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Abstract. We prove an exact control theorem, in the sense of Hida theory, for the ordinary part of
the middle degree étale cohomology of certain Hilbert modular varieties, after localizing at a suitable
maximal ideal of the Hecke algebra. Our method of proof builds upon the techniques introduced
by Loeffler-Rockwood-Zerbes (2023, Spherical varieties and p-adic families of cohomology classes);
another important ingredient in our proof is the recent work of Caraiani-Tamiozzo (2023, Compositio
Mathematica 159, 2279-2325) on the vanishing of the étale cohomology of Hilbert modular varieties
with torsion coefficients outside the middle degree. This work will be used in forthcoming work of the
author to show that the Asai-Flach Euler system corresponding to a quadratic Hilbert modular form
varies in Hida families.

1 Introduction

Let p be an odd prime and let N be a positive integer coprime to p. A fundamental
theme in Hida theory is to consider the tower of modular curves

== Ni(Np") > = Yi(Np),
corresponding to the chain of congruence subgroups
- cT(Np") c--- cT'1(Np).
The étale cohomology groups of this tower are packaged into the following inverse
limit:
H'(Np™) :=lim Hg, (Yi(Np") g Zy (1)),

where the transition maps are taken to be the corresponding pushfoward maps in
étale cohomology. The module H'(Np>) is equipped with an action of the adjoint
Hecke operators Ty for £ + N as well as the adjoint Atkin operator U, (the usual
Hecke operators Ty and U, do not commute with the pushforward maps and hence
do not act on the inverse limit). Analogous to the usual Hida projector, we may
define the adjoint or “anti-ordinary” Hida projector by e, ; = Jl_}n;) ( UI',)”!. Building

on the theory of Hida on p-adic families of modular forms, Ohta [18] proved a control
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2 A. Sheth

theorem for the anti-ordinary part of H'(Np>). To state the theorem, we note that
H'(Np*) is a module over the Iwasawa algebra A := Z,[[1+ pZ,]] = Z,[[X]] via
the diamond operators. Let X denote the set of primes dividing Np and let Gg »
denote the Galois group of the maximal extension of Q unramified outside the primes
in Z.

Theorem 1.1 (Ohta)  The following hold.
(a) We have that e!_ H'(Np*) is finite and free as a A-module.

ord

(b) For r>1 and k > 0, let p, ;. denote the ideal of A generated by (1+ X)PH -
1+ p)*?"". Then there is a canonical isomorphism
p P

CoraH' (NP™) [Pr.k 2 eqrgHi(Vi(NP )z Sym*(Z,) (1))

of Z,-modules that is compatible with the action of Gg,z and the Hecke operators.

A remarkable aspect of the above theorem is that the module H'(Np>),
which is built only from étale cohomology groups with constant coefficients, also
embodies information about étale cohomology with nonconstant coefficients. Indeed,
Theorem 1.1 can be thought of as a cohomological version of the landmark work of
Hida [9], where he constructed a space of Lambda-adic modular forms which p-
adically interpolate, as the weights vary, the ordinary parts of spaces of classical
modular forms. Ohta’s control theorem has since been used in a wide variety of
different contexts. For instance, building on the ideas introduced in [18], Ohta gave
a new and streamlined proof of the theorem of Mazur-Wiles [16] (the Iwasawa main
conjecture over Q) in a subsequent article [19]. Ohta’s control theorem has also been
used as a crucial input by Lei-Loeffler-Zerbes [12] and Kings-Loeftler-Zerbes [11]
to show that the Beilinson-Flach Euler system associated with the tensor product of
two modular forms varies in Hida families.

The main goal of this article is to prove an analogous control theorem for the
(anti)-ordinary part of certain Hilbert modular varieties after localizing at a suitable
maximal ideal of the Hecke algebra.

1.1  Main results.

Let F be a totally real number field of degree g = [F : Q] with ring of integers Of and
discriminant Ap. We fixan odd prime p which is unramified in F. Let G = Resg/g GL,
and let E/Q), be a finite extension with ring of integers O such that the maximal torus
of diagonal matrices splits over E. For each n > 1, we let

Unp i= {(j Z) € GL:(0F ® Zp) : (‘z z)

When n = 0, we let U, , denote the Iwahori subgroup i.e. the subgroup of GL,(Of ®
Z,) consisting of those matrices which are upper triangular mod p. Let 91 be an ideal
of O which does not divide 2, 3, or Ar. We fix a prime-to-p open compact subgroup

(x >k) mod p" forsomeerF®Zp}.
0 x
U ={ge G(A}P)) (g = (; :) mod 1} and for all n > 0, we set U, = UP U, ,
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Control theorems for Hilbert modular varieties 3

to be an open compact subgroup of G(A ¢). We denote by Y (U, ) the corresponding
Hilbert modular variety. The reason for working with this particular level group is
explained in Remark 2.3; briefly, since our reductive group G does not satisfy the
SV5 axiom for Shimura varieties, we need to work with level groups having fixed and
sufficiently large intersection with the center Z.

As above, we wish to study the étale cohomology of the Hilbert modular varieties
in the tower

RN YG(Ur) N YG(UI):
which we similarly package in the Iwasawa cohomology module

H;, (Y6 (Uso ) 0) 5= lim H (Y6 (Un ) 0),
n
where the transition maps are taken to be the corresponding pushforward maps in
étale cohomology.

