SINGULAR PERTURBATIONS OF NON-LINEAR
ELLIPTIC AND PARABOLIC VARIATIONAL
BOUNDARY-VALUE PROBLEMS

BUI AN TON

Introduction. Singular perturbations of linear elliptic and parabolic
boundary-value problems have been studied extensively by Visik and
Lyusternik (7), Huet (5), and others. It is the purpose of this paper to extend
the results of (5) to the non-linear elliptic and parabolic variational boundary-
value problems considered during the last few years by Browder (2, 4).

In §1, we give the notations and state the main assumptions on the non-
linearity of the elliptic operators. In §2 we study the singular perturbations
of non-linear elliptic variational boundary problems. In §3, we consider the
case of non-linear parabolic variational boundary problems with a small
parameter.

1. Let Q be a bounded, open set of E” with a C* embedding mapping of its
boundary 0Q into E". The points of @ will be denoted by x = (x4,...,x,)
and derivatives with respect to the x-variables by:

D; = 1719/ 0x;, 1 <7< n; D* = Dy, | D,on,

a= (o ...,a) with ¢ = Y a;.
=1

The points of R! will be denoted by ¢ and differentiation in ¢ by a8/a¢. If
u, v are functions on Q, we denote by (u, v) their inner product in L2(Q).
Let W™2(Q) be the Hilbert space defined by:

wWm2(Q) = {u:u € L2(Q), Du € L2(Q) for |a| < m}

(the derivatives are taken in the sense of the theory of distributions) with the

norm:
el 2 = {Zrat<m || Doul] 22}

and inner product:
(M, Z))m = Zla[<m <D°‘u, Daz))’ u, v in Wm,Z(Q).

We denote by C,(Q) the family of infinitely differentiable functions with
compact support in Q. We consider differential operators of the form:

1) Aru = 2 ia1181<m D*(@ras (X, 2, . . ., D™ ) DY), win W™ 2(Q).
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We assume the following conditions on the coefficients @qs:

AssuMPTION (I). The coefficients areg are continuous functions of all their
arguments. There extists a continuous function g, (r) of the real variable r such that:

[akaﬁ(xy Uy ooy Dmk—lu)l < glc(HuHmk—1,2)

for u in Wme2(Q).

Let € be a small positive parameter. To two non-linear differential operators
of the form (1) with ms > m;, we associate the non-linear differential operator
of the form (2):

(2) Acu = Xl ip1<ms D*(@20s(x, €u, . .., eD™u)DBeu)

+ el isi<m D*(@ras (%, u, . . ., D™ u) DPu)
for u in W™22(Q).
Let V; be a closed subspace of W™2(Q) with C,”(Q) C V;. We consider
the Hilbert space L2([0, T'], V}) of equivalence classes of functions % from
[0, 7] to Vi with

J;T ”u(t)”zlkZ dt < + .

The norm is given by

1

2

il = {1

L*([0, T'], V) is a separable reflexive Hilbert space; £ = 1, 2.

Let (L2([0, T°], Vi))* be the conjugate space of L*([0, T, V), i.e. the space
of bounded conjugate linear functionals on L2([0, 7], V;). For u € L2(]0, T1,
Vi) and w € (L2([0, T'], Vy))*, we denote by (w, ) the pairing of w with u.
For u € L*([0, T'], L?*(Q)) and v € (L%([0, 7], L?(Q))*, we denote by ((,))
the pairing of v with u.

