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Abstract

Time series or longitudinal data naturally arise in studying the progression of 

mental health status in patients. Establishing the effectiveness of treatments cru-

cially depends on accurate models of this progression and the factors that impact 

it. Longitudinal data is fraught with missingness, hindering accurate modeling. 

Here, we re-analyse data on schizophrenia severity in a clinical trial using hidden 

Markov models, in which the latent health status is considered to be a discrete 

state. We consider missing data in the context of those hidden Markov models 

with a focus on situations where data is missing not at random (MNAR) and 

missingness depends on the identity of the latent states, allowing the severity 

of symptoms to indirectly impact the probability of missingness. In simulations, 

we show that including a submodel for state-dependent missingness reduces bias 

when data is MNAR and state-dependent, whilst not reducing accuracy when 

data is missing at random (MAR). When missingness depends on time but not 

the hidden states, a model which only allows for state-dependent missingness is 

biased, whilst a model that allows for both state- and time-dependent missingness 

is not. Overall, these results show that modelling missingness as state-dependent, 

and including other relevant covariates, is a useful strategy in applications of 

hidden Markov models to time-series with missing data. Applying the state- and
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time-dependent MNAR hidden Markov model to data from a clinical trial test-

ing medication for schizophrenia, we find that drop-out is more likely for patients

with less severe symptoms, which may lead to a biased assessment of treatment

effectiveness.

Keywords: longitudinal data, hidden Markov models, missing data, missing not at

random

1 Introduction

The progression of mental health and the search for effective interventions to improve

it naturally lead to longitudinal data. Determining the impact of personality and other

factors on the progression of a disorder is vital to understanding mental health dynam-

ics and the effectiveness of treatments. Longitudinal data are unfortunately fraught

with missingness, due to complete or partial drop-out of patients. Such missingness

can severely affect the validity of inferences from the data. For example, if patients who

react adversely to medication drop out of the study, this may lead to an unwarranted

favourable evaluation of the effectiveness of the medication, as the results do not take

into consideration patients who actually were worse off after taking the medication. It

is therefore vital to properly address missing data in such studies.

The progression of disease and mental health is increasingly studied using hidden

Markov models. Hidden Markov models (Rabiner, 1989; Visser & Speekenbrink, 2022)

are suitable for categorical or metric time-series and longitudinal data governed by

an underlying discrete process. In the context of longitudinal data, these models are

also known as latent Markov models (Bartolucci, Farcomeni, & Pennoni, 2012). In

these models, health status is considered a discrete state from a finite set, rather than

a continuous variable. The focus is on how patients transition between healthy and

less healthy states, either naturally or as a consequence of interventions. For example,
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Hosenfeld et al. (2015) studied patients transitioning in and out of major depressive

episodes. Other recent applications have focused on patients with diagnosed depression

(Catarino et al., 2020), bipolar disorder (Prisciandaro, Tolliver, & DeSantis, 2019),

and schizophrenia (Boeker et al., 2021). These applications of hidden Markov models

are usually limited to complete data or otherwise ignore reasons for missing data.

Here, we consider data from a randomized control trial testing the effectiveness of

medication in the treatment of schizophrenia. As in many longitudinal studies, there

is substantial missing data in this study. The aim of the present paper is to show

how this missingness can be meaningfully addressed in applications of hidden Markov

models to clinical studies and other data, by allowing missingness to depend on the

underlying latent health state as well as other variables such as measurement occasion

and intervention status.

There is relatively little work on dealing with missing data in hidden Markov mod-

els. Albert (2000), Deltour, Richardson, and Hesran (1999), and Yeh, Chan, Symanski,

and Davis (2010) consider missing data in Markov chains with observed states. Paroli

and Spezia (2002) consider calculation of the likelihood of a Gaussian hidden Markov

model when observations are missing at random. Yeh, Chan, and Symanski (2012)

discuss the impact of ignoring missingness when missing data is, and is not, ignorable.

They show that if missingness depends on the hidden states, i.e. missingness is state-

dependent, this results in biased parameter estimates when this missingness is ignored.

However, they offer no solution to this problem. The objective of this paper is to do

so. Our approach is related to the work of Yu and Kobayashi (2003), who allowed for

state-dependent missingness in a hidden semi-Markov model with discrete (categori-

cal) outcomes. Following Bahl, Jelinek, and Mercer (1983), their solution is to code

missingness into a special “null value” of the observed variable, effectively making the

variable fully observed. Here, we instead model missingness with an additional (fully

observed) indicator variable. This, we believe, is conceptually simpler, and makes it
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straightforward to add additional covariates to model the probability of missing val-

ues. This approach is also taken by Bartolucci and Farcomeni (2015), who restrict

their model to the case of dropout in longitudinal data (where data is complete up to

the point of dropout, after which all data is missing) rather than missing data more

generally (where data can be missing at any time point).

The remainder of this paper is organized as follows: We start with an overview of

the data measuring the severity of schizophrenic symptoms in a clinical trial (Hedeker

& Gibbons, 1997) and a brief discussion about the usefulness of applying hidden

Markov models to this type of data. This is followed by a brief overview of hidden

Markov models and the definition of ignorable and non-ignorable missing data as

established by Rubin (1976) and Little and Rubin (2014). We then consider both

types of missing data in the context of hidden Markov models, and address the case

of state-dependent missingness. We then present an inhomogeneous hidden Markov

model for longitudinal data with state-dependent missingness and detail its estimation

via expectation-maximisation. In a series of simulation studies, we show how including

a submodel for state-dependent missingness provides better estimates of the model

parameters when missingness is state-dependent. When data is in fact missing at

random, the model with state-dependent missingness is not fundamentally biased,

although care must be taken to include relevant covariates, such as e.g. time. These

models are then applied to the dataset on the severity of schizophrenic symptoms in

a clinical trial (Hedeker & Gibbons, 1997). We end by discussing the implications of

this modelling exercise.

1.1 The National Institute of Mental Health Schizophrenia

Collaborative Study

The National Institute of Mental Health Schizophrenia Collaborative Study assesses

treatment-related changes in overall severity of schizophrenia. In the study, 437
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patients diagnosed with schizophrenia were randomly assigned to receive either a

placebo (108 patients) or one of three different anti-psychotic drugs (329 patients).

The severity of their illness was rated by a clinician at baseline (week 0), and at sub-

sequent 1 week intervals (weeks 1–6), with week 1, 3, and 6 as the intended main

follow-up measurements. Measurements on the non-main measurement weeks (week

2, 4, and 5) are overwhelmingly missing with some patients having measurements in

these weeks instead of the main measurement weeks. This data has been made pub-

licly available by Don Hedeker1 and has been analysed numerous times. In particular,

Hedeker and Gibbons (1997) focused on pattern mixture methods to deal with miss-

ing data. Yeh et al. (2010) and Yeh et al. (2012) applied Markov and hidden Markov

models, respectively, assuming ratings were missing at random.

Our analysis focuses on a single item of the Inpatient Multidimensional Psychiatric

Scale (Lorr & Klett, 1966), which rates illness severity on a scale from 1 (“normal”)

to 7 (“among the most extremely ill”).2. The average severity ratings at each week

are shown in Figure 1. As can be seen there, ratings at week 6 appear lower than

those in week 0, especially for patients receiving medication. At week 6, patients who

received the placebo had more severe illness than those receiving medication, with a

difference in mean IMPS score of ∆M = 1.18, 95% CI [0.80, 1.57], t(105.23) = 6.13,

p < .001. There is however substantial missing data. Most participants were measured

on week 0 (99.31%) and 1 (97.48%), whilst the other main measurement points at

week 3 (85.58%) and 6 (76.66%) show more missing values. For a few participants,

ratings were instead obtained on week 2 (3.2%), 4 (2.52%), and/or 5 (2.06%). Even

when ignoring these rare deviations from the main measurement points, there is a

clear potential issue with missing data and attrition, with 75.29% being measured the

intended four times or more, and 15.1% rated on just three occasions, and 9.61% only

twice.

1https://hedeker.people.uic.edu/SCHIZREP.DAT.txt.
2The dataset provided contains some non-integer values for these ratings, presumably given to provide a

finer-grained evaluation by the clinician.
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Fig. 1 Average ratings of the severity of illness (IMPS item 79) by week and drug type. Bars depict
95% confidence intervals. Note that for the placebo group, confidence intervals at week 4 and 5 extend
beyond the plot due to the small number of observations.

Further insight into the extent of the missingness can be gained by studying the

attrition or drop-out rates and the occurrence of intermittent missingness. First, 312

out of 437 patients have measurements at all four main measurement occasions. Sec-

ond, 3 patients dropped out after measurement occasion 1, 45 patients after 2, and

53 patients after 3 measurement occasions. This leaves 24 patients with intermittent

missingness patterns. In particular, 13, 5, and 3 patients have missing data at main

measurement occasions 1, 2 or 3 respectively. Finally, 2 patients had missing data

at main measurement occasions 2 and 3, and 1 patient had missing data at main

measurement occasions 2 and 4.

Focusing on the four main measurement weeks, Figure 2 compares the improvement

in illness from week 0 of patients with missing data in both week 3 and week 6,

patients with only missing data in week 6, and patients with complete data. This

figure shows some clear differences between patients with and those without missing

data. Differences are particularly evident at week 3, where patients in the medication

group with missing data in week 6 have improved more than patients in the medication
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Fig. 2 Improvement in symptoms at the main measurement weeks by missingness pattern and drug
status. Note that missingness pattern concerns solely the main measurement weeks. Improvement are
differences in scores between the main measurement weeks. Dots represent means and ranges 95%
confidence intervals.

group without missing data. Drop-out of patients who respond well to medication

may bias the assessment of treatment effectiveness, such that the treatment is deemed

less effective than it is in reality. The question is then whether drop-out is random,

or related to treatment effectiveness and/or illness severity. Modelling of these data

should answer the question whether the origin of these differences in improvement is

an actual difference in treatment effectiveness or an artifact caused by missingness.

To gain initial insight into patterns underlying the missing data, we modelled

whether the IMPS rating was missing or not with a logistic regression model. Predic-

tors in the model were a dummy-coded variable drug (0 for placebo, 1 for medication),

week (from 0 to 6) as a metric predictor, and a dummy-coded variable main (1 for

main measurement occasion, 0 otherwise) to indicate whether the rating was at a

main measurement occasion (i.e. at week 0, 1, 3, or 6). We also included an interac-

tion between drug and week, and between drug and main. The results of this analysis

(Table 1) show a positive effect of week (such that missingness increases over time),

and a negative effect of main, with (many) more missing values on weeks which are

not the main measurement occasions. The positive effect of week is a clear sign of

attrition. A remaining question is whether this attrition is related to the severity of

the illness, in which case the ratings at week 6 would provide a biased view on the true
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Table 1 Results of a logistic regression analysis
modelling missingness as a function of drug, week, and
whether the week was a main measurement occasion or
not.