Let X be the set of places of F containing all primes dividing 9% and all primes above
p- Let T denote the spherical Hecke algebra generated by the standard Hecke operators
T, and 8! for v ¢ = (henceforth, we use calligraphic font for our Hecke operators to
avoid confusion with various level groups appearing in the article). We let e/ ; denote
Hida’s anti-ordinary projection operator; as above, e, ; = nlgiolo (u;)"!, where UJ, is
the Hecke operator corresponding to the double coset U, , ((1) g) Up,p(see Section
3.1). Both T and e/ ; act on the étale cohomology of Y5 (U, ). Let m be a maximal
ideal in the support of H5, (Y (U, )5 Fp) such that the image of the associated Galois
representation py, is not solvable (see Section 4).

Let A= O[(Op ® Zy)*] i.e. A is the Iwasawa algebra over O corresponding to
(Or ® Z,)* and for each n > 1, let A, denote the Iwasawa algebra over O correspond-
ing to elements of (O ® Z, ) which are congruent to 1 mod p”. Let A denote a weight
of G that is self-dual in the sense of Section 3.3; in other words A is a character of
the maximal torus of diagonal matrices of G that is trivial on the subgroup of scalar
matrices. Let V) denote the irreducible representation of G of highest weight A. Let
O[-A] denote O with A acting via the inverse of the character A.

Theorem 1.2 (Theorem 4.7)  With the notation as above, the following hold:
(a) For all n > 1, we have that e(')rdwa( Y6 (Uso )@, O)m is free as a A,-module.
(b) For all n > 1, we have an isomorphism of O-modules
CordHy (Y6 (Uoo ) O)m ®, O[-A] 2 eqra HE (Y6 (Un) g Vi) ms

that is compatible with the action of Gg,s and T.
(c) When n = 0, we have a similar isomorphism

Cora iy (Y6 (Uoo ) O)m ® O[=A] 2 eqrg HE (Y6 (Uo) g Vi )m-
This theorem can be regarded as a generalization to étale cohomology of Hilbert

varieties of Ohta’s work on étale cohomology of modular curves. In [15], Loeftler—
Rockwood-Zerbes further generalize Ohta’s result to Shimura varieties associated
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4 A. Sheth

with arbitrary reductive groups. However, their results do not apply in this setting
since they assume the SV5 axiom for Shimura varieties, which does not hold for
our reductive group G = Resg/q GL,. The techniques used in this article build on the
methods introduced in [15], but we face additional technical difficulties due to the lack
of the SV5 axiom in our setting. Throughout this article, we have tried to emphasize
the places where the SV5 axiom was needed in op.cit, and the alternative arguments we
make in the absence of this axiom. A key ingredient to obtaining the perfect control
(after localizing at m) in our main theorem is the recent work of Caraiani-Tamiozzo
[4] where they show that the étale cohomology of Hilbert modular varieties with
torsion coefficients is concentrated in the middle degree after localizing at suitable
maximal ideal of the Hecke algebra. As a corollary of our main theorem, we can
extend the vanishing results of Caraiani- Tamiozzo to étale cohomology of the Hilbert
varieties Y (U, ) with nontrivial coefficients.

Corollary 1.3 (Corollary 4.8)  For all n > 0, we have H},(Ys (U, )@, Vi)m = 0 when
i+g

1.2  Arithmetic applications.

The results of the article will be used in forthcoming work of the author [21] to show
that the Asai-Flach Euler system associated with a quadratic Hilbert modular form,
constructed by Lei-Loeftler-Zerbes in [13], varies in Hida families. This in turn is an
important ingredient in recent work of Grossi-Loeftler-Zerbes [8] on the proof of the
Bloch-Kato conjecture in analytic rank zero for the Asai representation of a quadratic
Hilbert modular form. We also expect that this work can find applications in the study
of p-adic families of various other global cohomology classes in the Hilbert setting
such as, for instance, the Hirzebruch-Zagier cycles considered in [2] and [7].

1.3 Comparison with other work.

We note that there is related work of Dimitrov [6] which also establishes control
theorems for certain Hilbert modular varieties (see Section 3 of op.cit.), but the
results in op.cit. make stronger hypotheses on the relevant Galois representations
in consideration. In particular, the results in [6] are conditional on two hypotheses
(a certain global big image assumption and a Fontaine-Laffaille type assumption on
local weights) stated in Section 0.3 of op.cit.; while we assume that the image py, is not
solvable to prove our main theorem, we do not make any assumption similar to the
second hypothesis referenced above.

2 Background on Hilbert modular varieties

In this section, we establish some basic properties of the Hilbert modular varieties
Y (U, ) which we work with. We also follow the method in [22] to establish a relation
between the Betti cohomology of these varieties and the group cohomology of their
corresponding arithmetic subgroups.

https://doi.org/10.4153/50008439524000791 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000791

Control theorems for Hilbert modular varieties 5

2.1 Notation

We begin by setting some notation that will remain fixed in the article. Let F be a
totally real number field of degree g with ring of integers O and discriminant Ap.
We fix a numbering {0, ...,0,} of real embeddings of F into C. We let F** (resp.
OF*) denote the totally positive elements in F* (resp. O%). Let H denote the upper
half plane and let J{r denote the set of elements of F ® C of totally positive imaginary
part; note that 7y can be identified with the product of g copies of J{. We let p be an
odd prime that is unramified in F. We let A ; denote the finite adeles of Q, Aj(fp ) the
finite adeles away from p and A s the finite adeles of F. We let G to be the algebraic
group Resg/q GL, over Q.