Let A,(t) be differential operators of the form:

(ll) Ak(t)u' = Z(alylﬂl<mk Da(akaﬁ(xv t, Uy ooy Dmk—lu)DBu)
for u € L2(RY, W™2(Q)); k =1, 2.
We make the following assumptions on a.gs:

AssumPTION (I'): The coefficients ai.s are functions defined on Q X R
measurable in x, t and continuous in (u, ..., D™ u), There exists a continuous
Sfunction g, (r) of the real variable r such that

lkas Ce, 8, 0, - .., D™ )| < gk< f Hu(t)llzk_l \ dt)
foru € L*(RY, W™2(Q)).
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To A1(t) and A+(t) of the form (1’), we associate the non-linear differential
operator of the form

(2’) Ae(t)u = Zlal,lﬁl<m2 D“(dgaﬁ(x, t,oeu, ..., €Dm2—1u)Dﬂ€u)
+ 2tat,i81<m D*(@10p (¥, 8, 14y« . ., D™ 1) DPy),
my > myand u € L2(RY, W™22(Q)).

2. In this section, we study the singular perturbations of non-linear elliptic
variational boundary-value problems.

Let V1 be a closed subspace of W”t-2(Q) with C,”(®) C Vi. Corresponding
to the non-linear elliptic operator A; of the form (1), we define the non-linear
Dirichlet form:

a1(u,v) = Xial,ipi<ms (@1a8(X, %, . . ., D™ ) Doy, DPy)

for each pair %, v in W™12(Q). With the Assumption (I) on the coefficients
@148, the Dirichlet form is well defined.

Let V,* be the conjugate space of V;. We now define the variational
boundary-value problem corresponding to (41, V1).

DEFINITION. Let f € Vi*. Then u is said to be a solution of the variational
boundary problem for A, u = f satisfying the null boundary conditions corres-
ponding to the space Vi if:

1) a1(u,v) = (f,v) forallv € Vy,

(2) u € V.

THEOREM 2.1. Let A, be a non-linear elliptic differential operator of the form
(1), of order 2m, and satisfying Assumption (1). Let Vi be a closed subspace of
Wm12(Q) such that C,~(Q) C V1. Suppose that there exists a non-negative con-
tinuous function ¢i(r) on R with lim, 1 c1(r) = + ® such that

Re{al(ur w—9) — ai(v, u — 7))} > Cl(”“ - v”mlﬂ)”u - v“?fu.Z-

Then for every f € Vi*, the variational boundary problem for A, u = f with null
Vi-boundary conditions has a unique solution.

The theorem is due to Browder (2).
Let 4. be the non-linear elliptic operator defined in Section 1. We have the
following theorem for A u. = f.

THEOREM 2.2. Let Ay be two non-linear elliptic differential operators of the
form (1), of order 2my, with my > my and satisfying Assumption (1). Let V; be
two closed subspaces of W™e2(Q) such that C,”(Q) C Vi with Vo C V1. Suppose
that there exist two non-negative continuous functions cy(r) on R' and

lim, e i (r) = +
such that

Re{dk(“r u—v) — ak(vr u — U)} > Ck(“” - vl,mk.il)llu - v”mk.2;
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u,v € Vi kb = 1,2, Let € be a small positive parameter and A . be the non-linear
elliptic differential operator of the form (2). Then for every f in V¥, there exists
a unique solution u. of the variational boundary problem A.u.= f with null
Vo-boundary conditions.

The proof of the theorem is essentially the same as that of Theorem 2.1;

cf.(2).

THEOREM 2.3. Let A . be the non-linear elliptic differential operator of Theorem
2.2 Let u. be the solution of the variational boundary problem A.u. = f. with
null Ve-boundary conditions. Let uy be the solution of Ay ue = f with null V;-
boundary conditions. Suppose that there is a set V dense in both Vi, Va. Then, if
fe— f weakly in Vi* as e = 0:

Ue— U in Wme2(Q), eue— 0 i Wm22(Q).

Proof. We have:

ac(tte, he) = aslette, ) + ay(ue, ue).
Hence

52(5”7"4Imﬂ)””ellmzﬂ + cr(|d [mi o)1t el[my,2 < Re @e(ue, ue)

<

Refas (e, ue) + ai(ue, ue)}.
But a.(ue, ue) = (fe, #e). So we obtain

cr((fellme,2) el oo < (Ufell [l s 2.
Since fe — f weakly in V¥, fis uniformly bounded in V*. Hence
Cl(””’é”mlﬂ) < M,

where M is a constant independent of e. By hypothesis, the function ¢, ()
satisfies lim, 4., c1(r) = 4 ». Therefore there exists a constant M’ indepen-
dent of e such that |[s||m;,2 < M. A similar argument yields: €||t¢|[pn,,o < M.

