B es?A n U ( x ) , then {(B,x)} is
a f/-fine subpartition of A, and hence M(B) ^ f(x)v(B). Thus if c G R is an
upper bound of / , then g = ,A/ A c is a lower semicontinuous function on A ~,
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and g> f. Since A~ is compact, g is bounded, and by 5.7, it belongs to &(A).

Hence there i s a ^ G ^ such that |o (g , P ) - fA g\ < e / 3 for each P e 0>{A, V).

Let a = e/3[v(A) + 1] and x e A~. As *M(x) > g(x) - a, there is a neighbor-
hood W(x) of x such that W(x) c F(x) and M(B) > [g(x) - a ] ^ ) for each
B £s/AnlV{xy The map x >-» W(x) defines a gauge W on v4. If P =
{(yl1? ̂ i ) , . . . , (y^, Xp)} belongs to ̂ "(^, W), it belongs also to &{A, V), and we
have

e p e p e
g < a(g,P) + - = E g(*,M^,) + T < £ [^(^/) + a{;(^/)] + T

-4 J ,-=i 3 , = i i

- 1 i = l

It remains to estimate Y.fm.1M(Ai). To this end, for i = I,..., p, choose a

(/-fine subpartition S, = {(C{, z { ) , . . . , ( Q , zj.)} of ^ w i t h U } = 1 Cj = At. Then

S = Uf_x S, belongs to ^ " ( ^ , ( / ) , and we have

From the arbitrariness of the 5,'s, we obtain Ef=1M(yl,) < jAf + e/3, and the
lemma follows.

If (X, JK', n) is a measure space, and if E e J(, we denote by ̂ (E) the family
of all functions / e ^ " ( £ ~ ) for which the finite Lebesgue integral (L)fEfdn
exists.

Throughout the remainder of this section, we shall assume that there is a
measure space (X, J(,\i) such that J / C M and \L(A) = v(A) for each 4̂ e jtf.
Since u is finite and si contains a neighborhood of each x & X, the measure \x is
locally finite, i.e., ji(£) < + oo for each E e.J( with £~ compact.

6.3. PROPOSITION. Let A £s/, and let feJf^A) be continuous. Then jAf =
{L)jAfdii.

PROOF. Choose an e > 0, and find a U e TA so that, given x e A ", we have
l/(*) - /(jOI < £ f°r each _y e A~n (/(x). It follows that

f(xME)-(L)f
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for each E e J( with E c A n f/(x). Now if P = {(y^, AIJ, . . . , (Ap, xp)} is in
&>(A, U), we have

a(f,P)-(L)f
P

I
and the proposition follows.

Applying 5.5, we obtain the following corollary.

6.4. COROLLARY. Let A e y , and let f e ^(A) be a bounded Baire function.
ThenfAf=(L)JAfdn.

The next example shows that, in general, Corollary 6.4 cannot be extended to
bounded Borel functions in SPJ^A), i.e., those bounded functions in ^(A) which
are measurable with respect to the Borel a-algebra in A ~ (see [8, (7.4), page 82]).

6.5. EXAMPLE. Let X be the compact Hausdorff space of all ordinals less than
or equal to u1 (the first uncountable ordinal), let s/= J( be the Borel a-algebra
in X, and let v = /t be the Dieudonne measure on J( (see [8, (9-10), page 116]).
Let A = X— {wj}, and on A~— X define a bounded Borel function / by
setting /(wx) = 1 and f(x) = 0 for each x e A. Then / 6 ^(A) and (L)JA fdp
= 0. However, choosing a U e TA so that U(x) is countable for each x e A, it is
easy to see that / e 3P(yl) and JA f = 1.

To avoid the pathology of the previous example, we shall assume throughout
that the measure space (X,J?,n) is locally Radon, i.e., that Jf contains all
compact subsets of X, and that

n(E) = sup{n(K): A" compact, K <z E)
for each E e J( with £~ compact. Since ̂  is locally finite, we also have

li(E) = inf{p(G): G e ^ , G o p e n , £ c G )
for each E ^ J( with £~ compact.