2.2 Shimura varieties for G

IfK ¢ G(Af) isan open compact subgroup, its corresponding Shimura variety Y (K)
is a quasi-projective variety with a canonical model over the reflex field Q whose
complex points are given by

Ye(K)(C) = G(Q)"\[Hr x G(Af)]/K.

The Shimura varieties Y (K) are called Hilbert modular varieties.

Definition 2.1 ~ We say than an open compact subgroup K ¢ G(Ay) is sufficiently
small if for every h € G(Af) the quotient

G(Q)* nhKh™

ff o]

acts without fixed points on Hp.

Remark 2.1 The above definition is slightly different from [13, Definition 2.2.1]; we
have used O in the denominator rather than O%* used in op.cit.

If K< G(Ay) is sufficiently small, then Y (K) is smooth. We also note that if
K; € K; is an inclusion of open compact subgroups, K is sufficiently small and K;
is normal in K, then the map Y5 (Kj) — Y5 (K3) is a finite étale Galois cover.

2.3 The Hilbert modular variety Y (U,)

Definition 2.2  For each n > 1, we let

b b
Unp = {(‘C’ d) € GLy(0F ® 7)) : (‘j d)

When n =0, we let U, , denote the Iwahori subgroup i.e. the subgroup of
GL,(Of ® Z,) consisting of those matrices which are upper triangular mod p. Let 9t

x % "
(0 x) mod p forsomeerp®Zp}.
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6 A. Sheth

be an ideal of O which does not divide 2, 3, or Ag. We fix a prime-to-p open compact
subgroup

* *
U = {gEG(A;P)) 1g= (0 1) mod‘)’t},

andlet U, = U®P) Un,p- By [5, Lemma 2.1], we have that U,, is sufficiently small for all
n >1and that the determinant map det : U, — (O ® Z)* is surjective away from p.
The inclusion U,,; = U, induces a map of Shimura varieties ¢, : Y (U,41) —

Yo ( Un ) .
Proposition 2.2 The degree of the map ¢, is [Uy, : Up1].

Proof  Pick any element [(x, g)] € Y(U,)(C) = G(Q)*\[HF x G(Af)]/U, and
note that

¢n ([, ©)]) = {[(x, gui)] i e I},

where {u;};e; is a set of representatives of U,/U,.;. It suffices to prove that
[(x,gui)] # [(x,gu;)] when i# j. Suppose for contradiction that [(x,gu;)]=
[(x,guj)] when i#j. Then there exist heG(Q)* and ke U, such that
(hx, hgu;k) = (x, gu;). In particular, we conclude that h ¢ G*(Q) n gU,g". Since
hx = x and since U, is sufficiently small, we have by definition that

heUnm{(g 2):ue(‘)§}:{(g 2):ue(9;andu51 mod‘ﬁ}.

Thus, h € U, as well. Using the equality hgu;k = gu; and the fact that £ lies in the
center of G(Ay), we can now conclude that u;hk = u;. Since hk lies in U,,,, this
contradicts the fact that {u; } ;s is a set of representatives for U, /U,,;. [

Remark 2.3 'The SV5 axiom for Shimura varieties (see [17, p. 75]) states that if
(G,X) is a Shimura datum, then the center Z is isogenous to the product of a
Q-split torus and an R-anisotropic torus. An equivalent formulation is that Z(Q)
is discrete in Z(Ay). In [14], Loeffler showed that if the SV5 axiom is satisfied, and
if K; and K; are open compact subgroups of G(Af) with K; € K;, then the degree
of the corresponding map of Shimura varieties Y5 (K;) — Y5(K;) equals the index
[K; : Ki]. The group G = Resp/q GL, that we are working with does not satisfy the
SV5 axiom (this is essentially because the unit group Oy is infinite). Nevertheless,
with our choice of level groups U, Proposition 2.2 shows that the desired claim still
holds.

2.4 The number of components of Y;(U,)

Let I(F) denote the group of fractional ideals of F, and let C1"(F) := I(F)/{(B) : B
totally positive} denote the narrow class group of F. Let h* denote the narrow class
number of F.
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Proposition 2.4  The Hilbert modular variety Yg(U,) has h* - |05"\(Or ® Z;)*/
det(U,,,)| connected components.

Proof  Note that the map A}, ; — CI"(F) defined via (a), = [ p" () has kernel
p

[T, Of, - F*". For each x € CI*(F), choose a preimage a, € AF ;- Hence, we have a

decomposition Ap = | | (ay-J]OF, - F*") as sets. By strong approximation,
xeCI* (F) b

the connected components of Y (U, ) are indexed by FY\A ./ det(U,). This set is

in bijection with

LI FP\[T(o 05 F)/det(Un) = || 05 \(ae- [T 05)/ det(U,)
p

xeCI* (F) b xeCI* (F)

L] 05" \(0r®Z,)*/det(Uy,,),
xeCl* (F)

112

112

where the last equality follows since the determinant map det : U, - (Op ® Z)* is
surjective away from p. ]

