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Abstract
The Gaia optical astrometric mission has measured the precise positions of millions of objects in the sky, including extragalactic sources also
observed by Very Long Baseline Interferometry (VLBI). In the recent Gaia EDR3 release, an effect of negative parallax with a magnitude of
approximately−17µas was reported, presumably due to technical reasons related to the relativistic delay model. A recent analysis of a 30-yr
set of geodetic VLBI data (1993–2023) revealed a similar negative parallax with an amplitude of −15.8± 0.5 µas. Since both astrometric
techniques, optical and radio, provide consistent estimates of this negative parallax, it is necessary to investigate the potential origin of this
effect.

We developed the extended group relativistic delay model to incorporate the additional parallactic effect for radio sources at distances
less than 1 Mpc and found that the apparent annual signal might appear due the non-orthogonality of the fundamental axes, which are
defined by the positions of the reference radio sources themselves. Unlike the conventional parallactic ellipse, the apparent annual effect in
this case appears as a circular motion for all objects independently of their ecliptic latitude. The measured amplitude of this circular effect is
within a range of 10–15 µas that is consistent with the ICRF3 stability of the fundamental axis. This annual circular effect could also arise
if a Gödel-type cosmological metric were applied, suggesting that, in the future, this phenomenon could be used to indicate global cosmic
rotation.
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1. Introduction

The Very Long Baseline Interferometry (VLBI) technique mea-
sures the time difference (time delay) between the arrivals of a
radio signal from a distant source at two radio telescopes separated
by a long baseline (Schuh & Behrend 2012). This time delay is cal-
culated by correlating the signals recorded at both stations, using
either hardware or software correlators. By observing many radio
sources over extended periods, highly accurate position estimates
for these sources can be achieved.

Two previous fundamental catalogues of reference radio
sources, ICRF1 and ICRF2, were released in 1995 (Ma et al. 1998)
and 2009 (Fey et al. 2015), respectively. The current International
Celestial Reference Frame (ICRF3) is based on the positions of
4 536 radio sources observed between 1979 and 2018, of which
303 are ‘defining’ sources that define the fundamental axes with
an uncertainty of 30 µas (Charlot et al. 2020). The formal errors
of individual radio source positions vary widely due to the uneven
number of observations, ranging from 6 µas to a few mas.

The relativistic model for the VLBI group delay, as published
in the IERS Conventions 2010 (Petit & Luzum 2010), accounts for
the relativistic effects of both special and general relativity with
a precision of 1 ps. However, this model does not include the
parallactic delay, as almost all radio sources observed by geode-
tic VLBI are located beyond 1 Mpc. A few galactic radio stars
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are treated similarly to extragalactic objects (Lunz et al. 2023).
Recently, Soffel, Kopeikin, & Han (2017) extended the conven-
tional model to include closer objects, but this advanced model
has not yet been adopted by the IERS Conventions.

In the recent Gaia EDR3 release, a negative annual parallax
with an amplitude of approximately −17 µas was reported for
extragalactic active galactic nuclei (AGNs) observed in optical
wavelengths (Lindegren et al. 2021). The authors suggested that
this effect might be due to the design of the Gaia telescope, which
introduces calibration challenges related to the angle between its
two mirrors, thus leading to the zero parallax point offset (e.g.
Groenewegen 2021). Accurate parallax measurements are crucial
for various applications (Butkevich et al. 2017), making additional
verification of this estimate essential.

Since nearly all radio sources observed by geodetic VLBI are
at extragalactic distances, their parallax has long been consid-
ered to be negligible and has therefore never been estimated.
However, Titov et al. (2024) recently identified a similar negative
annual parallax of −15.8± 0.5 µas, based on 30 yr of geode-
tic VLBI observations from 1993 to 2023. New CRF solution
(aus2024a.crfa) enlarges the number of group delays to 15millions,
that is, approximately on 2 millions more than used for ICRF3
catalogue (Charlot et al. 2020). A new catalogue comprises coordi-
nates of 5 428 radio sources with three or more observations, that
is, almost 1 000more than in ICRF3. The formal errors of the most
observed radio sources is about 2–3μas. Such progress encourages

ahttps://cddis.nasa.gov/archive/vlbi/ivsproducts/crf/.
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Figure 1. Mutual positions of two radio telescopes on Earth and a radio source in the
barycentric reference frame.

the investigation of a hidden systematic that could bemissed in the
previous solutions.

It remains unclear whether the optical and radio instruments
are detecting the same phenomenon or if this is merely a numeri-
cal coincidence between two independent effects.

To address this ambiguity, we develop an analytical VLBI delay
model that includes parallax and explore possible origins for an
annual signal that is independent of the distance to the observed
objects.