The characteristic function of a set £ c X is the function XE G &(X) defined
by XE(*)=

 l i f x e £, andx£(^) = 0 if JC e * - £.
A set £ c A" is called negligible if there is an / / e ^ such that E c H and

6.6. LEMMA. Let A e^s/, and let E <z X be negligible. Then XE^ @(A)
 and
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PROOF. Given e > 0, there is an open set G e J( for which E n A ~ c G and
p(G) < e. Let l / e T ^ be such that U(x) c G for each x e E n ^" , and let
P = { ( ^ , JC0.---.M,.*,)} b e in &(A>U). Then 0 < o(x £ ,P) = ZXieEv(At)

< e, and the lemma is proved.

6.7. PROPOSITION. Let A e j / , / , g e ^(^4"), am/to (x e v4": /(JC) # g(x)}
be a negligible set. Then f G. 9l(A) if and only if g e &l(A), in which case

PROOF. If h = / - g, then the set E = {x e A~: h(x) * 0} is negligible. By
6.6 and 3.3(i), (iii), the functions hn = \h\ A («x£) belong to ®(A), and }A hn = 0,
n = 1, 2 As /!„ / |A|, Theorem 5.1 implies that \h\ G ̂ ( ^ ) and /^|/i| = 0.
The proposition follows by 3.3(iii).

6.8. LEMMA. Let A esfandE ejf. Then \E^^(A) and
 JAXE = ll(A n E)-

PROOF. Assume first that E is compact, and find open sets Gn^J( such that
E c Gn+1 c G , , » = l , 2 and /i(n™_iGn - E) = 0. There are continuous
functions /„ e ^ ( -^ ) with x^ < /„ < XG,- ̂  follows that /„ -> \E almost every-
where, and so by 5.4, 6.7, and 6.3, we obtain \E e &(A) and

For an arbitrary E &J( there is an increasing sequence { Kn} of compact sets
contained in E C\A~, and such that n(E DA~-\Jf=1 Kn) = 0. Thus x*n ~*
XEHA~ almost everywhere, and so by 5.4, 6.7, and the first part of our proof, we
have XE e &(A) and

f X E = f XEnA=]imj Xfcn = h'm(L) f
JA JA JA JA

6.9. THEOREM. Let A erf. Then Se^A) c ®{A) and JAf=lL)fAfdn for

PROOF. It follows from 3.3(i) and 6.8 that each ^-simple function / (see [8,
(7.25), page 88]) belongs to ®{A\ and that fAf= (L)fA fd\i. In view of [8, (7.29),
page 90] and 5.1, this extends to each nonnegative function / e JiP^A), and the
theorem follows.
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Clearly, for an A e s/ the set A ~ — A need not be negligible. However, we still
have the following corollary.

6.10. COROLLARY. Let A e s/, and letf, g e &{A ~) be such that f(x) = g(x)
for each x e A. Thenf^ @(A) if and only if g e @(A), in which case fAf= jA g.

Since f—g belongs to Sf^A), and since (L)fA(f - g)dp = 0, this corollary
follows immediately from Theorem 6.9.

6.11. REMARK. Example 6.5 shows that statements 6.6 through 6.10 are false if
the measure space (X, J(, /n) is not locally Radon.

6.12. THEOREM. / / the measure n is complete, then @{A) = Jf^A) for each

PROOF. Let A es/, and let / e &l(A) be bounded. By 6.2, there are bounded
lower semicontinuous functions gn e <%{A) and bounded upper semicontinuous
functions hn e @(A) such that hn<f^gn and JA(gn - hn) < l/n, n = 1,
2, Since J( contains all compact subsets of X, we see that gn and hn, and
also g = inf gn and h = suphn, belong to ^(A). We have h < / < g and

0 < (L)f(g -h)dfi = f(g-h)<f(gn- hn) < l
JA JA JA n

for n = 1, 2 , . . . (see 6.9). Thus (L)JA(g — h)d\i = 0, and as fi is complete, we

If / G @(A) is nonnegative, then by 3.3(ii), 3.10, and the first part of the proof,
we see that / A n G.S^(J4) for n = 1, 2 , . . . , and hence, as / A n / 1 / , that

Since / = i[(l/l + / ) ~ (I/I ~ /)]>t n e general case now follows from Corollary
3.10.