2.5 Hecke action

For K € G(Ay) an open compact subgroup, we let Tx(G) = Z[K\G(Af)/K] be
the Hecke-algebra of compactly supported bi-invariant functions on G(As) with
multiplication given by convolution. Let g € G(Af) and let K, = K n gKg™'; we have
a correspondence [KgK]

f
Yo(Kg) — 7 Yo(Kg)

I |

Yo(K) " Yo (K),

where the vertical maps are canonical projections and the upper-half horizontal map
f on complex points is induced by multiplication by g. We obtain an action of Tx(G)
on H{,(Y6(K)g, Fp) and H (Y6 (K)g Zp). Let X be the set of places of F containing
all primes dividing 91 and all primes above p. Let

T = @ Z{GLi(0,)\ GLa(F,)/ GLa(0,)]
v¢s

denote the abstract spherical algebra away from X. We note that T is a subalgebra of
Tk (G); it is also commutative, generated by the following Hecke operators T, and
8*! for every finite place v ¢ ¥; for every such v we choose a uniformizer @, of O, and
define

« T, to be the double coset GL,(0,) (%’ (1)) GL,(0,).

« 8, to the double coset GL,(0,) (%" (3 ) GL,(0,).
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2.6 Betti cohomology

Let I" be a subgroup of G*(Q) and let T be its image in G(Q)/Z (Q). We assume that
T has no nontrivial elements of finite order; hence, it acts freely and continuously on
Jr. In this subsection, we closely follow [22] to establish a relation between the group
cohomology of T and the Betti cohomology of the corresponding Hilbert modular
variety.

By the work of Borel-Serre, there exists a canonical compactification T'\J{r,
where J{r is a contractible real manifold with corners. Since T'\J(r is compact,
we may choose a finite triangulation of T\J{z. We may pull it back to J(r via the
canonical projection Hy — T\Hp. Let C,(T) be the free Z-module over the set of
g-dimensional simplices of the triangulation obtained by pull-back to Hr. Since the
action of T on Hp is free, and since the triangulation of I'\} is finite, the C,(T)’s
are free Z[T']-modules of finite type. We also note that

0> Ca(T) 2 2 Co(T) = 0

is a complex computing the homology of E Since Hr - is contractible, this complex
is exact except in degree zero and Ho(Hp,Z) = Co(T")/09(Ci(T")) = Z. Thus, in
summary, we have that

O%Cd(F)hmiCo(F)»Z—)O

is an exact sequence of finite free Z[T'|-modules. If M is a [-module, we let €*(T, M)
denote the complex

0 - Hom(Cy(T), M) - --- - Hom(Cy(T), M).

Thus, H (T, M) is the ith cohomology group of the complex C*(T, M).

Let K be an open compact subgroup of G(A ) which is sufficently small and let
M be a left K-module acting via its projection to K, the image of K in G(Q, ). The
corresponding Hilbert modular variety Y¢ (K) satisfies

Y6(K) = | Tj\Hp,
jeJ

where ] is a finite set and for each je J, I'; = nggj_l N G*(Q) for some gj € G(Ay).
As before, we let T'; denote the image of I'j in G(Q)/Zg (Q). We set

(2.) C*'(K,M):=pC*(T;,M).
jel

Let Y5 := G(Q)*\G(A) x Hp. Then Y6 (K) := Yg/K is the Borel-Serre compacti-
fication of Y5 (K). Let 7 : Yg — Y (K) denote the canonical projection. We choose
a finite triangulation of Y5 (K) and pull it back via 7. Let C1(K) denote the corre-
sponding chain complex equipped with a right action of K. Then

C*(K, M) = Homg (C1(K), M).
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Thus, C*(K, M) also computes the cohomology of the local system M on Y (K) and
so we have an isomorphism

2.2) H'(Y6(K), M) = @ H' (T}, M).
jel

3 Construction of a Tor spectral sequence

In this section, we construct a Tor descent spectral sequence which will be an
important tool to relate the Iwasawa cohomology module Hf (Ys(Us )5 O) to the
cohomology of Y (U, ) at finite layers.

3.1 General notation

We consider the group scheme GL, over Z, and we let By, N3, and T, to be
the subgroups of upper-triangular, unipotent, and diagonal matrices, respectively.
Following [15], we set the following notation:

* Q =Reso,07,/z, B2
¢« N= ReSOF®Zp/Zp Nz.

¢ S= ReSOF‘X’Zp/ZP T2.
 E/Q, is a finite extension with ring of integers O such that S splits over E.
« S”=Resg +@7,/7, Gm> viewed as a subgroup of § via the diagonal embedding.

+ Q" denotes the preimage of S° under the projection Q —» S
. a b
ie. Q%(Zy) = {(O a) €GL(Op®Zy)|a,b e O ® Zp}.
o 6=5(2,)/S°(Z,) identified with (O ® Z,)* via the short exact sequence
1-8%Z,) = S(Zp) > (O @ Z,)* > 1,

where the map

S(Zp) - (Op ®Zy)* s given by (a 0) — ab’L.