From the weak compactness of the unit ball in a Hilbert space it follows
that there is a subsequence #. such that:

ue — v weakly in W™1:2(Q) ase— 0,
e, — 0 weakly in W™2:2(Q) as e — 0.

We now show that » = u,. First we note that v belongs to Vi Indeed
[le|v, < M, and V; with the topology induced by Wm12(Q) is a Hilbert

space.
Consider a.(#, ¢); ¢ € V. We have
2lal,i8l<ms €{@20p (X, €le, . .., D™ u)Dou,, DPg)
+ 2lal,181<m1{@1ap (X, %y« o oy D™ ) Dou,, D).
The last term is equal to
Z[al,lﬂl<m1<Daue, dlaﬁ(xy Uey o« v oy Dml_lue)Dﬁ‘b)-
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Since u. — v weakly in W™2:2(Q) and @ is a bounded domain with a C* embed-
ding mapping of its boundary 99 into E”, the Sobolev embedding mapping
theorem yields that . — v in W™=12(Q). By taking a subsequence if necessary
we may assume that

D*u.— Dwa.e.on Qfor e < m; — 1.

On the other hand, by hypothesis, ai.s are continuous functions of their
arguments; hence

G1ap(Xy they o o oy D™ ) DB — Gr05(x, 0, . .., D™171y) Db
a.e.on Qase— 0.
Moreover

| G1as (%, ey - .., D™ ) DGl < gr(|[seellmr 2) [ DPP| < M|DPg|

since [|tte||my,2 < M. By the Lebesgue bounded convergence theorem, it follows
that

Arap(Xy Uey o ooy D™ ) DG — Qrop(x, 9, ..., D™ 1) DB in L2(Q) as e — 0,

for|al, |B] < m
Since D2, — D weakly in L2(Q), we have

Plal 181<m1(@1a8 (X, Uey + « o, D™ )Dou, DPG) — a:1(v, ¢)  as e — 0.
Applying the same argument to
2 lal,181<ms €{@2p (X, €ty . . ., D™y, )Dou,, DPg),

we find that it goes to zero as e — 0. Therefore a1(v, ) = (f, ¢) forall¢ in V.
So a1(v, w) = (f, w) for all win V;since Vis dense in V.

From the uniqueness of the solution of 4,#, = f with null Vi-boundary
conditions, it follows that v = u,.

It remains to show that u#.— %o in W™-2(Q) and eu.— 0 in W™22(Q) as
¢ — 0. Consider the expression Re{ai(ue, e — 1) — @1(uo, 4 — u0)}. From
the hypothesis, we obtain

[le — wol|mi,2 €1(||the — tol|m1,2) < Re{ar(we, e — o) — a1(tto, e — uo)}

< Refay (e, e — ) + (fr o) — (fv Ue)}.
Also

el[ttel[me,2 Calel[thel|ms,2) < Reas(ere, eue) = € Re ag(eus, u.).
Therefore
{[2t¢]ms 202 (el [t el lms 2) + [[ee = thollmr,2 1(l[see = sollmi,2) < Refas(ere, ue)
o a1(the, ue) — a1(te, ue) + a1(te, e — o) — ar(tho, e — uo)}.
The right-hand side of this inequality is equal to
Re{(f,ue) — ar1(we, uo) + (f, o) — (f, u)} — 0ase— 0.
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So
lime._)OIIue - u0]|m1,2 Cl(“”e - uOHm1.2) = Oy
lim eof|te|lma,2 Ca(e] [t e][mg,2) = O.