6.13. REMARK. In view of Lemma 6.6, it is clear that the completeness of fi is
essential in Theorem 6.12.

7. The measure induced by the integral

Let Co(X) denote the family of all continuous functions / e &(X) for which
the set supp/= {x e X: f(x) * 0}" is compact. If / e C0(A

r), then by 2.1(i),
there is a finite disjoint collection s#f<zs? such that supp/ c (U^)°. Letting
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= E / ) e y SA /> w e s e e easily that / ( / ) does not depend on the choice of s?f,
and that J: Q(Ar) -» R is a nonnegative linear functional. By the Riesz represen-
tation theorem (see [8, (13.9), page 164]), there is a unique regular, complete and
saturated measure space (X, JV, V) such that J(f) — {L)jxfdv for each / e
C0(X) (see [8, (9.1) and (8.12), pages 109 and 100]).

We show first that on compact sets, the measure v can be calculated directly
from the volume v.

7.1. PROPOSITION. Let K c X be compact. Then v(K) = infL"=1t>(.4,) where
the infimum is taken over all disjoint collections {Al,...,An} c y with K c

PROOF. Denote by a the right hand side of the desired equality, and choose a
disjoint collection {Ax,..., An) c j / such that G = (U,"=1 AL)° contains K. There
is an / e Co(X) with x* < / < Xc an<^ s o

v{K) < / ( / ) = t f / < tv(A,).
( = 1 Al 1 = 1

From the arbitrariness of {Ax, ...,An},v/e obtain v{K) < a.

T o prove the reverse inequality, choose an open set H containing K, and use

2.1(i) to find a disjoint collection {B1,...,Bk} czjif such that

Let C = (U*,! 5,)~\ and find a g e C0(X) with X c < S < X//- Then

«< E ^( ,̂)< E
, = i , = i

and from the regularity of v, we obtain a < v(K).

7.2. COROLLARY. If A e i , f/ie/i v(A°)

PROOF. \i K a A° is compact, then v{K) < y(^) by 7.1. By the regularity of v,
also v(A°) 4: v(A). If {Aly..., An] <z j>/ is a disjoint collection with y l " c
(U,"=1^,)°, then j ; ( ^ ) < E^! j ; ( ^ , ) . Thus by 7.1, also v(A) < v{A~).

7.3. PROPOSITION. A set E a X belongs to JV if and only if XE e 9l(A) for each
A ^s/. Moreover, if E e ^V and E~ is compact, then v{E) = H."=iJA XE for

each disjoint collection {Av...,An} <z s/ with E c (}J"_1Ai)".
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P R O O F . Let {Ax,...,An} c i be a disjoint collection, and let 7 = <}J"=1Ai)°.
Further, let

T = { £ c y : X j r

and for E e T set r(E) = £,"_! JAIXE-
 I I follows from 3.3.(i), (iii), 5.1, and 5.6

that T is a a-algebra in 7 containing all open subsets of Y, and that T is a finite
complete measure on T. From 5.6, we also obtain that T(E) = v(E) whenever
E e T is open or compact. We want to prove that T is regular in the sense of [8,
(9.1), page 109]. As v is regular in this sense, it suffices to show that T(E) =
inf{ T(G): G open, E c G c Y} for each £ e T .

To this end, let E e T, and let e > 0. By 6.2, there are bounded lower
semicontinuous functions g, e ^(At) such that g, > XE I" A^ and JA g, < /< X£
+ e/n, i = 1, . . . , n. For x e U,"=1.4~, l e t #(*) = A{g,(^): * e ^ " } . It is easy
to see that g is a bounded lower semicontinuous function on U" .^ , " , and
gt y>XE* y. By 5.7, g e «(^,.) for i = l , . . . ,n ,and

g < E / & E / X£ ( ) e.

If G = (x e 7: g(x) > 1 - c}, then G c 7 is open, E c G, and xG < ^/C1 ~ e)-
Thus

and the desired equahty follows by the arbitrariness of e.
Now by [8, (9.10), page 114], T = { £ e ^ : £ c 7 } a n d r(E) = v(E) for

each E e T. It follows that the proposition holds for each E c X with E~com-
pact; for by 2.1(i), such a set E is contained in (\J"-1Ai)° for some disjoint
collection {A^.-^A,,} c y . Since for any E c X and ^ e y we have XE G

^ ( / l ) if and only if Xsn/(-e ®{A), the proof is completed by an application of
[8, (9.8), page 112].

7.4. THEOREM. The following conditions are equivalent.
(i) Let A esf, and let f, g e&(A~) be such that f(x) = g(x) for each

x e A. Thenf<= @(A) if and only if g e &{A\ in which case fAf=fA g.
(ii) J^C ^T, and v(A) = y(^) /or each A £ J / .
(iii) r/iere « a locally Radon measure space (X,J(,\i) such that s^ojf and

li{A) = v(A) for each A ^s/.