0 b
. A=O[[6I|
oT:(g ?)GGLz(QI,@OF).

r —r 1 x - r
o N, =1"N(Zp)t :{(O 1)eGLz((91:<§§>Z‘1,)|x:Omodp }

« N, =17"N(Zy)7" = ! (1)) EGLZ(OF®ZP)|xEOm0dp’}.
o L, ={leS(Z,):£eS*(Zy) mod p"} = {(g 2) € GLy(Or®Zy)|a=d mod Pr}-

b Vr = ﬁrLrNO'

Proposition 3.1  For every r > 1, we have that V, = U, .
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Proof  This follows from a direct matrix computation. [ ]

Wealso set Vy = GL,(Of ® Z,) and VO(S) = 17°Vo1° n Vy for s > 1; in other words,

VO(S) is the group of upper-triangular matrices mod p° :
VO(S): {(i Z) €GL(Op ® Zy)|a,b,c,d e Op ® Zpand ¢ = 0 modps} .

Similarly, for s > 0 and 7 > 0, we set
U,Sfl), =T Up,pT NUyp.

For our level groups U,,,, we define the Hecke operator U}, to be the double
1
0
operator to be

coset Uy ( 2) Uy, and we define the analogue of Hidas anti-ordinary projection

el = lim (U))"

The operator e/ ;4 acts on the cohomology of Y (U, ). Let M be a Z[ U, ]-module
(acting via projection to U, ,) with a compatible action of u;, (in the sense that for

any u € U,(lfz,, the action of U, intertwines the action of u and 7™*u7*). For K ¢ G(Ay)

an open compact subgroup, the operator e/ ; also acts on the complexes C*(K, M)
introduced in Section 2.6 by lifting the action on cohomology (see [15, p. 6]).

Lemma3.2  Let M be a Z[ U, |-module with a compatible action of . The following
diagram commutes on cohomology

e (U UL, M) = (U, M)

u, s IAY
l( 0 % J{(u,,)

C (U UL, M) o> €(Uny M)

cores

Proof  This follows from [15, Lemma 2.7.4] (the SV5 axiom is not needed in the
proof of this lemma). ]

Proposition 3.3  The corestriction maps induce isomorphisms
eoraH' (Ya(UPULY), M) 2 g H' (Y6 (Uy), M).

Proof As explained in [15, Corollary 2.7.5], this follows from the previous
lemma. |

3.2 Algebraic representations

Let X°*(S) denote the character lattice of S and X? (S) be the set of dominant weights.
Foreach A € X3 (S), there isa unique isomorphism class of irreducible representations
of (py, Vi) of G (over E) of highest weight A. A representative of this isomorphism
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class can be constructed using the Borel-Weil-Bott theorem, as the space of all
polynomials

{f€E[G]: f(nlg) =M(£)f(g) VneN,leS, geG},

with G acting by right translation. More concretely, each such A € X3(S) can be
identified with an integer tuple (k,..., kg, t1,..., tg) such that the associated V} is

given by the representation Sym* V ® det" at the ith embedding, where V is the
standard representation of G. All our Hecke operators defined above also act on
cohomology with the V}’s as coeflicient systems (see [15, Definition 2.5.1]).

3.3 Modules of measures

In this subsection, for brevity, welet U to be U, , for some r > 0. We also fix a character
A= (kl,...,kg, tl,...tg) suchthatk1 +2H == kg+2tg =0.

Lemma 3.4 We have that A is trivial on the subtorus S°.

Proof  This follows immediately from our normalization of the weights described
in Section 3.2, namely,

A((g 0)) = 1) 0" (a) = 1 "

Remark 3.5 'The weights we have considered above are exactly those which are self-
dual i.e those for which the dual of V) is isomorphic to itself.

Following [15], we set the following notation. We define U- modules of continuous
functions
Cru:={f:U—O: f continuous, f(¢ng) =A"(£)f(g) Vine(SNnU)Ny,ge U}
and
Cuniv = {f : U > O : f continuous, f(¢ng) = f(g) VineQ’(Z,),ge U},

with U acting by right translation. We endow these spaces with an action of 7 given
by

T f(nli) = f(nlr'nr).
We define modules of bounded distributions
D),u = Homs(Cy,u, 0),
and
Duniv = Homees (Cyniv, O),

which inherit actions of V; and 77! by duality. We let Sy denote the image of U
in & (with respect to the Iwahori decomposition stated in Section 3.1); note that
Gy =62 (0r®Zy)* when U = Ug,, and Gy is the set of elements of (O ® Z,)*
which are congruent to 1 mod p" when U = U, , and r > 1. Similarly, we write Ny for
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N,when U = U,, p forr > 0. Welet O[Sy ]| denote the Iwasawa algebra corresponding
to Sy. We have that D) yy and Dyyiy are modules over A = O[S] (with the action
given by inverse translation) and this structure is given explicitly by the isomorphisms
(see [15, p. 6])

Dyu 2 (0[-A] ®0 M) &0 O[Ny],
and
Duniv = A®OO[[NUH’

where O[-1] denotes O regarded as an & (and hence A) module via the inverse of A.
In particular, we have that

Duniv®O|IGU]] O [—A] = D/\,U
as A-modules. Since a power series ring in finitely many variables over a Noetherian

ring is flat (see [3, p. 146]), we have that D,y is flat as a A-module.

Proposition 3.6  The anti-ordinary projector e, 4 acts on C*(U, Dyniy) such that we
have a decomposition

C.(Ua Duniv) = e(,)rdc.(U) Duniv) ® (1 - e(,)rd)c.(U) Duniv)
with W, acting invertibly on the first component and topologically nilpotently on the

second. Moreover, the complex e, C*(U, Dyniy) consists of flat A-modules.