If ||ue — to||mi,2e > n > 0 for e > 40, then 0 < ¢1(n) < 0, which is impos-
sible. Similarly, suppose that e||u||ms,2 > 7 > 0 for e > 40. Since ca(r) is
positive for » > 0 by hypothesis, we would have 0 < c2(9) < 0, which is
impossible. So

limego e — uy inW™12(Q),
lime,o eue— 0 in W™22(Q).
3. In this section, we study the singular perturbations of non-linear parabolic

variational boundary problems.
Let V, be a closed subspace of W™#2(Q), as before, and such that

CoQ) CVi(k=1,2;,my> m)

and V. C V;algebraically and topologically. To the non-linear elliptic differen-
tial operator A,(t) of the form (1’) of order 2m; corresponds the non-linear
Dirichlet form

T
Bp(u,v) = 2 f (aras (%, £, 10, . . ., D™ ) D%, D)dt;
lal,iBi<me Jo
u,v€ L*([0,T], Vi); & = 1, 2.

With the assumption (I’) on the coefficients a;ag, the Dirichlet form is well
defined.

DEFINITION. Let Lo be the linear mapping of Fy = {v:v € L2([0, T'], V),
v 15 continuous from [0, T to Vi and is continuously differentiable from [0, T'] to
L2(2), »(0) = 0} wnto (L2([0, T}, Vi))* such that

T fdu
Loz u,v) = J; E’v dt

forallvin L2([0, T'], Vi), k = 1, 2. Let L, be the closure of Lo as a linear opemtér
with domain in L2([0, T, Vi) and range in (L2([0, T'], Vi))*.

Ly is preclosed and has a densely defined adjoint, so L, is well defined.

DEFINITION. Let f be an element of (L2([0, T'1, Vi))*. Then an element
u € D(Ly) and belonging to L*([0, T'], V) s said to be a solution of the variational
boundary-value problem

ou/dt + Ay(t)u = f
if (Lyu,v) + hy(u,v) = (f,v) forallv € L2([0, T, V), B =1, 2.

We have the following theorem.
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THEOREM 3.1. Let A 1(¢) be a non-linear elliptic differential operator of order 2m,
satisfying Assumption (1"). Suppose that there exists a non-negative continuous
Sfumction ¢, (r) with lim, ., ¢:1(r) = + ©, such that

Re{ri(u, u — v) — (v, u — v)} > ar(||lu — 9|[|)][Ju — 9|]]x
forallu,v € L2([0, T], V).

Then there exists a unique solution of the variational boundary-value problem for
the parabolic equation

ou/ot + A1(t)u = f on [0, T] X Q

for given f € (L2([0, T, V1))*. This solution u is continuous from [0, T] to
L2(Q) and u(0) = 0.

This theorem has been proved by Browder (4) under weaker hypotheses on
the ellipitic operator 4; and for L?([0, T'], V1) where 1 < p < .

DEFINITION. For each u € Fy, let Lotu be the element of (L2([0, T], L2(Q))*
such that
T [du

((Lok#u,v))=J; AL for allv € L*([0, T], L (2)).

Let L be the closure of Lot as a linear operator with domain in L2([0, T1, Vi)
and range in (L2([0, T'], L2(Q))*, k = 1, 2.

First, we note that Ly is preclosed and has a densely defined adjoint so
that L, is well defined.
Here ((,)) denotes the pairing of L2([0, T°], L2(Q2)) and of (L2([0, T'], L2(Q))*.

Lemma 3.1. (1) D(L,) = D(L), k=12
(2) D(Lst) C D(Lt) and Ltu = Litu if u € D(Lot).
(B) ((Lifu,v)) = (Lyu,v) for all u € D(Ly) and v € L2([0, T], L2(Q)).