β̂ SE(β̂) z P (> |z|)

(Intercept) 1.921 0.393 4.884 0.000
drug 0.433 0.463 0.936 0.349
week 0.496 0.068 7.353 0.000
main -5.381 0.382 -14.103 0.000
drug× week -0.112 0.081 -1.395 0.163
drug× main -0.596 0.446 -1.335 0.182

severity of illness after 6 weeks of treatment with a placebo or medicine. There are dif-

ferent methods to address this, and many have been already applied to this particular

dataset. For example, Hedeker and Gibbons (1997) used a pattern mixture approach

with linear mixed-effects models and showed that improvement depends both on the

type of drug and whether patients drop-out or not. Here, we suggest an alternative

approach, incorporating a model of missingness into a hidden Markov model, thereby

allowing missingness to depend on the latent state as well as observable features such

as the measurement week.

1.2 Hidden Markov models

Let Y1:T = (Y1, . . . , YT ) denote a time series of D-variate observations Yt =

(Yt,1, . . . , Yt,D), and let θ denote a vector of model parameters. A hidden Markov

model (HMM) associates observations with a time series of hidden (or latent) dis-

crete states S1:T = (S1, . . . , ST ). In a first-order HMM, it is assumed that each state

St ∈ {1, . . . ,K} depends only on the immediately preceding state S1−t, and that,

conditional upon the hidden states, the observations Yt are independent:

p(St|S1:t−1,θ) = p(St|St−1,θ), t = 2, 3, . . . , T (1)

p(Yt|S1:t−1, Y1:t−1,θ) = p(Yt|St,θ), t = 1, 2, . . . , T. (2)
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With these conditional independencies, the joint distribution of observations and states

can be factored as

p(Y1:T , S1:T |θ) = p(S1|θ)p(Y1|S1,θ)

T∏
t=2

p(St|St−1,θ)p(Yt|St,θ), (3)

where p(S1|θ) is the initial state distribution at time t = 1. The likelihood func-

tion (i.e. the marginal distribution of the observations as a function of the model

parameters) can then be written as

L(θ|Y1:T ) =
∑

s1:T∈ST

p(Y1:T , S1:T = s1:T |θ), (4)

where the summation is over all possible state sequences (i.e. ST is the set of all

possible sequences of states). Rather than actually summing over all possible state

sequences, the forward-backward algorithm (Rabiner, 1989) is used to efficiently cal-

culate this likelihood. For more information on hidden Markov models, see also Visser

and Speekenbrink (2022).

1.3 Missing data

The canonical references for statistical inference with missing data are Rubin (1976)

and Little and Rubin (2014). Here we summarise the main ideas and results from

those sources, as relevant to the present topic. For ease of presentation, we consider

the case of a single D-variate time-series Y1:T,1:D here.

Let Y1:T,1:D, the sequence of all D-variate response variables, be partitioned into

a set of observed values, Yobs ⊆ Y1:T,1:D, and a set of missing values, Ymiss ⊆ Y1:T,1:D,

with Yobs ∪ Ymiss = Y1:T and Yobs ∩ Ymiss = ∅. Let M1:T,1:D be a matrix of indicator

variables with values Mt,j = 1 if Yt,j ∈ Ymiss (the observation of dimension j at time

t is missing), and Mt,j = 0 otherwise.
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In addition to θ, the parameters of the hidden Markov model for the observed data

Y , let ϕ denote the parameter vector of the statistical model of missingness (i.e. the

model of M1:T,1:D). We can define the “full” likelihood function as

Lfull(θ,ϕ|Yobs,M1:T,1:D) ∝
∫

p(Yobs,Ymiss|θ)p(M1:T,1:D|Yobs,Ymiss,ϕ)dYmiss, (5)

that is, as any function proportional to p(Yobs,M1:T,1:D|θ,ϕ). Note that this is a

marginal density, hence the integration over all possible values of the missing data.

In this general case, we allow missingness to depend on the “complete” data Y1:T,1:D,

so including the missing values Ymiss (for instance, it might be the case that missing

values occur when the true value of Yt,j is relatively high).

The likelihood for the observed data, ignoring the missing values, can be defined as

Lign(θ|Yobs) ∝ p(Yobs|θ), (6)

that is, as any function proportional to p(Yobs|θ). An important question is when

inference for θ based on (5) and (6) give the same results. Note that both likelihood

functions need only be known up to a constant of proportionality as only relative

likelihoods need to be known for maximizing the likelihood or computing likelihood

ratio’s. The question is thus when (6) is proportional to (5).

As shown by Rubin (1976), inference on θ based on (5) and (6) will give identical

results when (1) θ and ϕ are separable (i.e. the joint parameter space is the product

of the parameter space for θ and ϕ), and (2) the following holds:

p(M1:T,1:D|Yobs,Ymiss,ϕ) = p(M1:T,1:D|Yobs,ϕ) for all Ymiss,ϕ, (7)
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i.e. whether data is missing does not depend on the missing values. In this case, data

is said to be missing at random (MAR), and the joint density can be factored as

p(Yobs,M1:T,1:D|θ,ϕ) = p(M1:T,1:D|Yobs,ϕ)×
∫

p(Yobs,Ymiss|θ)dYmiss

= p(M1:T,1:D|Yobs,ϕ)× p(Yobs|θ),

which indicates that, as a function of θ, Lfull(θ,ϕ|Yobs,M1:T,1:D) ∝ Lign(θ|Yobs).

Hence, when data is MAR, the missing data, and the mechanism leading to it, can be

ignored in inference of θ. A special case of MAR is data which is “missing completely

at random” (MCAR), where

p(M1:T,1:D|Yobs,Ymiss,ϕ) = p(M1:T,1:D|ϕ). (8)

When the equality in (7) does not hold, data is said to be missing not at random

(MNAR). In this case, ignoring the missing data will generally lead to biased parameter

estimates of θ. Valid inference of θ requires working with the full likelihood function

of (5), so explicitly accounting for missingness.

1.4 Missing data in hidden Markov models

A hidden Markov model (HMM) by definition includes missing data, as the hidden

states S are unobservable (i.e. always missing). When there are no missing values

for the D-dimensional response variable Y1:T,1:D, it is straightforward to show that

inference on θ in HMMs targets the correct likelihood. Let Y ′
t = (Yt,1, . . . , Yt,D, St)

define a D + 1-dimensional variable, for which Ymiss = S1:T and Yobs = Y1:T,1:D.

Then p(Mt,d|Yobs,Ymiss,ϕ,θ) = p(Mt,d) = 0, for all t = 1, . . . , T , d = 1, . . . , D,

and p(Mt,D+1|Yobs,Ymiss,ϕ,θ) = p(Mt,D+1) = 1, for all t = 1, . . . , T . Therefore, the

missing states can be considered missing completely at random (MCAR).
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As the hidden states in a HMM are MCAR, we will ignore them in the missingness

models in the remainder, so that M1:T,1:D corresponds solely to the missing values

for the observable variables. We will now focus on the case where the observable

response variables Y1:T,1:D do have missing values. The full likelihood, which involves

marginalizing over the hidden states, can be defined as

Lfull(θ,ϕ|Yobs,M1:T,1:D) ∝
∑

s1:T∈ST

∫
p(Yobs,Ymiss, s1:T |θ)p(M1:T,1:D|Yobs,Ymiss, s1:T ,ϕ)dYmiss,

(9)

while the likelihood ignoring missing values can be defined as

Lign(θ|Yobs) ∝
∑

s1:T∈ST

p(Yobs, s1:T |θ). (10)

1.4.1 Missing at random (MAR)

When the data is missing at random (7), then

Lfull(θ,ϕ|Yobs,M1:T,1:D) ∝
∑

s1:T∈ST

∫
p(Yobs,Ymiss, s1:T |θ)p(M1:T,1:D|Yobs,ϕ)dYmiss

= p(M1:T,1:D|Yobs,ϕ)×

 ∑
s1:T∈ST

∫
p(Yobs,Ymiss, s1:T |θ)dYmiss


(11)

and hence missingness is ignorable in inference of θ. Assuming that the D-variate

responses are conditionally independent:

p(Yt) = p(Yt,1, . . . , Yt,D|St,θ) =

D∏
j=1

p(Yt,j |St,θ) (12)
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and defining

p∗(Yt|St,θ) =

D∏
j=1

(
IYt,j∈Yobs

p(Yt,j |St,θ) + IYt,j∈Ymiss

∫
p(Yt,j |St,θ)dYt,j

)

=

D∏
j=1

(
IYt,j∈Yobs

p(Yt,j |St,θ) + IYt,j∈Ymiss × 1
)
, (13)

where the indicator variable Ix = 1 if condition x is true and 0 otherwise, we can write

the part of the full likelihood (11) relevant to inference on θ as

∫
p(Yobs,Ymiss, s1:T |θ)dYmiss = p(S1|θ)p∗(Y1|S1,θ)

T∏
t=2

p(St|St−1,θ)p
∗(Yt|St,θ),

which shows that a principled way to deal with missing observations is to set

p(Yt,j |St,θ) = 1 for all Yt,j ∈ Ymiss. Note that it is necessary to include time points

with missing observations in this way to allow the state probabilities to be computed

properly. While this result is known (e.g. Zucchini, MacDonald, & Langrock, 2017),

we have not come across its derivation in the form above.

1.4.2 State-dependent missingness (MNAR)

If data is not MAR, there is some dependence between whether observations are

missing or not, and the true unobserved values. There are many forms this dependence

can take, and modelling the dependence accurately may require substantial knowledge

of the domain to which the data applies. Here, we take a pragmatic approach, and

model this dependence via the hidden states. We assume M and Y are conditionally

independent, given the hidden states:

p(Mt, Yt|St,θ,ϕ) = p(Mt|St,ϕ)p(Yt|St,θ),

13
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where Yt = (Yt,1, . . . , Yt,D) and hence Mt = (Mt,1, . . . ,Mt,D) can be multivariate.

Conditional independence between responses and missingness is not an overly restric-

tive assumption, as the number of hidden states can be chosen to allow for intricate

patterns of (marginal) dependence between M and Y at a single time point, as well

as over time. For example, increased probability of missingness for high values of Y

can be captured through a state which is simultaneously associated with high values

of Y and a high probability of M = 1. A high probability of a missing observation

at t+ 1 after a high (observed) value of Yt can be captured with a state s associated

with high values of Y , a state s′ ̸= s associated with a high probability of M = 1, and

a high transition probability P (St+1 = s′|St = s) between these states.