Proof  See [15, Proposition 2.7.2]. [ |

3.4 Proof of the Tor spectral sequence

In this subsection, we let A denote a weight that is self-dual in the sense of Section 3.3.
We let s and 7 be integers with s > n. Let I'; = G(Q)* n U®) Vo(s) and T, = G(Q)* n
(U (U,,,n VO(S))). Let T'; and T'; denote the images of I'; and I'; in G/Zg(Q).
Write

Yo(UP VY (C) = || T\FH,
jeh
and
Ye(UP(VE) n U, ) (C) = || To\He.

jel2

Each i€ J; corresponds to a matrix g; € G(As) whose determinants form a set

of representatives for F**\AL ./ det( u® VO(S)). Similarly, each i € J, corresponds
to a matrix g; € G(Ay) whose determinants form a set of representatives for

F\AY / det(UP) (U, , 0 V).
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Since det(U®) VO(S))) = (O ® ), we have that |J;| = h*, and by Lemmma 2.4,
1] = h* - |03 \(OF ® Zp)* [ det(U,,,)| (as written, Lemma 2.4 can only be applied
when s = n but the exact same proof goes through when s> n since det(U, ) =

det(U,, 0 V) in (0F ® Z,)%).

Proposition 3.7  Let ¢ denote the natural map
. (s) (s)
q)-Fl/F2—>V0 /(Un,pmv() )

Then im(¢) has index |05 \(Op ® Z,)* [ det(U,,,)| in VO(S)/(UH,P N VO(S)).
Proof By strong approximation for the semisimple group Resg/gSL,, the diagram

/Ty, —— VO (U, n V)

detJ/ ldet

0 /(05)* —— (0p ®Z,)*/ det(Un,p)

is cartesian (see [10, Corollary 3.3] for a similar argument). On the other hand, note
that det(U,,,) = (05)* in (Of ® Z,)* by Hensel's lemma; thus, we conclude that

[(Op ® Zy)* : det(Uy,p)]
(05 (05)?]
and that the natural map (Op ® Z,)*/ det(U,,,) - O3\ (O ® Z,)*/ det(U, ) has
Op®Z,)" : det(U, .
kernel O5*/(05)2. Thus, [(Or ® Z,)" : det(Un,)] =105 \(Or ®Zp)*/ det(U,,p)|

[OF": (0F)?]
proving the claim. [ ]

lcoker(¢)] =

Proposition 3.8  We have a Hecke-equivariant isomorphism

GH'(T: O/(p) =MV IV A Ui p]) = & H'(T5, 0/ (p")[-M[T/T2)).
jeh J€)2

Proof This follows from the previous proposition and the fact that |J;| = h*
and |J5| = h* - |05 \(OF ® Z,)* [ det(U,, ). |

Theorem 3.9  We have an isomorphism of O-modules

ehaH' (Yo (Us), Dru,,) 2 eqraH' (Y6 (Un), V).

Proof As explained in [15, Proposition 2.7.7], we have an isomorphism

ehraH' (Yo (Uo), Dou, , /p°) 2 eoaH' (Ya(UP V), 0/(p)[-1] 0,1 O/(0°)[6]).
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Hence,

H' (Ye(UDV), 0/(p)[-A] @06y, ,1 O(p")[E])

z G?Hi(ﬁ,o/(ps)[—?t] ®o[sy,,]1 O/(P°)[6])
J€h

= D H (T, 0/(p")[-2][6/6uy,,])

jeh

S @Hi(ﬁ, O/ (p)[-AIVE VS A U p])
J€h

= G}B H'(T, 0/(p*)[FA][T/T2])
J€)2
= @ H' (T2, 0/(p*)[-A])

j€l2
2 H (Yo (U (V) 0 U,,)), 0/(p5)[-A]).

Here, the first isomorphism follows from Equation (2.2), the second is a general
property of tensor products, the third follows the fact that /Gy, , = VO(S)/ VO(S) n
Uy, p» the fourth follows from Proposition 3.8, the fifth follows from Shapiro’s Lemma,
and the sixth follows from Equation (2.2) again. As explained in [I5, Proposi-
tion 2.77], we can use Proposition 3.3 to conclude that e(’,rdH"(YG(U(P)(VO(S) N
Unp))>O/(p*)[-A]) is in turn isomorphic to e, sH'(Y(U,), Va/p®). Thus, com-
bining our isomorphims, we conclude that

eoraH' (Y6 (Uo), Di,u,,) =limeg gH' (Y6 (Uo), Di,u,,/p°)

s

2 limeg,qH' (Y6 (Un), Va/p°)

N

= erall' (Y6 (Un), V1) .

Remark 3.10  The analogue of this theorem in [15] ([15, Proposition 2.7.7]) crucially
used the SV5 axiom for Shimura varieties in the application of Shapiro’s lemma.
Nevertheless, as the proof given above demonstrates, with our choice of level groups,
we do not need to invoke this axiom.

We note that Theorem 3.9 is compatible with the comparision isomorphism
between Betti and étale cohomology; for the rest of the article, we work with étale
cohomology of Hilbert modular varieties.