Proof. (i) Let u € D(Ly). Then there exists a sequence of elements
#, € D(Lox) such that w,—u in L2*([0, T], Vi), Loxtr = Lytty,— v in
(L2([0, T], Vi))*, and v = L, u. But we have

T
((Loxtthn, w)) = f d(Z" ,'w> dt = (Ly thn, w) for allw € L*([0, T1, V).
0

Here ((, )) denotes the natural pairing between elements of L2([0, 7', L2(Q))
and (L2([0, T'], L*(2))*, and (, ) is the natural pairing between L2(0, T, V)
and (L2([0, T, Vi))*. Let J be the injection mapping from (L2([0, T, L2(2))*
into (L2([0, T, V3))* with

(J¢,w) = ((¢,w))  for ¢ € (L*([0, T, L2(2))*.

We have JLjfu, = Ly u, — v in (L2([0, T], V))*. Since J is bounded and
Lt is closed, JL,! is closed ; hence JL,fu = v and D(L;) C D(L,}).
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Now let # € D(L#). Then w, — u in L2([0, 7], Vi), Lofu, = Lifu, — v in
(L2([0, 77, L2(2))*, v = Lfu. So
((Lk#u,,, 'ZU)) = (Lk Uy, ‘ZU) — ((2)’ w)) asn — .
Hence

Ly u, — g weakly in (L2([0, T, Vi))*.

But L, is closed, so weakly closed, and it follows that g = L, u. Therefore
D(Ly) = D(Lif) and ((Léfu, w)) = (Lyu, w).

(ii) We now show that D (Ls*) C D(L).

Let u € D(Ly*). Then there exists a sequence of elements u, of D (L)
such that %, — u in L2([0, T'], V1), Lofu, = Lotu, — v in (L2([0, T], L2(Q))*,

and v = Lotu.
T fdu
# = zzn
((L02 Up, w)) L <dt y W

We have
for all win L2([0, T'], L%(Q)). Since u, € Fs, u, lies in D (L") and

((Lorttn, w)) = (Lo, w)) = dun >d1f

0

for all w € L2([0, T], L2(Q)). So Lo tu, = Lofu, for u, in D(Le!) and
Lotu, = Litu, — vin (L2([0, T'], L2(R)))*. Since L* is closed, it follows that
v = Litu = Litu.

The lemma is proved.

We define the global variational boundary-value problem.

DEFINITION. For each u € F = {u € L*(R', V), u is continuous from R* to
Vs, u is in C! from R to L*(Q), and u has compact support in R}, let Lo u be the
element of L*(RY, V3*) such that

(Lou,v)— dt , >dt

forallv € L*(RY, V). Let L be the clasme of Lo as a linear operator with domain
in L2(RY, V) and range in L2(RY, Vo*).

One can show that L* = —L; cf. (4).

DEFINITION. Let f € L2(RY, V*). Then u is said to be a global solution of the
variational boundary-value problem for the equation

ou/dt + AQ)u = f on Q X Rt

if (Lu,v) + h(u,v) = (f,v) for all v € L2(R', V) and u is an element of
D(L) N LA(RY, V).
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THEOREM 3.2. Let A,(t) be two non-linear elliptic differential operators of
order 2my, with my > my and satisfying Assumption (I'). Let V, be two closed
subspaces of W™2(Q) and such that C,°(Q) C Vi. Suppose that there exist non-
negative, continuous functions cy(r) with lim, ., ¢;(r) = + o such that

Re{e(u, u —v) — (v, u — v)} > a(|llu — oll[o)]|[u — 2|[]x

forallu,vin Vi, k = 1,2. Let € be a small positive parameter. Let f be an element
of (L2[(0, T], Vu))* and f be the element of L*(R!, Vy*) obtained by setting
f=7fon [0, T] and 0 outside of [0, T]. Then for each ¢ > 0, there is a unique
solution u. of the variational boundary-value problem

ou/ot + A ()ue=Ff  on R X Q.