Under the assumption that missingness depends solely on the hidden states, such

that

p(M1:T |Yobs,Ymiss, S1:T ,ϕ) = p(M1:T |S1:T ,ϕ),

the full likelihood can be stated as

Lfull(θ,ϕ|Yobs,M1:T ) ∝
∑

s1:T∈ST

∫
p(Yobs,Ymiss, s1:T |θ)p(M1:T |Yobs,Ymiss, s1:T ,ϕ)dYmiss

=
∑

s1:T∈ST

p(M1:T |s1:T ,ϕ)×
∫

p(Yobs,Ymiss, s1:T |θ)dYmiss

=
∑

s1:T∈ST

p(M1:T |s1:T ,ϕ)× p(Yobs, s1:T |θ).

This shows that, although M does not directly depend on Ymiss, because both M and

Y depend on the state S, the role of the p(M |S,ϕ) term is more than a scaling factor

in the likelihood, and hence missingness is not ignorable.

1.5 Overview

When data is MNAR and missingness is not ignorable, valid inference on θ requires

including a submodel for M in the overall model. That is, the HMM should be defined
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for both Y and M . The objective of the present paper is to show the potential benefits

of including a relatively simple model for M in hidden Markov models, by assuming

missingness is state-dependent. We first provide results from a simulation study. The

simulations assess the accuracy of parameter estimates and state recovery in situations

where missingness is MAR or MNAR and dependent on the hidden state, in situa-

tions where the state-conditional distributions of the observations are relatively well

separated or more overlapping. We also discuss a situation where missingness depends

on the true value of Y , and one where missingness is time-dependent (but not state-

dependent). The latter is a situation where missingness is in fact MCAR, and where a

misspecified model which assumes missingness is state-dependent might lead to biased

results. Finally, we apply the models to the real data from a clinical trial comparing

the effect of real and placebo medication on the severity of schizophrenic symptoms.

2 Inhomogeneous hidden Markov models for

multivariate longitudinal data with

state-dependent missingness

In the remainder, we will consider hidden Markov models with K states for longitudi-

nal data consisting of sets of time-series (e.g. time-series for different patients) which

may differ in length. Let Y1:N,1:Ti = (Y1,1:T1 , Y2,1:T2 , . . . , YN,1:Tn) denote such a set of

N time-series Yi,1:Ti = (Yi,1, . . . , Yi,Ti), each of length Ti. Whilst we will focus on uni-

variate responses in the remainder, the results apply directly to D-variate responses,

Yi,t = (Yi,t,1, . . . , Yi,t,D), as long as conditional independence (12) holds. We will

allow state-transitions to be inhomogeneous (i.e. time-variant) by including covariates

xi,1:Ti
on the initial state probabilities and state-transition probabilities. Here, we use
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multinomial logistic regressions:

p(Si,1 = j|θpr,xi,1) =
exp(β

(pr)
j xi,1)∑K

k=1 exp(β
(pr)
k xi,1)

,

and

p(Si,t+1 = k|Si,t = j,θtr,xi,t) =
exp(β

(tr)
j,k xi,t)∑K

l=1 exp(β
(tr)
j,l xi,t)

.

Note that for identification, β
(pr)
k and β

(tr)
j,k should be fixed to 0 for one state k ∈

(1, . . . ,K), and that usually, xi,1:Ti
will include a constant term for the intercept.

We allow responses Yi,t to depend on hidden states Si,t and covariates xi,t. For

continuous-valued variates Yi,t, we can for example use linear regressions:

p(Yi,t|θobs,xi,t, St = j) = Normal(β
(obs)
j xi,t, σj)

Finally, missingness Mi,t is allowed to depend on the hidden states and covariates.

Here, we use logistic regression

p(Mi,t = 1|ϕ,xi,t, St = j) =
exp(β

(mis)
j xi,t)

1 + exp(β
(mis)
j xi,t)

.

2.1 Estimation via Expectation-Maximization

The the following, let θ = (θpr,θtr,θobs,ϕ) denote all the model parameters, with

θpr = (β
(pr)
1 , . . . ,β

(pr)
K ) denoting the parameters for the initial state probabili-

ties, θtr = (β
(tr)
1,1 , . . . ,β

(tr)
K,K) the parameters for the state-transition probabilities,

θobs = (β
(obs)
1 , . . . ,β

(obs)
K , σ1, . . . , σK) the parameters for the state-conditional obser-

vation densities, and ϕ = (β
(mis)
1 , . . . ,β

(mis)
K ) the parameters for the state-conditional

missingness probabilities.
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These parameters can be estimated through the Expectation-Maximization (EM)

algorithm, which in the context of hidden Markov models is also known as the Baum-

Welch algorithm. The EM algorithm consists of iteratively maximising the expected

joint log-likelihood

Q(θ,θ′) = E[log p(y1:N,1:T ,m1:N,1:T , s1:N,1:T |θ)]

where the expectation is taken with respect to p(S1:N,1:T |y1:N,1:T ,m1:N,1:T ,θ
′). Note

that the expectation is based on initial parameter values θ′, whilst the joint log

likelihood is defined over parameter values θ.

The expected joint log-likelihood can be written as

Q(θ,θ′) =

N∑
i=1

K∑
j=1

γi,1(j) log p(Si,1 = j|θpr,xi,1)

+

N∑
i=1

Ti∑
t=2

K∑
j=1

K∑
k=1

ξi,t−1(j, k) log p(Si,t = k|Si,t−1 = j),θtr,xi,t−1)

+

N∑
i=1

Ti∑
t=1

K∑
j=1

γi,1(j) log p(Mi,t = 1|Si,t = j,xi,t,ϕ)

+

N∑
i=1

Ti∑
t=1

K∑
j=1

γi,1(j) log p
∗(yi,t|Si,t = j,xi,t,θobs) (14)

where

γi,1(j)
def
= p(Si,t = j|mi,1:Ti , yi,1:Ti ,xi,1:Ti ,ϕ,θ)

is the posterior probability of state Si,t and

ξi,t(j, k)
def
= p(Si,t+1 = k, Si,t = j|mi,1:Ti

, yi,1:Ti
,xi,1:Ti

,ϕ,θtr),
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is the joint posterior probability of states Si,t and Si,t+1. These probabilities can be

efficiently computed via the forward-backward algorithm (Rabiner, 1989). We define

the forward-variable

αi,t(j)
def
= p(mi,1:t, yi,1:t, Si,t = j,θ′),

which can be computed iteratively as

αi,1(j) = p(Si,1 = j|θ′
pr,xi,1)p(mi,1|ϕ′,xi,1, Si,1 = j)p∗(yi,1|xi,1,θ

′
obs, Si,1 = j) (15)

and for t > 1, as

αi,t(j) =

K∑
l=1

αi,t−1(l)p(Si,t = j|Si,t−1 = l,xi,t−1,θ
′
tr)p(mi,t|ϕ′,xi,t)p

∗(yi,t|xi,t,θ
′
obs)

(16)

We also define the backward-variable

βi,t(j)
def
= p(mi,(t+1):Ti

, yi,(t+1):Ti
|Si,t = j,xi,(t+1):Ti

,θ′
obs),

which is initialized at t = Ti as

βTi
(j) = 1, j = 1, . . . ,K (17)

and then for each time t = Ti − 1, . . . , 1 as

βi,t(j) =

K∑
l=1

p(Si,t+1 = l|Si,t = j,xi,t,θ
′
tr)

× p(mi,t+1|Si,t+1 = l,ϕ′,xi,t+1)p
∗(yi,t+1|Si,t+1 = l,θ′

obs,xi,t+1) (18)
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Using the forward and backward variables, we can compute the posterior state

probabilities as

γi,t(j) =
αi,t(j)βi,t(j)∑K
l=1 αi,t(l)βi,t(l)

(19)

and

ξi,t(j, k) =
αi,t(j)p(Si,t+1 = k|Si,t = j,θ′

tr,xi,t)βi,t+1(k)∑K
j=1

∑K
k=1 αi,t(j)p(Si,t+1 = k|Si,t = j,θ′

tr,xi,t)βi,t+1(k)
(20)

Note that the expected joint log-likelihood (14) is the sum of four weighted log-

likelihoods, one for each set of parameters θpr, θtr, θobs, and ϕ. Maximising the

expected joint log-likelihood therefore consists of separately maximising four weighted

likelihoods. When the initial states, state transitions, responses and missingness indi-

cators are modelled with generalized linear models and multinomial logistic regression

models, as we have done here, we can then rely on the standard maximum likelihood

estimation procedures for these models (see McCullagh & Nelder, 1989), using the

γi,1(j) and ξi,t(j, k) values as case-weights (see also Visser & Speekenbrink, 2022).

The full EM algorithm can be specified as

1. Start with initial parameters θ′.

2. Do until convergence:

a. For i = 1, . . . , N , t = 1, . . . , Ti, j, k = 1, . . . ,K, compute γi,t(j) (19) and ξi,t(j, k)

(20) via the forward-backward recursions (15, 16, 17, 18).

b. Obtain new estimates

θ̂pr = argmax
θpr

N∑
i=1

K∑
j=1

γi,1(j) log(p(Si,1 = j|θpr,xi,1)),

θ̂tr = argmax
θtr

N∑
i=1

Ti∑
t=2

K∑
j=1

K∑
k=1

ξi,t−1(j, k) log p(Si,t = k|Si,t−1 = j),θtr,xi,t−1),

θ̂obs = argmax
θobs

N∑
i=1

Ti∑
t=1

K∑
j=1

γi,1(j) log p
∗(yi,t|Si,t = j,xi,t,θobs),
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and

ϕ̂ = argmax
θtr

N∑
i=1

Ti∑
t=1

K∑
j=1

γi,1(j) log p(mi,t|Si,t = j,xi,t,ϕ).

c. If L(
ˆθ|Y )−L(θ′|Y )

L(θ′|Y )
< ϵ (e.g. ϵ = 1× 10−8), assume convergence.

d. Set θ′ = (θ̂pr, θ̂tr, θ̂obs, ϕ̂)

The EM algorithm is guaranteed to converge to a local maximum of the likelihood.

Assessing whether the algorithm converged to the global maximum is not possible in

general. To increase the chances to obtain the global maximum likelihood parameters,

the algorithm can be run many times, each time using different starting values θ′.

Starting values for θpr and θtr can be derived by assuming uniform distributions for

p(S1) and p(St, St−1), or sampling these from suitable Dirichlet distributions. Start-

ing values for θobs are less straightforward to choose in general, and arguably more

important. One method is to randomly sample state probabilities γi,t(j) from a suit-

able Dirichlet distribution, and then set θ′
obs to the maximum likelihood estimates

as in step b. This usually provides valid starting values and is the default option in

depmixS4 (Visser & Speekenbrink, 2010).