Corollary 3.11  We have an isomorphism

eclyrdHét(YG(UO)’ Duyniv) e;rdl(ir_nHét(YG(Un)> 0).

n

Proof  Setting A to be the trivial character, we deduce from the previous theorem
that
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€oraHit(Y6(Uo), Duniv) = lim  e5qHi (Y6 (Uo), Da,u/(p"))
QcU,n

2 lim eg,q Hi (Y6 (Ua), 0/(p"))

n
= egrdl(ir_nHét(YG(Un)’ 0).

n

Here the last isomorphism follows from the facts that our inverse system satisfies
the Mittag—Leftler property because the cohomology groups in the system are finitely
generated, and that e/ ; commutes with the maps in the inverse limit. [ ]

Define M* to be the image of e/ ;C*(Uy, Dyniv) in the subcategory Dflat (R) of the
derived category of R-modules generated by flat objects. We also set A, = O[Sy, , ]
foralln > 1.

Theorem 3.12  For all n > 1, we have a quasi-isomorphism

M* ®% O[-A] 2 el qC*(Un, V).

Proof  Since M*® is represented by the flat complex e, ;C*(Up, Dyniv), We can
compute the derived tensor product as

ecl)rde.(UO’ Duniv) ®a, O[-A] = €5,4C*(Uo, Duniy ®a, O[-A]).

By Theorem 3.9, this complex is isomorphic to e, ;C*(U,, V}). |

Corollary 3.13  For all n > 1, there is a spectral sequence

Ey : Tor™s (efq lim H, (Y6 (Us), 0)g, O[-A]) = ebuaHy (Yo (Un)gs Vi)

N

Proof  This follows from the previous theorem using the spectral sequence for the
Tor functor. |

An analogous argument to the one given in this section allows us to obtain a similar
result at the Iwahori level Uy.

Corollary 3.14  There is a spectral sequence

Ey’ : Tor® (e),q lim H., (Y6 (Uy), 0)5, O[-A]) = elgHYy” (Ya(Uo)gs Va)-

s

4 Proof of the control theorem

In this section, we use the spectral sequences in Corollaries 3.13 and 3.14 to give a
proof of our control theorem. We begin by recalling the results of Caraiani-Tamiozzo
[4], which play a crucial role in proving our control theorem.
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4.1 The results of Caraiani-Tamiozzo

Let K € G(A¢) be a neat compact open subgroup and take a maximal ideal m ¢ T
in the support of Hi(YG(K)@, IF,). By the work of Scholze [20], we have a unique
continuous semisimple Galois representation

Pm : Gal(F/F) - GLy(F,),
such that py, is unramified for all v not in a finite set of suitable places of F and such

that the characteristic polynomial of py, (Frob, ) equals X? — T, X + 8,N(v) mod m.

Theorem 4.1 (Caraiani-Tamiozzo)  Assume that the image of pr, is not solvable. Then
H;,(Y6(K)g Fp)m is nonzero only for i = g.

Proof See [4, Theorem 7.1.1]. [ |

Corollary 4.2 In the above setting, we have H: (Y (K )G Lp)m # 0 only for i = g.
Moreover, HS, (Y (K)g>Zp)wm is free as a Zp-module.

Proof  This is explained in [4, Corollary 7.1.2]; we give the proof below for the
convenience of the reader. We consider the short exact sequence
02, 57,~F, 0,

localize the corresponding long exact sequence at m and employ Theorem 4.1 to obtain
a surjective map

i Py
Hét(YG (K)@’ Zp)m - Hét(YG(K)@’ Zp)m:
foralli # g. Since Hj, (Yg (K )G Zp)wm is a finitely generated Z ,-module, we can apply
Nakayama’s lemma to conclude that H (Ys (K )g>Zp)m =0foralli+ g. Wheni =g,
we get that
HE (Yo (K)g: Fy)m ,
m(H (Y6 (K)gp Zp)m = HE (Y6 (K)gr Fp)m

Since Hf, (Yg (K)g Fp)m # 0, it follows that Hf (Yg (K)g>Zp)m # 0 as well. Finally,
note that the long-exact sequence also yields an injection H$ (Yg(K )5 Lp)m =

-pHS (Yg (K)@>Zp)m- Hence, HS (Yg (K)@>Zp)m has no p-torsion, hence is torsion-
free and hence free (using the fact that torsion-free modules over a PID are free). m

4.2 Proof of the control theorem

We begin by recalling some notation and assumptions. We let H: (Yg(Uso )5 0) =
lim H (Y6(Un)g 0), A=[(0r®Zp)*] and A, = O[Sy, . We recall that A,
is just the Iwasawa algebra corresponding to elements of (O ® Z,)* which are
congruent to 1 mod p”. Let m be a maximal ideal in the support of Hf, (Y (U, )3 Fp)
such that the image of the associated Galois representation p, is not solvable. Let A
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denote a weight of G that is self-dual in the sense of Section 3.3. Let O[-1] denote
O with A acting via the inverse of the character A. The first step in the proof of the
control theorem is to analyze the E;] term in Corollary 3.13. To do so, we first recall
the following result from commutative algebra.

Proposition 4.3  Let R be a commutative ring, let xi, ..., xN be elements of R, and
let RN be the free R-module of rank N with basis {e; : 1< i < N'}. Consider the Koszul
complex Ko(x1, . .., xn) associated with xy, ..., xy given by

where
d(ej, A Nej,) = Zi:(—l)s’lxjsej1 A AT A AE,
s=1
If x1,...,xN form a regular sequence in R, then Ko(x1,...,xn) is a free-resolution of
R/(x1,...,xN) as an R-module.
Proof  See for instance [23, Corollary 4.5.5]. [ |

Proposition 4.4 We have that the E;] term in Corollary 3.13 is zero unless
ie{0,-1,...,—g}.