Moreover the restriction of u. to [0, T'] is the unique solution of the variational
boundary-value problem for the equation

du/ot + A (t)ue = f on[0,T] X Q
with respect to V. e ts continuous from [0, T°] to L*(Q) and u.(0) = 0.
The proof is essentially the same as in (4). The uniqueness of the solution

of the global variational boundary problem for du./dt + A (t)u. = f follows
from the assumptions that ¢;(r) and c2(r) are two non-negative functions.

THEOREM 3.3. Let f € L2([0, T'], L2(Q)). With the hypotheses of Theorem 3.2,
let u. be the solution of the variational boundary-value problem

ou/ot + Ac(t)ue = f
with respect to Vi on [0, T and with u.(0) = 0. Let uo be the solution of the
variational boundary-value problem

auo/at + A](t)uo = f

with respect to Vi on [0, T] and with u,(0) = 0. Suppose that there is a set V
dense in both Vi, Vo Then as € —0, ue— uy tn L2([0, T], W™2(Q)) and
ene— 01n L2([0, T], W™2:2(Q)).

Proof. Set f to be equal to 0 outside of the interval [0, T']. Then f can be
considered as an element of L2(R!, L2(Q)). By Theorem 3.2, there exists a
unique solution of the global variational boundary-value problem for the
equation

oue/ot + Ac(t)ue = f

with respect to Vs, on R! X Q. Moreover the restriction of #. to [0, 7] is the
unique solution of the equation on [0, 7] X ©. Hence

(Lutey, w) + he(ue, w) = ((f, w)) forall win V.
In particular

Lue,ue) + he(ue, ue) = ((f, ue)).
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But since L* = —L, we obtain
Re he(ue, ue) = Re((f, ue)).
We also have
Re he(ue, ue) = Re ho(ethe, ue) + hi(ue, ue),
Re he(ue, ue) > calell|wel||2)[[ludll2 + cxllfell[)[[[ell]1.

Therefore, ¢1(||Jucl||:) < M and cz(e|||ug]|s) < M where M is a constant
independent of e. The functions ¢,(r) are such that lim,, i, ¢ (r) = + .
Hence there exists a constant M’ such that [[[u.||[1 < M, €|[ud([s < M.

From the weak compactness of the unit ball in a reflexive Banach space, it
follows that there is a subsequence %, such that %, — v weakly in

LZ(Rl, Wm1,2(9))

and eu,— 0 weakly in L2(R!, W™22(Q)) as ¢ — 0. Moreover v belongs to
L2(RY, V).

We now show that v = uo. We have (Lu., w) = ((f, w)) — he(u., w) for all
w € L2(RY, V). Since |||u|||1 and € |||u|||2 are uniformly bounded, we obtain

@l < ] [ ol

Hence
f |Lud|3n* dt < M.

D(L) with the graph norm is a Banach space and the injection mapping of
D (L), considered as a Banach space with the graph norm into

L ([0, T], wm12(Q)),
is compact;cf. (1). So ex — 0 in L2([0, T'], W™1:2(Q)) as ¢ — 0. Let

o o) %
lllellle = { L, @)y dt + ¢ f_mIIw(DII% dt}

+ Lol de
_ f

D(L) with the ||| ||[-norm is a Banach space and the injection mapping of
D (L), considered as a Banach space with the ||| |||-norm into

L ([0, T, Wm=t2(Q))

is compact. Thus #.— v in L2([0, T'], W™—12(Q)) as ¢— 0. By taking a
subsequence if necessary, we may assume that

Dy, — Da.e.on [0, T] X @ for o] < my; — 1
eDu,—0 aeonf0,T]XQ for o] < mp — 1
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Consider he(ite, w) = ho(ette, w) + hy(u., w). We have

T
B w) = f (0108, by ey « o, D™ ) D%, DPw)dt
lal,18|<m1 0

T
= > f (DU, Grap(X, £, Uey « « oy D™ 'u ) DPw)dt.
lal,|B8]<m1 0

From the Assumption (I’) on the coefficients @145, we deduce that

dlaﬂ(x: Lhthey ..., Dml—-lue)Dﬁ‘w hd dl,,g(x, Lo, ..., Dml_l‘Z))Dﬁ‘w
a.e. on [0, T'] X Q. Moreover
|Grap (%, £y ey« « ., D™ ) D] < gi(||Jud]]1) | DPw| < M|DAw|.