2.2 Model selection, checking, and standard errors

An important consideration when using HMMs is the number of latent states K. This

is generally determined by estimating models with different values for K and then

choosing the best one via model selection criteria such as the Akaike Information

Criterion (AIC, Akaike, 1998) and the Bayesian Information Criterion (BIC, Schwarz,

1978). For present purposes, another consideration is choosing between a MAR and

MNAR model. As our MNAR model contains and additional missingness variable M ,

the AIC and BIC measures cannot be used directly, as the models target different

likelihoods (one for the joint distribution of Y and M , and one for the distribution of

just Y ). A suitable alternative is to fix the probability of missingness in the MNAR
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model to be identical over the states, effectively creating a MAR model. As this MAR

model is nested within the MNAR model, a general likelihood ratio test

−2 log
L(θMNAR|Y1:N,1:T ,M1:N,1:T )

L(θMAR|Y1:N,1:T ,M1:N,1:T )
∼ χ2 (|θMNAR| − |θMAR|)

may be used to determine whether the MNAR model outperforms the MAR model

(|θ| denotes the number of free parameters in θ).

Another consideration is whether the distributional assumptions for the state-

conditional distributions p(Yi,t|St) are reasonable. Zucchini et al. (2017) propose

computing “pseudo-residuals” from the cumulative probabilities

p(Yt ≤ yt|Y1:(t−1), Y(t+1):T ),

which are converted to the corresponding quantiles of a standard Normal distribution.

If the model fits the data, then these quantiles will follow a standard Normal distri-

bution. They show that the cumulative probability can be computed as a weighted

sum
K∑
j=1

wi,t,jp(Yi,t ≤ yi,t|Si,t = j)

with

wi,t,j ∝


p(Si,1 = j)βi,1(j) t = 1∑K

k=1 αi,t−1(k)p(St+1 = j|St = k)βi,t(j) t > 1

where the weights are normalized such that
∑

j wi,t,j = 1.

For inference on model parameters, standard errors and confidence intervals are

of importance. There are several methods to compute (approximate) standard errors

for maximum likelihood parameter estimates of hidden Markov models (Visser, Rai-

jmakers, & Molenaar, 2000). The standard approach for obtaining standard errors
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Fig. 3 State-conditional response distributions in the simulation studies. In Simulation 1 and 2,
states are reasonably well-separated, although there is still considerable overlap of the distributions.
In Simulation 3 and 4, states are less well-separated.

from the Hessian matrix of second derivatives of the log-likelihood function is com-

putationally tricky, as discussed in Visser et al. (2000), although Lystig and Hughes

(2002) provide an elegant solution to overcome this computational challenge. Other

methods include likelihood profiles and bootstrapping. Here we use a finite differences

approach to estimate the Hessian matrix, which in turn is used to compute confidence

intervals for the estimated parameters. Note that the method for finite differences

proposed in Visser et al. (2000) was updated in Visser and Speekenbrink (2022) and

implemented in depmixS4 (Visser & Speekenbrink, 2010). This updated finite differ-

ence method provides standard error estimates that are as accurate as those provided

by bootstrapping methods (which are much more computationally expensive).

3 Simulation study

To assess the potential benefits of including a state-dependent missingness model in

a HMM, we conducted a simulation study, focusing on a three-state hidden Markov

model with a univariate Normal distributed response variable3. We simulated four sce-

nario’s. In Simulation 1 and 2, the states are reasonably well-separated with means

3All code for the simulations, and the analysis of the application, is available at https://osf.io/7td32/.
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µ1 = −1, µ2 = 0, µ3 = 1 and standard deviations σ1 = σ2 = σ3 = 1 (see Figure

3). Note that there is still considerable overlap in the state-conditional response dis-

tributions, as would be expected in many real applications of HMMs. In Simulation

1, missingness was state-dependent (i.e. MNAR), with p(Mi,t = 1|Si,t = 1) = .05,

p(Mi,t = 1|Si,t = 2) = .25, and p(Mi,t = 1|Si,t = 3) = .5. In Simulation 2, missing-

ness was independent of the state (MAR), with p(Mi,t = 1|Si,t = i) = p(Mi,t) = .25.

In Simulation 3 and 4 (Figure 3), the states were less well-separated, with means as

for Simulation 1 and 2, but standard deviations σi = 3 (see Figure 3). Here, the over-

lap of the state-conditional response distributions is much higher than in Simulation

1 and 2, and identification of the hidden states will be more difficult. In Simulation 3,

missingness was state-dependent (MNAR) in the same manner as Simulation 1, while

in Simulation 4, missingness was state-independent (MAR) as for Simulation 2. In all

simulations, the initial state probabilities were π1 = p(Si,1 = 1) = .8, π2 = π3 = .1,

and the state-transition matrix was

A =


.75 .125 .125

.125 .75 .125

.125 .125 .75

 .

In each simulation, we simulated a total of 1000 data sets, each consisting of N = 100

replications of a time-series of length T = 50. We denote observations in such replicated

time series as Yi,t, with i = 1, . . . , N and t = 1, . . . , T . Data was generated according

to a 3-state hidden Markov model. For MAR cases, the non-missing observations are

distributed as

p(Yi,t|Si,t = j) = Normal(Yi,t|µj , σj). (21)
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In the MNAR cases, the missingness variable M and the response variable Y were

conditionally independent given the hidden state:

p(Yi,t,Mi,t|Si,t = j) = Bernouilli(Mi,t|ϕj)×Normal(Yi,t|µj , σj) (22)

Data sets were simulated by first generating the hidden state sequences Si,1:T according

to the initial state and transition probabilities. Then, the observations Yi,1:T were

sampled according to the state-conditional distributions p(Yi,t|Si,t). Finally, random

observations were set to missing values according to the missingness distributions

p(Mi,t|Si,t).

We fitted two 3-state hidden Markov models to each data-set. In the MAR mod-

els, observed responses were assumed to be distributed according to (21), and in the

MNAR models, the observed responses and missingness indicators were assumed to

be distributed according to (22). Parameters were estimated by maximum likelihood,

using the Expectation-Maximisation algorithm, as implemented in depmixS4 (Visser

& Speekenbrink, 2010). To speed up convergence, starting values were set to the true

parameter values. Although such initialization is obviously not possible in real appli-

cations, we are interested in the quality of parameter estimates at the global maximum

likelihood solution, and setting starting values to the true parameters makes it more

likely to arrive at the global maximum. In real applications, one would need to use a

sufficient number of randomly generated starting values to find the global maximum.
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Table 2 Results of Simulation 1 (MNAR, low variance). Values shown are the true value of each
parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of
the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is the
ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.010 0.131 0.094 -1.017 0.097 0.072 0.767
µ2 0.000 0.015 0.277 0.223 0.014 0.228 0.180 0.807
µ3 1.000 1.113 0.286 0.231 1.053 0.252 0.186 0.803

σ1 1.000 0.998 0.051 0.033 0.995 0.034 0.026 0.785
σ2 1.000 0.972 0.111 0.079 0.979 0.085 0.064 0.809
σ3 1.000 0.959 0.104 0.077 0.979 0.085 0.061 0.801

π1 0.800 0.834 0.146 0.117 0.776 0.110 0.083 0.715
π2 0.100 0.118 0.152 0.111 0.131 0.130 0.105 0.944
π3 0.100 0.049 0.048 0.062 0.093 0.066 0.055 0.890

a11 0.750 0.774 0.080 0.064 0.743 0.055 0.039 0.613
a12 0.125 0.144 0.094 0.068 0.139 0.077 0.061 0.896
a13 0.125 0.082 0.055 0.057 0.118 0.054 0.044 0.765

a21 0.125 0.144 0.086 0.065 0.124 0.062 0.048 0.729
a22 0.750 0.759 0.116 0.087 0.754 0.096 0.070 0.812
a23 0.125 0.097 0.082 0.068 0.122 0.075 0.058 0.850

a31 0.125 0.146 0.085 0.068 0.118 0.050 0.039 0.579
a32 0.125 0.166 0.128 0.103 0.138 0.092 0.070 0.679
a33 0.750 0.688 0.111 0.090 0.744 0.076 0.056 0.623

p(M = 1|S = 1) 0.050 - - - 0.048 0.021 0.017 -
p(M = 1|S = 2) 0.250 - - - 0.247 0.073 0.057 -
p(M = 1|S = 3) 0.500 - - - 0.507 0.058 0.040 -
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Table 3 Results of Simulation 2 (MAR, low variance). Values shown are the true value of each
parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of
the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is the
ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.061 0.194 0.132 -1.062 0.200 0.134 1.014
µ2 0.000 -0.019 0.287 0.229 -0.022 0.288 0.230 1.005
µ3 1.000 1.048 0.213 0.158 1.038 0.213 0.157 0.991

σ1 1.000 0.978 0.067 0.047 0.978 0.070 0.047 1.000
σ2 1.000 0.969 0.105 0.079 0.969 0.107 0.081 1.021
σ3 1.000 0.981 0.070 0.050 0.982 0.071 0.049 0.993

π1 0.800 0.739 0.177 0.130 0.737 0.178 0.132 1.015
π2 0.100 0.169 0.187 0.144 0.171 0.187 0.145 1.012
π3 0.100 0.092 0.070 0.057 0.092 0.069 0.057 0.995

a11 0.750 0.727 0.102 0.064 0.726 0.102 0.065 1.006
a12 0.125 0.155 0.112 0.082 0.156 0.115 0.083 1.020
a13 0.125 0.118 0.066 0.051 0.118 0.062 0.050 0.975

a21 0.125 0.125 0.080 0.061 0.127 0.083 0.062 1.013
a22 0.750 0.751 0.112 0.084 0.749 0.116 0.086 1.025
a23 0.125 0.125 0.081 0.061 0.125 0.083 0.063 1.034

a31 0.125 0.112 0.063 0.051 0.112 0.062 0.049 0.973
a32 0.125 0.153 0.108 0.082 0.150 0.107 0.081 0.982
a33 0.750 0.735 0.096 0.067 0.738 0.095 0.066 0.984

p(M = 1|S = 1) 0.250 - - - 0.250 0.046 0.027 -
p(M = 1|S = 2) 0.250 - - - 0.248 0.056 0.038 -
p(M = 1|S = 3) 0.250 - - - 0.247 0.046 0.028 -
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Table 4 Results of Simulation 3 (MNAR, high variance). Values shown are the true value of
each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE)
of the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is
the ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.663 0.932 0.761 -1.198 0.628 0.315 0.414
µ2 0.000 -0.314 0.484 0.461 -0.110 0.470 0.409 0.888
µ3 1.000 1.480 1.214 0.923 1.383 0.956 0.609 0.661

σ1 3.000 2.765 0.459 0.347 2.911 0.330 0.189 0.543
σ2 3.000 2.889 0.455 0.302 2.967 0.333 0.215 0.713
σ3 3.000 2.703 0.512 0.406 2.773 0.479 0.326 0.803