2. Parallactic Delay

For all extragalactic radio sources at a distance R greater than 1
Mpc, the annual parallax is less than 1 µas, and the correspond-
ing parallactic delay is negligible. Consequently, the equation for
the parallactic delay has not been formulated until 2017 (Soffel
et al. 2017). In this work, we develop the equation for the par-
allactic delay in a form that is convenient for implementation in
coding and consider alternative of the annual signal appearance
apart from the classical astrometric explanation.

The standard approach involves considering the difference
between the barycentric coordinates of two radio telescopes, r1(t1)
and r2(t2), to represent the difference in time propagation τ as
follows (Fig. 1):

τ = t2 − t1 = t2S + t2E − (t1S + t1E) (1)

where

τ = rSs2
c

− r2S
c

−
(
rSs1
c

− r1S
c

)
=

= rSs2
c

− rSs1
c

−
(
r2S
c

− r1S
c

)
=

= τS + τE

(2)

The first term in equation (2) represents the time delay prop-
agation from an extragalactic radio source to the Solar System
barycenter, while the second term accounts for the local Solar
System effects. If we ignore the parallactic effect, then τS = 0, and
the total delay (1) is reduced to the geometric delay τE in its
simplest form. Denoting the vector baseline as r2 − r1 = b,

τ = τE = − (r2 − r1)S
c

= − (bS)
c

(3)

Equation (3) presents the geometric delay in its simplest form.
In the full form, it expands to the relativistic delay including
all effects of special relativity and the retarded baseline correc-
tion due to the geocentric motion of the both radio telescopes.
It is fully consistent to the official IERS Conventions 2010 model
(Petit & Luzum 2010); therefore, any additional terms developed
in the paper may be simply added to the conventional equa-
tion. Typically, only the expanded version of equation (3) is used
for modelling geodetic VLBI observations of extragalactic objects.
However, if we wish to account for the parallactic effect in the
time delay, the first term τS in equation (2) must be elaborated.
Throughout the manuscript, all additional terms will be developed
in the same way as the conventional equations in previous papers
(Titov & Girdiuk 2015; Titov, Melnikov, & Lopez 2020).

In the general case, the unit direction vectors from each radio
telescope to an extragalactic object differ (i.e. s1 �= s2), and the
equation for si (where i= 1, 2) is given by:

si = ris
|ris| = rS − ri√

rS2 − 2(rSri)+ ri2
(4)

and, as for an extragalactic radio source rS � ri

si = rS − ri
|rS|
√
1− 2(rSri)

rS2 + ri2
rS2

(5)

Then, using the well-known expansion:

1√
1+ x

≈ 1− x
2

+ 3x2

8
− 5x3

16
+ ... (6)

one could convert (5) as follows:

si ≈ rS − ri
|rS|

(
1− 1

2

(
ri2

rS2
− 2(rirS)

rS2

)
+

+ 3
8

(
ri2

rS2
− 2(rirS)

rS2

)2 ) (7)

By defining S= rS
|rS| and truncating terms of the order O

(
r3i
r3S

)
and higher one can obtain:

si ≈ S−S
2
ri2

rS2
+ (riS)S− ri

|rS| + 3(riS)2S
2|rS|2 − (riS)ri

|rS|2 =

= S+ (riS)S− ri
|rS| −

− 1
|rS|2

(
(riS)ri + Sri2

2
− 3(riS)2S

2

) (8)

Therefore, for (rSsi)

(rSsi)≈ (rSS)+ (riS)(rSS)− (rSri)
|rS| −

− 1
|rS|2

(
(riS)(rSri)+ (rSS)ri2

2
− 3(riS)2(rSS)

2

) (9)

As (rSS)= |rS|, the second term in (9) disappears, and

(rSsi)≈ |rS| + 1
2|rS|

(
(riS)2 − ri2

)
(10)
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Figure 2. Spherical triangle formed by three vectors, s2, b, and r2, with respect to the
Earth’s geocentre. Point B lies on the celestial sphere along the extension of vector b.

Therefore, for τS in (2)

τS = (rSs2)− (rSs1)
c

=

= 1
2c|rS|

(
(r2S)2 − r22

)
− 1

2c|rS|

(
(r1S)2 − r12

) (11)

and, denoting |rS| = rS

τS = (r2S)2 − (r1S)2 − r22 + r12

2crS
(12)

Equation (12) provides a precisemodel for the parallactic delay;
however, the parallax (π) is not explicitly presented here. To
obtain the classical form, the baseline vector must be introduced
using the equation b= r2 − r1.