Proof  Since E;’ = Tor’r (e! 4 lim Hgt(YG(US)@, 0), 0[-A)), it suffices to con-
struct a free resolution of O[-A] as a A,-module of length g. On the other hand,
the Iwasawa algebra A, can be identified with products of copies of O[[ T3, ..., Tg]];
it thus suffices to construct a free resolution of O[-A] as an O[[ Ty, ..., T,]] module
of length g. To do this, we note that the sequence Ty = A™'(Ty),..., T, - A7 (Ty) isa
regular sequence in O[[ Ty, ..., Tg]] and that

O[[Th,..., T/ (T = A7 (), ..., Ty = A7 (Ty)) = O[-A]

as O[[Ty,..., Ty]]-modules. We can thus apply Proposition 4.3 to deduce that the
Koszul complex associated with Ty =A™ (T;), ..., T, — A (T, ) provides a free reso-
lution of O[-A] as an O[[Tj, ..., T,]] module of length g. |

Remark 4.5 By using a similar argument as above, we can also deduce that E;] term
in Corollary 3.14 is zero unless i € {0,-1,...,-g}.

Proposition 4.6  The following hold:
(a) For all n > 1, we have that
Tor (ehra Hfy (Yo (Uso ) Oy O[-A]) = egqHyy * (Y (Un)g Vi)
(b) When n = 0, we have that
Tor; (eguaHiy (Yo (Use g O)ms O[-A]) = €taHig (Y (U)o Vi ).

ord
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Proof (a) Sincelocalization is exact and commutes with the Tor functor, we deduce
from Corollary 3.13 the following spectral sequence:

Fy? = (By )m = Tor; (eqraHl,, (Yo (Uoo ) O)my O[-A]) = etraHiy” (Yo (Un), Vi ).
By Proposition 4.4 and Corollary 4.2, we deduce that in’j =0 unless (i,j) ¢
{(0,2),...(~g, 2)} It follows that the spectral sequence degenerates on the second
page, and thus, the desired isomorphism follows directly from applying the filtration

theorem.
(b) Using the spectral sequence in Corollary 3.14 and Remark 4.5, this follows by
using a similar argument as in part (a). ]

Theorem 4.7  With the notation as above, the following hold:
(a) For all n > 1, we have that e/, ;H§ (Y6(Uso )@, O) is free as a A, -module.
(b) For all n > 1, we have an isomorphism of O-modules

eoraHiy (Y6(Uso)gr O)m ®a, O[-A] 2 €5,y HE (Y6 (Un)g Vi )m-
that is compatible with the action of Gg,s and T.
(c) When n = 0, we have a similar isomorphism

eoraH1y (Y6 (Uso ) O)m @1 O[] 2 eqra HE, (Y6 (Uo)g, V2 )m-

Proof = We first deduce parts (b) and (c) from the results above.

(b) This follows by setting i = 0 in Proposition 4.6(a).

(c) This follows by setting i = 0 in Proposition 4.6(b).

We now prove part (a).

(a) Let r and k denote the uniformizer and residue field of O, respectively. Consider
the short-exact sequence

0-050>k-o0.
This gives rise to a long-exact sequence of Tor groups:
- Torf\"(e;rdHIgw(YG(Uoo)@, m»0) 5 Tor™ (e} g HS (Y6 (Uso )5 Om> 0) —
Tor}* (egra H (Ye (Ueo )gs O)ms k) = €bra Hi (Yo (Uso ) O)m ®2,, O

5 Hf (Y6(Uso ) O)m ®1, 0 > -+

By setting i = —1 and A to be the trivial character in Proposition 4.6, and then applying
Corollary 4.2, we get that

Tory" (€fra Hiy (Y6 (Uoo )gs O)m» O) = 0.

On the other hand, Corollary 4.2 implies that e/  H% (Y6 (Uco )5 O)m @4, O has
no 7-torsion, so the long exact sequence gives us that Tor," (¢! sH%, (Y6 (Uso )5
O)m> k) = 0. Finally, we note that part (b) and the topological Nakayama’s lemma
(see [1, p. 226]) imply that e/ Hf (Y6(Uco )G O)m is finitely generated as a
A,-module; we can now use the local criterion of flatness to conclude that

HE (Y6 (Us )G O)m is flatasa A,-module. Since a finitely generated flat module

’
€ord
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over a noetherian local ring is free, we have that e/, jH? (Y6 (Uco )5 O)m is freeasa

A,-module. [ |

Corollary 4.8  Forall n > 0, we have H:, (Y (U, )5 V1)m =0 wheni#g.

Proof When n >1, we recall from Proposition 4.6(a) that Tor™(e! Hf,
(Y6 (Uso )gg» O)m» O[-A]) = Hgg(YG(U,,)@, V1)m. On the other hand, we know
from Theorem 4.7 that eérdHfW(YG(UW)@,O)m is free as a A,-module. Thus,
the above Tor group vanishes when i # 0 and so we conclude as desired that
Hét(Y(;(U,,)@, Vi)m=0 when i#g The case n=0 follows similarly using
Proposition 4.6(b). |
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