π1 0.800 0.546 0.362 0.355 0.657 0.281 0.217 0.611
π2 0.100 0.346 0.380 0.333 0.253 0.291 0.231 0.694
π3 0.100 0.108 0.174 0.129 0.090 0.091 0.077 0.601

a11 0.750 0.651 0.231 0.183 0.712 0.153 0.099 0.543
a12 0.125 0.190 0.215 0.160 0.144 0.145 0.105 0.660
a13 0.125 0.159 0.186 0.139 0.144 0.124 0.091 0.659

a21 0.125 0.106 0.172 0.124 0.106 0.108 0.085 0.687
a22 0.750 0.787 0.232 0.185 0.784 0.135 0.109 0.590
a23 0.125 0.107 0.158 0.115 0.110 0.105 0.085 0.742

a31 0.125 0.152 0.183 0.136 0.131 0.126 0.096 0.704
a32 0.125 0.166 0.199 0.143 0.145 0.141 0.105 0.738
a33 0.750 0.682 0.234 0.184 0.724 0.151 0.108 0.587

p(M = 1|S = 1) 0.050 - - - 0.076 0.122 0.059 -
p(M = 1|S = 2) 0.250 - - - 0.241 0.155 0.126 -
p(M = 1|S = 3) 0.500 - - - 0.489 0.134 0.092 -
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Table 5 Results of Simulation 4 (MAR, high variance). Values shown are the true value of each
parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of
the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is the
ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.650 1.002 0.801 -1.658 1.107 0.815 1.018
µ2 0.000 -0.171 0.539 0.432 -0.178 0.542 0.437 1.010
µ3 1.000 1.468 1.063 0.778 1.473 1.070 0.788 1.014

σ1 3.000 2.719 0.468 0.383 2.720 0.473 0.375 0.981
σ2 3.000 2.911 0.441 0.299 2.918 0.412 0.279 0.934
σ3 3.000 2.728 0.504 0.377 2.732 0.478 0.365 0.968

π1 0.800 0.528 0.345 0.352 0.522 0.338 0.357 1.012
π2 0.100 0.330 0.367 0.316 0.344 0.359 0.320 1.014
π3 0.100 0.141 0.199 0.149 0.134 0.192 0.142 0.951

a11 0.750 0.638 0.230 0.183 0.645 0.220 0.177 0.968
a12 0.125 0.188 0.212 0.155 0.182 0.211 0.155 0.998
a13 0.125 0.174 0.188 0.139 0.174 0.178 0.134 0.963

a21 0.125 0.111 0.166 0.121 0.103 0.157 0.119 0.984
a22 0.750 0.774 0.223 0.175 0.787 0.209 0.170 0.972
a23 0.125 0.114 0.152 0.111 0.110 0.139 0.110 0.986

a31 0.125 0.133 0.169 0.125 0.137 0.167 0.124 0.997
a32 0.125 0.167 0.193 0.138 0.162 0.186 0.139 1.007
a33 0.750 0.700 0.232 0.177 0.701 0.224 0.176 0.992

p(M = 1|S = 1) 0.250 - - - 0.253 0.122 0.080 -
p(M = 1|S = 2) 0.250 - - - 0.237 0.086 0.056 -
p(M = 1|S = 3) 0.250 - - - 0.257 0.130 0.082 -
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The results of Simulation 1 (Table 2) show that, when states are relatively well

separated, both models provide parameter estimates which are, on average, reason-

ably close to the true values. Both models have the tendency to estimate the means as

more dispersed, and the standard deviations as slightly smaller, then they really are.

While wrongly assuming MAR may not lead to overly biased estimates, we see that the

mean absolute error (MAE) for the MNAR model is always smaller than that of the

MAR model, reducing the estimation error to as much as 58%. Over all parameters,

the relative MAE of the models is 0.77 on average, which shows a clear advantage of

the MNAR model. As such, accounting for state-dependent missingness increases the

accuracy of the parameter estimates. We next consider recovery of the hidden states,

by comparing the true hidden state sequences to the maximum a posteriori state

sequences determined by the Viterbi algorithm (see Rabiner, 1989; Visser & Speeken-

brink, 2022). The MAR model recovers 53.13% of the states, while the MNAR model

recovers 62.86% of the states. The accuracy in recovering the hidden states is thus

higher in the model which correctly accounts for state-dependent missingness. Whilst

the performance of neither model may seem overly impressive, we should note that

recovering the hidden states is a non-trivial task when the state-conditional response

distributions have considerable overlap (see Figure 3) and states do not persist for

long periods of time (here, the true self-transitions probabilities are aii = .75, meaning

that states have an average run-length of 4 consecutive time-points). When ignoring

time-dependencies and treating the observed data as coming from a bivariate mixture

distribution over Y and M , the maximum accuracy in classification would be 50.09%

for this data. The theoretical maximum classification accuracy for the hidden Markov

model is more difficult to establish, but simulations show that the MNAR model with

the true parameters recovers 66.51% of the true states. For the MAR model, the

approximate maximum classification accuracy is 58.06%.
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The results of Simulation 2 (Table 3) show that when data is in fact MAR, both

models provide roughly equally accurate parameter estimates. Whilst the MNAR

model does not provide better parameter estimates, including a model component

for state-dependent missingness does not seem to bias parameter estimates compared

to the MAR model. As can be seen, the state-wise missingness probabilities are, on

average, close to the true values of .25. Over all parameters, the relative MAE of the

models is 1.003 on average, which shows the models perform equally well. In terms

of recovering the hidden states, the MAR model recovers 55.6% of the states, while

the MNAR model recovers 55.63% of the states. The somewhat reduced recovery rate

of the MNAR model compared to Simulation 1 is likely due to the fact that here,

missingness provides no information about the identity of the hidden state. For com-

parison, the maximum classification accuracy is 42.91% for a mixture model, and

approximately 60.45% for the hidden Markov models.

In Simulation 3 (Table 4) and 4 (Table 5) the states are less well-separated, mak-

ing accurate parameter estimation more difficult. Here, the tendency to estimate the

means as more dispersed and the standard deviations as smaller than they are becomes

more pronounced. For both models the estimation error in Simulation 3 (Table 4) is

larger than for Simulation 1, but comparing the MAE for both models again shows

the substantial benefits of including a state-dependent missingness model. Over all

parameters, the relative MAE of the models is 0.658 on average, which shows the

MNAR model clearly outperforms the MAR model. In terms of recovering the hidden

states, the MAR model recovers 34.97% of the states, whilst the MNAR model recov-

ers 45.27% of the states. As in Simulation 1, the MNAR model performs better in state

identification. For both models, performance is lower than in Simulation 1, reflecting

the increased difficulty due to increased overlap of the state-conditional response dis-

tributions (Figure 3). Indeed, the performance of the MAR model is close to chance
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(random assignment of states would give an expected accuracy of 33.33%). The maxi-

mum classification accuracy is 44.03% for a mixture model, and approximately 54.04%

for the MNAR and 41.42% for the MAR hidden Markov models.

When missingness is ignorable (Simulation 4), like in Simulation 2, inclusion of

a state-dependent missingness component in the HMM does not increase bias in

parameter estimates. Over all parameters, the relative MAE of the models is 0.987

on average, which shows the models perform roughly equally well. The MAR model

recovers 35.51% of the states, whilst the MNAR model recovers 35.5% of the states.

For comparison, the maximum accuracy is 36.64% for a mixture model, and 42.51%

for the hidden Markov models.

Taken together, these simulation results show that if missingness is state-

dependent, there is a substantial benefit to including a (relatively simple) model for

missingness in the HMM. When missingness is in fact ignorable, including a missing-

ness model is superfluous, but does not bias the results. Hence, there appears to be

little risk associated to including a missingness submodel in the HMM.

Four additional simulations were conducted to assess to what extent these results

depend on the persistence of states and the homogeneity of state transition probabili-

ties over the states. In these simulations, we used the relatively well-separated states of

Simulations 1 and 2. In Simulation 5 and 6, we changed the initial state probabilities

to a uniform distribution π1 = p(Si,1 = 1) = π2 = π3 = 1/3 and the state-transition

matrix to

A =


.5 .25 .25

.25 .5 .25

.25 .25 .5

 .

Thus, in these simulations, initial state identification may be more difficult, and the

states are (even) less persistent than in simulations 1 and 2. Full results are provided

in the Appendix. When data is MNAR (Table 10), we again find a clear advantage of

the MNAR model, with an average relative MAE of 0.886. The MAR model recovers
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44.38% of the states, while the MNAR model recovers 51.62% of the states. When data

is MAR (Table 11), both models perform roughly equally well, with an average relative

MAE of 0.971. The MAR model recovers 46.33% of the states, while the MNAR model

recovers 46.34% of the states. In simulations 7 and 8, we used the same initial state

probabilities as in simulation 1 and 2, but changed the state-transition matrix to

A =


.8 .15 .05

.0375 .85 .1125

.025 .075 .9

 .

As such, the states persist longer than in Simulation 1 and 2, and persistence is

furthermore dependent on the state. When data is MNAR (Table 12), we again find

a clear advantage of the MNAR model, with an average relative MAE of 0.727. The

MAR model recovers 64.52% of the states, while the MNAR model recovers 73.56%

of the states. When data is MAR (Table 13), both models perform roughly equally

well, with an average relative MAE of 1.003. The MAR model recovers 68.09% of the

states, while the MNAR model recovers 68.03% of the states.