τS = (r2S)2 − ((r2 − b)S)2 − r22 + (r2 − b)2

2crS
=

= 2(r2S)(bS)− (bS)2 − 2(br2)+ |b|2
2crS

(13)

Now, consider the spherical triangle (Fig. 2) where θ is the
angle between the vectors s2 and −r2 (in this context, θ is the
elongation angle between the directions from station 2 to the
barycenter and the radio source), ϕ is the angle between the vec-
tors s2 and b, ψ is the angle between b and r2, and angle A links all
the angles together through the spherical trigonometry equation:

cosψ = − cos ϕ cos θ − sin θ sin ϕ cosA (14)

As an extragalactic radio source is on cosmological distance,
we consider that r2 � rS and (r2S)≈ (r2s2)≈ (r2s1)= −r2 cos θ ,
therefore, from equation (13)

τS = −2br2 cos ϕ cos θ − 2br2 cosψ + b2(1− cos2 ϕ)
2crS

(15)

and applying (14)

τS = r2 sin θ
rS

b
c
sin ϕ cosA+ b

c
b sin2 ϕ
2rS

(16)

Now the astrometric parallax appears in the classical form π =
r2
rS in the first term of (16). Denoting π ′ = b

2rS as an ‘additional’
baseline parallactic displacement, if the baseline is long enough
to detect the corresponding effect, one could present the final
equation as follows:

τS = π
b
c
sin θ sin ϕ cosA+ π ′ b

c
sin2 ϕ (17)

Keeping only the first term in (17), the equation for �θ could
be formulated in terms of the vector form

τS = (r2s2)(bs2)− (br2)
crS

=

=|r2|
rS

N(s2(bs2)− b)
c

=

=π N(s2(bs2)− b)
c

(18)

where N = r2
|r2| is the unit vector directed from the barycenter

towards station 2. It should be noted that equation (17) corre-
sponds to the equation from the paper by Soffel et al. (2017) but is
easier for coding.

In classical astrometric observations of parallax, an Earth-
based observer measures the relative displacement of a foreground
object with respect to background reference objects. For a posi-
tive meaning of the parallax, the apparent elongation angle, θ ′ =
θ +�θ , is smaller than the elongation angle corresponding to the
unperturbed position. This results in the observed object appear-
ing shifted towards the Sun (�θ ≤ 0) in a case of positive parallax,
that is, π = −�θ ,.

A hypothetical parallactic displacement in the opposite direc-
tion, where the object appears to move away from the Sun, would
result in an increase in the apparent elongation angle (�θ ≥ 0).
In the classical interpretation, such a shift would imply that the
foreground object is, paradoxically, further from the Sun than the
background reference sources. This corresponds to a positive sign
of the elongation angle change, and, inevitably, to a negative value
of the annual parallax.

In classical astrometry, this scenario is unrealistic, as it sug-
gests an inversion of the standard spatial relationships. Thus, any
parallax of this nature should be referred to as ‘negative parallax’,
irrespective of its physical origin. Possible reasons for the effect’s
origin is discussed in two next sections.

3. Violation of Orthogonality of Fundamental Axes

The orientation of the fundamental axes is defined by the positions
of so-called ‘defining’ radio sources. However, all of these radio
sources are known to be AGNs, which often exhibit extended and
variable structures. Even when the structure is stable, the phase
response of an interferometer depends on the baseline length and
the complexity of the structure. In the worst-case scenario, the
position of the same extended radio source, when measured by
short and long VLBI baselines, may differ by several milliarcsec-
onds (mas) (Charlot et al. 2020).

Additionally, systematic effects such as secular aberration drift
(SAD), with an amplitude of 5–6 μas/yr (as discussed by Titov,
Lambert, & Gontier 2011, and MacMillan et al. 2019), caused by
the galactocentric acceleration of the Solar System, also impact the
orientation of the fundamental axes. For instance, an uncertainty
in the SAD amplitude of 1 µas/yr could result in a displacement of
the fundamental axes by 30µas over a 30-yr period of observations
(Fey et al. 2015; Charlot et al. 2020). Consequently, a deviation of
the axes from orthogonality by as much as 10–15 µas is not out of
the question.

Now, consider the scenario where the X and Y axes are not
perfectly orthogonal (Fig. 3). The additional term to describe the
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Figure 3. Mutual position of the Earth and a radio source in the barycentric reference
frame in a case if the axes X and Y are not orthogonal. The angle between X and Y is
(90− εy ) degrees. This leads that the projecton of the signal travel path on the axes Y
yE − yS is non-zero.

propagation of light from a radio source to the Earth along the
Y-axis over the time interval dt can be expressed as follows:

cdt = dx+ εydy (19)

where εy is a deviation of the angle between X and Y from 90
degrees, εy � 1

After integration of the second term in (19)

cτy = εy(y2 − y1) (20)

Since we are using a barycentric coordinate system, the projec-
tion of the signal travel path from the radio source to stations 1
and 2 onto the X and Y axes must be considered. The projection
onto the X-axis was already presented in the previous section as
the difference in dot products: (rSs2)− (rSs1)= x2 − x1 as shown
in equation (11).