PROOF, (i) =» (ii). Let A, B&s/, and let (Q,•••,Cm} c s / be a disjoint
collection such that B - A = U - l ^ . By (i) and 3.3(ii), X/4

 e ®(A n 5) and
B), and also X/4 e <#(C,) and /C(X^ = 0, i = 1,. . . , m. Using
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3.6, we see that XA G ®(B) and }BxA = v(A n B). Thus A e JT by Proposi-
tion 7.3. Moreover, if ( i ^ , . . . , Bn] c j ^ is a disjoint collection with ^ c
(UlLi 5,)°, then, again by 7.3, we have

/ A i ( , )
«=i •'».• i - i

The implication (ii) => (iii) is trivial, for (X, Jf, ju) is a locally Radon measure
space by [8, (9.2), page 109]. Finally, the implication (iii) => (i) follows from 6.10.

The next example shows that even in a very simple situation, the integral jA f
may depend on the values which / takes on A ~— A.

7.5. EXAMPLE. In the setting of Example 2.3, let a(x) = 0 for x < 1, and
a(x) = 1 for x > 1. Now if A = [0,1), then jAxA-= 1 by 3.3(ii). However, it is
easy to see that JAXA

 = 0; for it suffices to take a gauge Us with S(x) — 1 - x
for each x & A.

8. Perron and variational tests of integrability

8.1. DEFINITION. Let A e j / . A function F e j f ( ^ ) is called additive if
F(B) = T.?_1F(Bi) for each B<=s?A and each division {B1,...,Bm} of B.

Replacing the sign = by ^ or < , we obtain the definition of a superadditive
or subadditive function, respectively.

Let A e s/ and F e lF(s/A). In Section 6, we defined the lower derivative +F
of F. Here we define the upper derivative *F of F by setting *F = - , ( -F ) . Let
f^^(A~). A superadditive function M e ^ ( J ^ ) with * M > / is called a
majorant of / . A subadditive function w G ^ " ( J ^ ) with *m < / is called a
minorant of / .

Now we can present the Perron test of integrability. Not surprisingly, its proof
is similar to that of Lemma 6.2.

8.2. THEOREM. Let A e s? and fe &{A~). Then f^0i{A) if and only if for
each e > 0 there are a majorant M and a minorant m of f such that M(A) — m{A)
< e; in this case

f / = infiV(,4) = sup«(,4),

where the infimum and supremum are taken over all majorants N and minorants n of
f, respectively.
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PROOF, (i) Let / G f ( 4 and let e > 0. Then there is a U &TA such that
£ / - i I f()>i)v(Bi) ~ JB f I < ' e / 2 for each [/-fine subpartition
{(*!, yx),. .'.,(BS, ys)} of A. For B e ^ , let

M{B) = supa(/ , 5) and m(fi) = inf a ( / , S),
where the supremum and infimum are taken over all {/-fine subpartitions S =
{(Bv yx),... ,(BS, ys)} of A for which U*=1 Bt = B. If S is such a subpartition,
then

o(f,S)-j f - \ f
J

< —
2 '

and it follows that

M(B)- f fJ V - f / e
2

In particular, M and m are finite functions on s/A, and 0 < M - m < e. For
x e A~, we have *w(x) < /(x) < *M(x). Indeed, if B e ^Anu(x)'tnen {(^>*)}
is a [/-fine subpartition of A, and hence m(2?) < f(x)v(B) < M(B).

Next we show that A/ is superadditive and that m is subadditive. Let 5 € j ^ ,
and let {B1,...,Bk} be a division of B. For / = 1, ...,Jfc, choose a [/-fine
subpartition S, = {(C{, z{),..., (C;., z])} of y4 with U^=1 C/ = Bt. Then

= U S,=

is a [/-fine subpartition of 4̂, and y = fi. Hence

for Ef_!0(/, S1,), = a(f, S). From the arbitrariness of the S/s, we obtain
k k

m(B) < E «(£,.) < E M( ,̂) < M(5).
i- i /=i

Thus Af and m are a majorant and a minorant of / , respectively.
(ii) Choose an e > 0, and choose a majorant M and a minorant w of / so that
^ ) w ( / 4 ) < e. If A: G ̂ 4 ~, then there is a neighborhood [/(x) of x such that