In a further simulation, we consider a more traditional case of MNAR data, where

missingness depends on the underlying value of the response variable. More specifically,

we model the probability of missingness as a function of the true value of the response

Yi,t via a logistic regression:

p(Mi,t = 1|Yi,t) =
1

1 + exp(−1× (−2 + 2× Yi,t))
,

keeping the other parameters the same as in Simulation 1. Whilst missingness does not

directly depend on the hidden state, because the true response values do depend on the

states, the probability of missingness differs between the states, with approximately

6.8%, 22.5%, and 50% expected missing values in states 1, 2, and 3 respectively. As
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such, although the relation between the underlying true value of the response and

missingness is not part of the MNAR model, we would expect the model to indicate

state-dependent missingness. The results of this simulation (Table 6) show a clear bias

in estimating the state-dependent means and standard deviations: because the higher

the value of the response, the higher the probability that value is missing, both state

dependent means and standard deviations are underestimated, particularly for state

3 where the probability of missingness is highest. Whilst bias in parameter estimates

is evident in both the MAR and MNAR model, the latter performs better on average:

over all parameters, the relative MAE of the models is 0.835 on average, which shows

a clear advantage of the MNAR model. State recovery seems relatively unaffected by

the bias in parameter estimates. The MAR model recovers 49.6% of the states, and

the MNAR model recovers 59.15% of the states. These results are close to those of

Simulation 1. Thus, for this more traditional form of MNAR data, the (misspecified)

MNAR model again outperforms the MAR model, and state recovery seems mostly

unaffected by the unavoidable bias in parameter estimates.
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Table 6 Results of Simulation 9 (MNAR, related to true value). Values shown are the true
value of each parameter, and the mean (mean), standard deviation (SD), and mean absolute
error (MAE) of the parameter estimates, for both the MAR and MNAR model. The value of
”rel. MAE” is the ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.101 0.171 0.120 -1.115 0.130 0.123 1.026
µ2 0.000 -0.256 0.247 0.281 -0.245 0.210 0.265 0.944
µ3 1.000 0.538 0.224 0.473 0.506 0.192 0.499 1.054

σ1 1.000 0.965 0.051 0.044 0.957 0.043 0.047 1.069
σ2 1.000 0.807 0.090 0.193 0.804 0.071 0.196 1.014
σ3 1.000 0.681 0.113 0.321 0.700 0.102 0.302 0.939

π1 0.800 0.836 0.166 0.134 0.777 0.144 0.103 0.770
π2 0.100 0.126 0.169 0.122 0.141 0.155 0.118 0.968
π3 0.100 0.038 0.049 0.072 0.082 0.064 0.055 0.764

a11 0.750 0.760 0.103 0.074 0.728 0.078 0.052 0.708
a12 0.125 0.174 0.107 0.083 0.166 0.089 0.072 0.876
a13 0.125 0.067 0.059 0.073 0.106 0.061 0.051 0.702

a21 0.125 0.178 0.109 0.089 0.156 0.079 0.062 0.695
a22 0.750 0.718 0.147 0.105 0.716 0.115 0.086 0.820
a23 0.125 0.105 0.099 0.079 0.128 0.087 0.066 0.830

a31 0.125 0.140 0.117 0.086 0.119 0.074 0.053 0.619
a32 0.125 0.209 0.167 0.142 0.167 0.114 0.092 0.645
a33 0.750 0.651 0.142 0.120 0.715 0.098 0.071 0.593

p(M = 1|S = 1) 0.068 - - - 0.070 0.040 0.022 -
p(M = 1|S = 2) 0.225 - - - 0.235 0.090 0.071 -
p(M = 1|S = 3) 0.500 - - - 0.525 0.075 0.053 -
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In a final simulation, we assessed the performance of the models when missingness

is time-dependent, rather than state-dependent. Attrition is common in longitudinal

studies, meaning that the probability of missingness often increases with time. In this

simulation, the probability of missingness as a function of time t was modelled through

a logistic regression model:

p(Mi,t = 1) =
1

1 + exp(−(0.125× t− 5))
. (23)

Here, the probability of missing data is very small (0.008) at time 1, but increases sub-

stantially to (0.777) at time 50. The other parameters were the same as in Simulation

1 and 2. In a model that specifies missingness as state-dependent, but not time-

dependent, this could potentially result in biased parameter estimates. For instance,

the increased probability of missingness over time may be accounted for by estimating

states to have a different probability of missingness, and estimating prior and tran-

sition probabilities to allow states with a higher probability of missingness to occur

more frequently later in time. In addition to the two hidden Markov models estimated

before, we also estimated a hidden Markov model with a state- and time-dependent

model for missingness:

p(Mi,t = 1|Si,t = j) =
1

1 + exp(−(β0,j + βtime,j × t))
(24)

This model should be able to capture the true pattern of missingness, whilst the

MNAR model which only includes state-dependent missingness would not.
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Table 7 Results of Simulation 10 (time-dependent missingness, low variance). Values shown are the true value of each parameter, and the
mean (mean), standard deviation (SD), and mean absolute error (MAE) of the parameter estimates, for the MAR, MNAR (state), and
MNAR (time) model. The value of ”rel. MAE 1” is the ratio of the mean absolute error of the MAR over the MNAR (state) model, and the
value of ”rel. MAE 2” is the ratio of the mean absolute error of the MAR over the MNAR (time) model. Note that the SDs of β0, j and
βtime,j are relatively high. Whilst the estimates are generally accurate, there are rare outlying estimates which inflate these SDs.

MAR MNAR (state) MNAR (time)

parameter true value mean SD MAE mean SD MAE mean SD MAE rel. MAE 1 rel. MAE 2

µ1 -1.000 -1.038 0.173 0.116 -0.825 0.076 0.176 -1.031 0.175 0.120 1.520 1.037
µ2 0.000 -0.015 0.272 0.215 -0.040 0.067 0.062 -0.020 0.294 0.233 0.287 1.086
µ3 1.000 1.033 0.195 0.143 0.757 0.084 0.243 1.029 0.207 0.153 1.698 1.068

σ1 1.000 0.985 0.059 0.042 1.026 0.035 0.035 0.987 0.058 0.042 0.832 0.997
σ2 1.000 0.967 0.111 0.082 1.278 0.033 0.278 0.966 0.112 0.083 3.370 1.010
σ3 1.000 0.981 0.072 0.049 1.037 0.037 0.043 0.984 0.067 0.048 0.884 0.990

π1 0.800 0.758 0.151 0.110 0.894 0.066 0.100 0.760 0.152 0.109 0.913 0.993
π2 0.100 0.150 0.161 0.123 0.001 0.032 0.101 0.148 0.162 0.122 0.819 0.990
π3 0.100 0.092 0.061 0.050 0.105 0.059 0.047 0.092 0.062 0.051 0.943 1.023

a11 0.750 0.734 0.087 0.056 0.794 0.025 0.045 0.734 0.090 0.059 0.806 1.050
a12 0.125 0.146 0.099 0.073 0.021 0.008 0.104 0.146 0.106 0.075 1.438 1.036
a13 0.125 0.119 0.058 0.047 0.185 0.024 0.060 0.119 0.059 0.048 1.269 1.021

a21 0.125 0.128 0.088 0.063 0.000 0.001 0.125 0.131 0.097 0.069 1.983 1.091
a22 0.750 0.747 0.114 0.083 1.000 0.001 0.250 0.738 0.131 0.092 2.994 1.104
a23 0.125 0.125 0.082 0.062 0.000 0.000 0.125 0.130 0.091 0.067 2.031 1.082

a31 0.125 0.116 0.062 0.048 0.150 0.027 0.030 0.115 0.063 0.049 0.624 1.032
a32 0.125 0.143 0.101 0.076 0.045 0.008 0.080 0.146 0.106 0.081 1.052 1.056
a33 0.750 0.742 0.087 0.062 0.805 0.025 0.056 0.740 0.093 0.068 0.899 1.095

p(M = 1|S = 1) - - - - 0.040 0.015 - - - - - -
p(M = 1|S = 2) - - - - 0.552 0.024 - - - - - -
p(M = 1|S = 3) - - - - 0.067 0.022 - - - - - -

β0,1 -5.000 - - - - - - -6.149 25.490 1.497 - -
β0,2 -5.000 - - - - - - -7.153 40.582 2.739 - -
β0,3 -5.000 - - - - - - -6.472 38.998 1.861 - -

βtime,1 0.125 - - - - - - 0.154 0.605 0.039 - -
βtime,2 0.125 - - - - - - 0.184 1.102 0.075 - -
βtime,3 0.125 - - - - - - 0.188 1.815 0.074 - -
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The results (Table 7) show that, compared to the MAR model, the MNAR model

which misspecifies missingness as state-dependent is inferior, resulting in more biased

parameter estimates. Over all parameters, the relative MAE of these two models is

1.353 on average, indicating the MARmodel outperforms the MNAR (state) model. To

account for the increase in missing values over time, the MNAR (state) model estimates

the probability of missingness as highest for state 2, which is estimated to have a mean

of close to 0, but an increased standard deviation to incorporate observations from the

other two states. To make state 2 more prevalent over time, transition probabilities

to state 2 are relatively low from state 1 and 3 (parameters a12 and a32 respectively),

whilst self-transitions (a22) are close to 1 (meaning that once in state 2, the hidden

state sequence is very likely to remain in that state. The prevalence of state 2 is thus

increasing over time, and as this state has a higher probability of missingness, so is

the prevalence of missing values. The MNAR (time) model, which allows missingness

to depend on both the hidden states and time, performs only slightly worse than the

MAR model, with an average relative MAE over all parameters of this model compared

to the MAR of 1.042. However, the MNAR (time) model is able to capture the pattern

of attrition (increased missing data over time), whilst the MAR model is not. As such,

the MNAR (time) model may be deemed preferable to the MAR model, insofar as

one is interested in more than modelling the responses Y . In terms of recovering the

hidden states, the MAR model recovers 55.67% of the states, and the MNAR (time)

model recovers 55.42% of the states. The misspecified MNAR (state) model recovers

50% of the states. The maximum classification accuracy for this data is 42.95% for a

mixture model, and approximately 59.91% for the hidden Markov models.

This final simulation shows that when modelling patterns of missing data in hidden

Markov models, care should be taken in how this is done. An increase in missing

data over time could be due to an underlying higher prevalence of states which result

in more missing data, and/or a state-independent increase in missingness over time.
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In applications where the true reason and pattern of missingness is unknown, it is

then advisable to start by allowing for both state- and time-dependent missing data,

selecting simpler options when this is warranted by the data.

4 Application to the National Institute of Mental

Health Schizophrenia Collaborative Study

In applying HMMs to the National Institute of Mental Health Schizophrenia Collab-

orative Study, we assume the severity of schizophrenia is characterized by abrupt –

rather than continuous – changes. We fitted HMMs in which we either assumed ratings

are MAR, or assume ratings are MNAR and allow missingness to be both state- and

time-dependent. For each type of model (MAR or MNAR), we fit versions with 2, 3,

4, or 5 states. Both types of model assume imps79, the IMPS Item 79 ratings, follow a

Normal distribution, with a state-dependent mean and standard deviation. No addi-

tional covariates were included on these means, as the states are intended to capture

all the important determinants of illness severity. To model effects of drug, we allow

transitions between states, as well as the initial state, to depend on a dummy-coded

covariate drug (1 for medication, 0 for placebo). Whilst the initial measurement at

week 0 was made before administering the drug, we allow the initial state at week 0 to

depend on drug in order to account for any potential pre-existing differences between

the conditions. In the MNAR models, the missingness variable is modelled with a

logistic regression, using week (between 0 and 5) and the dummy-coded main variable

(1 for main measurement occasion, 0 for the other occasions) as predictors, as these

were found to be important predictors in the (state-independent) logistic regression

analysis reported earlier (Table 1). All models were estimated by maximum likelihood

using the EM algorithm implemented in depmixS4 (Visser & Speekenbrink, 2010).