From the Lebesgue bounded convergence theorem, it follows that
A10(X, by ey o o oy D™ ) DB — @106(x, ¢, 0, . . ., D™~ 1y) Dby
in L2([0, 71, L?(Q)) as € — 0. Since D*u.— D> weakly in L2([0, T'], L2(Q)),
we obtain (., w) — hi(v, w) for all w in L2([0, 7], V). A similar argument
holds for ks (ette, w), yielding lim o k2 (ex., w) — 0. Hence ki (e, w) — h1(v, w)
for win L2([0, T'], V) as e — 0.
On the other hand, we have by definition

(L2 Ue w) + he(u’ﬂ ‘Z/U) = ((fv w))
From Lemma 3.1, we have

(L2 Ue, ‘ZU) = ((Lz#u;, w)) = ((Ll#ue’ ‘ZU))
Therefore

(Litue, w)) = ((f, w)) — hi(v, w) ase—0
for w € L2([0, T'], V).
Since L. is weakly closed, it follows that
((Lifo, w)) + (v, w) = ((f,w))  forallwin L2([0, T, V).
By hypothesis, 1 is dense in Vy; hence
((Litv, w)) + hi(v, w) = ((f, w)) for all win L2([0, T, V).
Now v € D(L,), for D(L;) = D(L,), and moreover (L;v, w) = ((Li*v, w)).
Hence
L1y, w) + kv, w) = ((f, w)) for all win L2([0, T, V).
We deduce from Theorem 3.1 that v = u,.
It remains to show that u.— uo in L2([0, 7], W™2(Q)) and ex.— 0 in
L2([0, T'], W™2:2(Q)) as € — 0.
First, we note that
cr(lJuwe — wol|[1)]]|#e — mol|]s < Re{hi(ue, e — o) — hy(tio, e — t0)}
< Re{hi(ue, ue) = hy(wey o) + hy(uo, o) — h1(o, ue)}

https://doi.org/10.4153/CJM-1966-086-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-086-2

872 BUI AN TON

and
calellfud |[2)[[|uell] < Refha(ene, we) 4+ ha(ue ue) — haue, ue}
So ca(el[[well[2)[sel[|2 4 ex([lfwe — mall[1)[[[e — wol|]s is majorized by
Re{he(the, ue) — hi(tte, o) — ha(seo, 2e) + ha1(uo, %0)}.

The last expression is equal to

Re{((f,ue)) — (Luwe, ue) + hi(uto, o) — hy(tte, o) — h1(tto, ue)}.
But L* = —L, so that Re (Lu., u.) = 0. Hence
cr(|llue — woll[D][we = wmol[[x + calel|[uel[[2)][|nel]]2

e {((fyue)) + hi(uo, wo) — hy(te, o) — hy(uo, uc)}.

As e — 0, the right-hand side of the inequality tends to

e { ((f, o)) — ha(uo, uo)}.

Let L’ be the operator corresponding to L, involved in the definition of the
global variational boundary problem for the equation du/dt + A;:(f)u = f on
R X Q. Then, as for L, we have (L’)* = —L’. We obtain

e {((f, o)) — h1(st0, o)} = Re (L'uo, 1g) = 0.

Since ¢,(r) and c¢2(r) are two non-negative functions, we obtain
im [[lue — wol[lier([||ue — wof|[1) =0, lim|[juc|[|ac2(el[[ucl]|2) =0

If |||ue — wol|]| > n > 0 for € > 40, then 0 < ¢;(n) < 0, which is impossible.
Hence u.— u, in L2([0, T, W’”1 2(Q)) as € — 0. A similar argument shows
that eu. — 0 in L2([0, T°], W™2:2(Q)) as e — 0.
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