( [/(JC) - e]«(5) and m(B) < [/(x) + e]v(B) for each B e i , M W .
This follows because *A/(x) > /(JC) - e and *m(x) < f(x) + e. The map x •-»
[/(x) defines a gauge [/on ,4, and if {{Av xx),.. .,(Ak, xk)} belongs to &(A, U),
then

m{A) - ev(A) < £ [m(At) - tv{A,)} < £ /(x,)^^,)

E M(A) + ev(A) < m(A)
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It follows that \a(f, P) - a(f, Q)\ < e[l + 2v(A)] for each P, Q ^ &>(A, U),

(iii) Let f e. <%(A), and let N and n be a majorant and a minorant of / ,
respectively. Choose an a > 0. Proceeding as in (ii), we can find a t / e f ^ such
that

n{A)-av(A)^o(f,P) sj N{A) + av(A)

for each P e 0>(A,U). Selecting a P e &>(A,U) with \a(f, P) - JAf\< a, we
see that

n(A)-a[l + v(A)] < f f < N(A) + a[l + v{A)}.

From the arbitrariness of a, we obtain n(A) < fAf < N(A), and the theorem
follows.

Next we give the variational test of integrability.

8.3. THEOREM. Let A e s/ and fe &(A~). Then f & ®(A) if and only if there
is an additive function F e ^F(s/A) having the following property: given e > 0, we
can find a superadditive function K e ^(-^A) with K(A) < e, and a gauge U on A
such that \f(x)v(B) - F(B)\ < K(B) for each x e A~ and each B £
Moreover, fAf= F(A).

PROOF, (i) Let f e @(A), and let F(B) = jBf for each B<EjtfA. By 3.6,
F G &(s/A) is additive. Given e > 0, we use 8.2 to find a majorant M and a
minorant m of / so that M ( / l ) - m ( ^ ) < e/2, and we set

tf = M - m - EV

Then K e J ^ j / J is superadditive, and K(A) < e. If x e A~, then there is a
neighborhood U(x)of x such that

for each 5 e j / ^ n t/(x>- This follows because

Since w < F < M by 8.2, we have |/(x)i>(B) - F(£) | < K(B) for each 5
JS^ n t/(x), and hence x -» C/(x) is the desired gauge on A.
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(ii) Let F e ^F(s/A) be an additive function which satisfies the condition of the
theorem. Choose an e > 0, and corresponding to it a superadditive function
K (= &(JI/A) and a gauge U on A. If P = {(Al,x1),...,{Ap,xp)} is in 0>(A,U),
then

\a(f, P) - F{A) I < £ | /(*,>U) - F(A,) I < £ * U ) < K(A) < e,
; = 1 i = l

and so we see that / e &(A) and /^ / = F(A).

8.4. LEMMA. LetA&s?,f<= @{A), and let F(B) = /B/ /or each B e J ^ . / / /
is lower semicontinuous at x0 e A ~, then ^F(x0) > f(x0).

PROOF. Let a < f(x0), and find a closed neighborhood U(x0) of x0 such that
f(x) ^ a for each x e f/(x0). Then F(B) > av(B) for each B 6 / , n ( / ( J o ) . It
follows that mF(x0) > a, and by the arbitrariness of a, that *F(x0) > f(x0).

8.5. PROPOSITION. Let A &j^,f& ^F(A'), and let M and m be a majorant and
a minorant of f, respectively. Then f has an additive majorant N < M, and an
additive minorant n > m.

PROOF. By 6.1 and 5.7, the functions *M A k, k = \, 2,..., are lower
semicontinuous and integrable on A. For B e s#A, let Nk(B) = JB*M A k. Then
Nk is additive, Nk < Nk+l, and, since M is a majorant of mM A k, 8.2 implies
that Nk < M. Thus JV = lim Nk is additive, JV < M, and, since *JV ̂  îV̂  > *Af
A k ^ f A k for fc = 1, 2, . . . (see 8.4), we also have „,# > / . Since m is a
minorant of / if and only if -m is a majorant of - / , the proposition follows.

8.6. COROLLARY. The majorant M and minorant m of Theorem 8.2, as well as the
function K of Theorem 8.3 may be assumed to be additive.

In view of 8.5, this is clear for M and m. Now it suffices to observe that K is a
linear combination of M, m and v (see the proof of Theorem 8.3).
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