Table 8 contains the goodness-of-fit statistics for all the fitted models.
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Table 8 Modelling results for the MAR and MNAR hidden Markov
models with 2-5 latent states. Note that the likelihood and hence the
AIC and BIC values cannot be compared between the MAR and MNAR
models, as the latter are based on the additional missingness variable.

model #states log Likelihood #par AIC BIC

MAR 2 -2422.675 16 4865.350 4919.146
3 -2266.603 30 4577.206 4695.558
4 -2225.871 48 4527.742 4732.168
5 -2182.390 70 4480.779 4792.798

MNAR 2 -3074.628 22 6181.256 6267.330
3 -2889.040 39 5840.079 6006.848
4 -2841.111 60 5782.222 6051.203
5 -2800.336 85 5746.671 6139.385

For both the MAR and MNAR models, the BIC indicates a three-state model

fits best, whilst the AIC indicates a five-state model (or higher) fits best. Favouring

simplicity, we follow the BIC scores here, and focus on the three-state models. Con-

sidering the absolute fit to the data, the pseudo-residuals of the three-state MAR and

MNAR models (Figure 4) are similar. Whilst there are to-be-expected deviations due

to the mostly discrete nature of the ratings, the distribution of the pseudo-residuals

is close to standard Normal, indicating a satisfactory fit to the data. As such, there is

no reason to doubt the assumption that the IMPS ratings follow a state-conditional

Normal distribution.

We first consider the parameter estimates of the MAR model. The estimated means

and standard deviations for the severity of symptoms are

µ = [2.315, 4.339, 5.7] σ = [0.821, 0.619, 0.567].

Hence, the states are ordered, with state 1 being the least severe, and state 3 the most

severe. The prior probabilities of the states, for treatment with placebo and medication

respectively, are

πplacebo = [0, 0.333, 0.667] πmedication = [0.005, 0.307, 0.689],
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Fig. 4 Histograms and QQ plots of the pseudo-residuals for the MAR and MNAR model.

and the transition probability matrices (with initial states in rows and subsequent

states in columns) are

Aplacebo =


0.963 0.005 0.032

0.118 0.878 0.004

0.027 0.046 0.927

 Amedication =


1 0 0

0.231 0.764 0.005

0.073 0.307 0.62

 .

As expected, the initial state probabilities show little difference between the treat-

ments (as the initial measurement was conducted before treatment commenced), but

the transition probabilities indicate that for those who received medication, transitions

to less severe states are generally more likely, indicating effectiveness of the drugs. This

is particularly marked for the most severe state, where the probability of remaining

in that state is 0.927 with placebo, but 0.62 with medication. Also note the difference

between the transition probabilities for the least severe state: when administered med-

ication, the probability of remaining in the least severe state equals approximately 1,

whereas that is not the case for the placebo group.
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We next consider the three-state MNAR model. The means and standard

deviations for the severity of symptoms are

µ = [2.325, 4.424, 5.757] σ = [0.833, 0.669, 0.547]

showing the same ordering of states in terms of severity. The prior probabilities for

placebo and medication conditions are

πplacebo = [0, 0.394, 0.606] πmedication = [0.004, 0.349, 0.647],

and the transition probability matrices are

Aplacebo =


0.93 0.005 0.065

0.123 0.872 0.005

0.026 0.031 0.942

 Amedication =


1 0 0

0.238 0.761 0.001

0.073 0.331 0.596

 .

These estimates are close to those of the MAR model, indicating little initial difference

between the conditions, but effectiveness of the drugs reflected in the transition prob-

abilities, which are higher towards the less severe states in the medication compared

to the placebo condition.

Table 9: Parameter estimates of the state dependent logistic

regression models for missingness, with lower and upper reflecting

the lower and upper bounds of the approximate 95% confidence

intervals.

state parameter estimate lower upper

1 (Intercept) 2.634 1.996 3.273
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state parameter estimate lower upper

week 0.149 0.027 0.270

main -4.511 -5.037 -3.984

2 (Intercept) 7.976 0.971 14.980

week -0.510 -2.050 1.030

main -13.011 -20.222 -5.800

3 (Intercept) 1.107 0.305 1.909

week 0.711 0.537 0.884

main -5.028 -5.831 -4.225

Results of the state-dependent models for missingness are provided in Table 9. For

all three states, the confidence interval for the effect of main excludes 0, indicating a

significantly lower proportion of missing ratings at the main measurement occasions.

In state 1 and 3, the confidence interval for the effect of week also excludes 0, indicating

a higher rate of missing ratings over time, possibly due to attrition. For state 2, the

effect of week is not significant. Figure 5 depicts the predicted probability of missing

ratings for each state and week. This shows that in state 2, the chance of missing data

on the main measurement occasions is small at p(Mi,t|Si,t = 2) = 0.003, while it is high

at p(Mi,t|Si,t = 2) = 0.997 on the other weeks. In the other states, the probabilities

are less extreme, with missing (and non-missing) data occurring on both the main

measurement weeks as well as the other weeks. In the final week 6, those in the most

severe state 3 are the most likely to have missing data with p(Mi,6|Si,6 = 3) = 0.585.

For those in the least severe state 1, the probability of missingness in week 6 is also

substantial at p(Mi,6|Si,6 = 1) = 0.272.

The intercepts for the state-dependent missingness model are also worth consid-

ering, especially in interaction with the time-dependent effects. The probability of

missingness differs between the states, such that the more extreme states have more
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Fig. 5 Predicted probability of missing IMPS Item 79 ratings by week for each state in the three-state
MNAR hidden Markov model.

missingness. The middle state with medium severe symptoms shows a particular miss-

ingness pattern where all the main measurements are almost certainly present whereas

the non-main measurements are all missing (see also Figure 6). Both in the least and

most severe states, week and main have significant effects. The pattern of correlation

between missingness and severity is however complex. In the least severe state, miss-

ingness is relatively high at the start and increases only minimally during the study’s

6 weeks. In the most severe state, this is very different: early on the probability of

missingness is very low but then steeply increases such that by week 6 the probability

of missingness is p(Mi,6|Si,6 = 3) = 0.585.

Disregarding the modelling of missingness, the parameters of the MAR and MNAR

model seem reasonably close. This could be an indication that missingness is indepen-

dent of the hidden states and data are possibly MAR. As discussed previously, the

likelihood of the MAR is not directly comparable to that of the MNAR model, as the

latter is defined over two variables (the imps79 rating and the binary missing vari-

able), while the former involves just a single variable (imps79). We therefore compare

the MNAR model to a constrained version where the parameters of the missingness

model are forced to be identical over the states. Unlike the MAR model, this restricted

version of the MNAR model accounts for patterns of missingness, allowing these to

depend on week and main, but crucially not on the hidden state. A likelihood ratio test

indicates that this restricted model fits significantly less well, χ2(6) = 337.66 p < .001.
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Fig. 6 Proportions of maximum a posteriori (MAP) state assignments over weeks for the medication
and placebo groups, according to the MAR and MNAR model.

Hence, there is evidence that the MNAR model is preferable to the MAR model and

that missingness is indeed state-dependent.

Whilst the MAR and MNAR model provide roughly equivalent parameters for the

severity ratings in the three states, when comparing the maximum a posteriori (MAP)

state classifications by the Viterbi algorithm (Figure 6), we see that state classifications

for the MAR model tend towards the more severe states. According to the MNAR

model, during the main measurement occasions, missing values are relatively likely in

the least severe state 1. Hence, those with missing values are more likely to be assigned

to the least severe state. This is in line with the analysis of Hedeker and Gibbons

(1997), who found evidence that dropouts in the medication condition showed more

improvement in their symptoms before dropping out than those participants who

completed the study.

It is worthwhile to note that the MAP states are also determined for time points

with missing data, as the transition probabilities make certain states more probable

than others, even when there is no direct measurement available. This provides a

potentially meaningful basis to impute missing values with e.g. the state-conditional

mean. Another option is to impute with an expected rating computed as a weighted
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sum of all the state-conditional means, weighted by the posterior probability of the

states. As imputation is not the focus of this study, we leave the usefulness of such

approaches to be investigated in future work.

5 Discussion

Previous work on missing data in hidden Markov models has mostly focussed on cases

where missing values are assumed to be missing at random (MAR). Here, we addressed

situations where data is missing not at random (MNAR), and missingness depends on

the hidden states. Simulations showed that including a submodel for state-dependent

missingness in a HMM is beneficial when missingness is indeed state-dependent, whilst

relatively harmless when data is MAR. However, when the form of state-dependent

missingness is misspecified (e.g. the effect of measurable covariates on missingness is

ignored), results may be biased. In practice, it is therefore advisable to consider the

potential effect of covariates in the state-dependent missingness models. A reasonable

strategy is to first model patterns of missingness through e.g. logistic regression, and

then include important predictors from this analysis into the state-dependent missing-

ness models. Applying this strategy to a real example about severity of schizophrenia

in a clinical trial with substantial missing data, we showed that assuming data is MAR

may lead to possible misclassification of patients to states (towards more severe states

in this example).

The application showed a complex pattern of interaction between severity of symp-

toms and probability of missingness. For patients with the most severe symptoms the

initial probability of missingness is low whereas it steeply increases over the course of

the study. This could be the result of two factors: first, patients with severe symp-

toms have stronger motivation to participate and hence to provide data at the outset

of the study. Secondly, when (serious) symptoms persevere throughout the study, the

motivation may drop quickly and this is evidenced by a high drop-out rate at the final
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measurement occasion of 59%. This pattern is different for patients in the least severe

symptom state: their initial probability of missing data starts at moderate levels,

and slowly increases during the study. It may be that their motivation to participate

declines somewhat and drop-out hence increases to 27% towards the end of the study.

Here motivation could be interpreted broadly as any circumstance that prevents the

patients from providing data for the study. Rather than merely internal, motivational

factors, these could also be illness related factors that prevent the patient from provid-

ing data. These results provide interesting directions for future studies on the intricate

relationship between patient factors, missing data and treatment effectiveness. Inter-

estingly, the group of patients with medium severity of symptoms has the the least

drop-out and missingness throughout the study. This group apparently has a strong

motivation to participate; they could expect to gain much from treatment, whilst their

symptoms are not so severe that they are prevented from participating in the measure-

ments. Importantly, these types of patterns of interaction between missingness and

severity are only revealed by studying these data using hidden Markov models rather

than linear models.

Whilst subtle, the MAR and MNAR models showed interesting and potentially

clinically meaningful differences. Although the ground truth is unavailable in such real

applications, model comparison can be used to justify a state-dependent missingness

model. Using flexible analysis tools such as the depmixS4 package (Visser & Speeken-

brink, 2010) makes specifying, estimating, and comparing hidden Markov models with

missing data specifications straightforward. And, as was shown in the simulations

studies, even if data is MAR, the MNAR model performs as well as the MAR model.

There is then little reason to ignore potentially non-ignorable patterns of missing data

in hidden Markov modelling.
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Recently, Pandolfi, Bartolucci, and Pennoni (2023) proposed a different method to

deal with MNAR data in hidden Markov models.4 They developed a hidden Markov

model for multivariate Normal data, where intermittent missing data is assumed MAR,

whilst allowing missing data due to dropout to depend on the hidden state at the pre-

vious time point via an observed and absorbing “dropout state”. In applications where

it is important to distinguish between intermittent missingness and dropout, it could

be of interest to combine their method with ours, allowing intermittent missingness

to be MNAR and state-dependent via a state-dependent missingness model (as done

here), and including an absorbing dropout state to distinguish MNAR dropout from

intermittent MNAR data.

Another approach to dealing with non-ignorable missingness (MNAR) is the

pattern-mixture approach of Little (1993; 1994). The main idea of this approach is to

group units of observations (e.g. patients) by the pattern of missing data, and allowing

the parameters of a statistical model for the observations Yi,1:T to dependent on the

missingness pattern Mi,1:T . There are certain similarities between this approach and

modelling missingness as state-dependent. Rather than conditionalizing on a pattern

of missing values, a hidden Markov model conditionalizes on a pattern (sequence) of

hidden states, si,1:T , and the marginal distribution of the observations is effectively a

multivariate mixture

p(Yi,1:T |θ) =
∑

si,1:T∈ST

∑
mi,1:T∈MT

p(Yi,1:T |mi,1:T , si,1:T ,θ)p(mi,1:T |si,1:T ,θ)p(si,1:T |θ)

(25)

4We were made aware of this paper, which appeared after the research reported here was completed, by
an anonymous reviewer.
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(note that θ here includes all parameters, so also ϕ). A pattern-mixture model would

instead propose

p(Yi,1:T |θ) =
∑

mi,1:T∈MT

p(Yi,1:T |mi,1:T ,θ)p(mi,1:T |θ). (26)

Trivially, if we set the number of hidden states to K = 1, both models are the same.

Another trivial equivalence is via a one-to-one mapping between mi,1:T and si,1:T , by

e.g. setting K = 2, assuming the Markov process is of order T , and fixing p(Mi,t =

0|Si,t = 1) = 1 and p(Mi,t = 1|Si,t = 2) = 1. More interesting is to investigate cases

where the procedures are similar, but not necessarily equivalent. The general pattern-

mixture model is often underidentified (Little, 1993). For univariate time-series of

length T , there are 2T possible missing data patterns. Without further restrictions,

estimating the mean and covariance matrices seperately for each pattern of missing

data is not possible, due to the structural missing data in those patterns. The state-

dependent MNAR hidden Markov model is identifiable insofar as the HMM for the

observed variable Y is identifiable. It is convenient, but not necessary, to assume a first-

order Markov process. Higher-order Markov processes may allow the model to capture

complex patterns of missingness. Another option is to use the missingness indicator

Mi,t as a covariate on initial and transition probabilities, rather than a dependent

variable. We leave investigation of such alternative models to future work.
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Table 10 Results of Simulation 5 (MNAR, low variance). Values shown are the true value of
each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE)
of the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is
the ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.129 0.332 0.247 -1.029 0.286 0.197 0.797
µ2 0.000 -0.132 0.388 0.332 -0.010 0.378 0.308 0.928
µ3 1.000 0.976 0.423 0.320 1.073 0.447 0.326 1.020

σ1 1.000 0.953 0.120 0.087 0.979 0.114 0.072 0.833
σ2 1.000 0.939 0.209 0.167 0.957 0.212 0.160 0.958
σ3 1.000 0.972 0.138 0.100 0.946 0.151 0.111 1.114

π1 0.333 0.355 0.220 0.185 0.324 0.171 0.138 0.747
π2 0.333 0.376 0.273 0.230 0.361 0.252 0.209 0.910
π3 0.333 0.269 0.189 0.166 0.315 0.193 0.160 0.969

a11 0.500 0.524 0.189 0.152 0.517 0.144 0.110 0.728
a12 0.250 0.268 0.199 0.159 0.252 0.180 0.145 0.914
a13 0.250 0.208 0.156 0.130 0.231 0.141 0.115 0.882

a21 0.250 0.263 0.197 0.157 0.225 0.156 0.124 0.793
a22 0.500 0.526 0.244 0.202 0.530 0.213 0.172 0.856
a23 0.250 0.211 0.182 0.149 0.244 0.178 0.143 0.957

a31 0.250 0.270 0.187 0.148 0.242 0.149 0.118 0.797
a32 0.250 0.277 0.220 0.178 0.259 0.195 0.157 0.880
a33 0.500 0.453 0.184 0.148 0.499 0.165 0.128 0.861

p(M = 1|S = 1) 0.050 - - - 0.071 0.098 0.059 -
p(M = 1|S = 2) 0.250 - - - 0.257 0.154 0.122 -
p(M = 1|S = 3) 0.500 - - - 0.492 0.138 0.098 -
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Table 11 Results of Simulation 6 (MAR, low variance). Values shown are the true value of each
parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of
the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is the
ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.090 0.388 0.278 -1.079 0.397 0.277 0.996
µ2 0.000 -0.017 0.397 0.323 -0.026 0.397 0.322 0.997
µ3 1.000 1.079 0.378 0.272 1.052 0.361 0.257 0.945

σ1 1.000 0.956 0.124 0.091 0.959 0.134 0.094 1.035
σ2 1.000 0.938 0.212 0.167 0.948 0.213 0.164 0.983
σ3 1.000 0.955 0.124 0.091 0.961 0.123 0.087 0.955

π1 0.333 0.312 0.203 0.169 0.318 0.199 0.163 0.965
π2 0.333 0.368 0.273 0.229 0.356 0.263 0.220 0.957
π3 0.333 0.320 0.196 0.162 0.326 0.195 0.161 0.991

a11 0.500 0.489 0.181 0.143 0.496 0.170 0.133 0.933
a12 0.250 0.270 0.203 0.161 0.262 0.191 0.153 0.950
a13 0.250 0.240 0.164 0.131 0.243 0.163 0.129 0.989

a21 0.250 0.229 0.177 0.143 0.226 0.168 0.135 0.941
a22 0.500 0.535 0.228 0.185 0.535 0.219 0.178 0.959
a23 0.250 0.236 0.181 0.142 0.238 0.178 0.140 0.985

a31 0.250 0.234 0.166 0.134 0.236 0.162 0.129 0.963
a32 0.250 0.271 0.205 0.166 0.261 0.195 0.159 0.956
a33 0.500 0.495 0.176 0.137 0.503 0.168 0.134 0.974

p(M = 1|S = 1) 0.250 - - - 0.254 0.129 0.086 -
p(M = 1|S = 2) 0.250 - - - 0.248 0.132 0.091 -
p(M = 1|S = 3) 0.250 - - - 0.251 0.119 0.079 -
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Table 12 Results of Simulation 7 (MNAR, low variance). Values shown are the true value of
each parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE)
of the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is
the ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -0.983 0.090 0.072 -1.004 0.072 0.056 0.782
µ2 0.000 0.038 0.134 0.112 0.001 0.094 0.074 0.659
µ3 1.000 1.069 0.124 0.107 1.012 0.083 0.065 0.607

σ1 1.000 1.004 0.040 0.031 0.999 0.035 0.028 0.896
σ2 1.000 0.989 0.046 0.035 0.994 0.035 0.028 0.802
σ3 1.000 0.981 0.044 0.037 0.996 0.034 0.028 0.750

π1 0.800 0.858 0.087 0.090 0.794 0.077 0.061 0.677
π2 0.100 0.086 0.094 0.079 0.109 0.092 0.077 0.965
π3 0.100 0.055 0.043 0.053 0.097 0.051 0.041 0.768

a11 0.800 0.816 0.034 0.030 0.798 0.029 0.022 0.741
a12 0.150 0.148 0.047 0.037 0.153 0.043 0.034 0.922
a13 0.050 0.036 0.028 0.026 0.048 0.027 0.022 0.853

a21 0.038 0.043 0.023 0.018 0.038 0.018 0.014 0.788
a22 0.850 0.862 0.042 0.035 0.849 0.032 0.025 0.711
a23 0.112 0.095 0.035 0.032 0.113 0.027 0.021 0.651

a31 0.025 0.032 0.020 0.017 0.025 0.011 0.009 0.557
a32 0.075 0.098 0.050 0.039 0.078 0.025 0.020 0.510
a33 0.900 0.870 0.046 0.037 0.897 0.021 0.017 0.445

p(M = 1|S = 1) 0.050 - - - 0.050 0.016 0.013 -
p(M = 1|S = 2) 0.250 - - - 0.251 0.030 0.023 -
p(M = 1|S = 3) 0.500 - - - 0.501 0.019 0.015 -
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Table 13 Results of Simulation 8 (MAR, low variance). Values shown are the true value of each
parameter, and the mean (mean), standard deviation (SD), and mean absolute error (MAE) of
the parameter estimates, for both the MAR and MNAR model. The value of ”rel. MAE” is the
ratio of the mean absolute error of the MAR over the MNAR model.

MAR MNAR

parameter true value mean SD MAE mean SD MAE rel. MAE

µ1 -1.000 -1.015 0.119 0.091 -1.015 0.121 0.091 1.002
µ2 0.000 -0.005 0.133 0.104 -0.005 0.135 0.106 1.013
µ3 1.000 1.006 0.073 0.057 1.006 0.073 0.057 1.001

σ1 1.000 0.995 0.051 0.039 0.995 0.052 0.039 1.003
σ2 1.000 0.989 0.049 0.038 0.988 0.049 0.038 1.004
σ3 1.000 0.998 0.029 0.022 0.998 0.028 0.022 0.996

π1 0.800 0.784 0.110 0.086 0.783 0.111 0.086 1.000
π2 0.100 0.122 0.124 0.100 0.124 0.125 0.100 1.003
π3 0.100 0.094 0.055 0.044 0.093 0.055 0.044 1.002

a11 0.800 0.796 0.042 0.032 0.796 0.042 0.032 0.993
a12 0.150 0.156 0.059 0.046 0.156 0.059 0.046 0.991
a13 0.050 0.048 0.033 0.027 0.048 0.033 0.027 0.994

a21 0.038 0.038 0.025 0.019 0.038 0.025 0.020 1.010
a22 0.850 0.849 0.043 0.033 0.848 0.044 0.034 1.019
a23 0.112 0.114 0.035 0.026 0.114 0.036 0.026 1.030

a31 0.025 0.025 0.015 0.012 0.025 0.015 0.012 1.005
a32 0.075 0.078 0.034 0.026 0.078 0.034 0.025 0.993
a33 0.900 0.897 0.028 0.021 0.897 0.028 0.021 1.001

p(M = 1|S = 1) 0.250 - - - 0.250 0.024 0.019 -
p(M = 1|S = 2) 0.250 - - - 0.249 0.021 0.016 -
p(M = 1|S = 3) 0.250 - - - 0.250 0.015 0.012 -
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