In the case where the X and Y axes are orthogonal, the differ-
ence y2 − y1 should ideally be zero. However, if εy �= 0 (i.e. there is
a small deviation), the corresponding projection along the Y-axis
is given by: y2i = rS2 − (rSsi)2.

From equation (10), we have (rSsi)2 ≈ r2S + (
(riS)2 − ri2

)
.

Therefore, the time delay along the Y-axis, as described in equa-
tion (20), can be derived accordingly:

cτy = εy(
√
r2S − (rSs2)2 −

√
r2S − (rSs1)2)≈

≈ εy(
√
r22 − (r2S)2 −

√
r12 − (r1S)2)

(21)

Equation (21) mirrors the form of (12) from the previous
section.

τy = εy

√
r22 − (r2S)2 −√

r12 − (r1S)2
c

(22)

By substituting r1 = r2 − b into (22):

τy = εy

c
√
r22 − (r2S)2 − εy

c
√
(r2 − b)2 − ((r2 − b)S)2 (23)

Defining N = r2
|r2|

τy = εy|r2|
c
√
1− (NS)2 − εy|r2|

c
·

·
√
1− (NS)2 − 2

(Nb)− (NS)(bS)
|r2| + b2 − (bS)2

|r2|2 (24)

After extracting
√
1− (NS)2 from the second term and per-

forming Taylor series expansion (6) up to the second term, we
obtain the following equation.

τy = εy

c
·
(
(Nb)− (NS)(bS)√

(1− (NS)2)
− b2 − (bS)2

2|r2|
√
(1− (NS)2)

)
(25)

As 1− (NS)2 = sin2 θ , substituting this into equation (25):

τy = εy

c
·
(
(Nb)− (NS)(bS)

sin θ
− b2 − (bS)2

2|r2| sin θ
)

=

= εy

c sin θ

(
(Nb)− (NS)(bS)− b2 − (bS)2

2|r2|
) (26)

Applying the spherical triangle equations and (14) we proceed:

τy = εy

c sin θ

(
−b sin θ sin ϕ cosA− b2 sin2 ϕ

2|r2|
)

=

= −εy bc sin ϕ cosA− εy
b2 sin2 ϕ
2c|r2| sin θ

(27)

After truncation of the small term in (27)

τy = −εy bc sin ϕ cosA (28)

Consequently, equation (27) bears resemblance to the parallax
effect equation from the first term of (17), but with two signif-
icant differences: it is independent of the distance and lacks the
factor sin θ in numerator. In other words, this apparent displace-
ment affects all objects uniformly, regardless of their distance, and
manifests as a circular motion with an amplitude of εy, as opposed
to the traditional parallactic ellipse. This effect reflects the non-
orthogonality of the fundamental X and Y axes. It is evident that
the observed effect can be either positive or negative, depending
on the sign of the small parameter εy.

4. Implication of Cosmological Metrics

Now, let us consider the stationary cosmological metric of the
Gödel type, as discussed in previous works (Obukhov 1992;
Korotky & Obukhov 1996; Korotky, Masár, & Obukhov 2020):

dS2 = c2dt2 − dx2 − 2
√
σ emxcdtdy− ke2mxdy2 − dz2 (29)

Here, m, k, and σ are constant parameters. In the classical
Gödel metric (Gödel 1949), withm= 1, σ = 1, and k= − 1

2 , closed
time-like curves exist, leading to causality violations. However, an
extended version of the metric avoids this issue if k> 0. The global
rotation is directed along the Z-axis, with the magnitude of the
rotation, ω, determined by these parameters in this form:

ω= m
2

√
σ

σ + k
(30)
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The vorticity vanishes when either m or σ is zero. Although
further generalisations of the metric are possible (Obukhov 1992),
such cases are not essential for our current discussion.

For simplicity, let us consider the metric in the plane perpen-
dicular to the rotation axis Z.

dS2 = c2dt2 − 2
√
σ emxcdtdy− ke2mxdy2 − dx2 − dz2 (31)

For the equation of the elementary interval dS2 = 0 one could
find a solution for the time interval dt Solving the equation for the
elementary interval dS2 = 0, we can derive an expression for the
time interval dt, assuming that y′

x = dy
dx � 1 and z′

x = dz
dx � 1.

cdt = √
σ emxdy±

±
√
σ e2mxdy2 + ke2mxdy2 + dx2 + dz2 =

= √
σ emxdy±

√
dx2
(
1+ (σ + k)e2mx dy

2

dx2
+ dz2

dx2

)
=

= √
σ emxdy± dx

√
1+ (σ + k)e2mxy′2

x + z′2
x ≈

≈ √
σ emxdy± dx

(
1+ (σ + k)e2mxy′2

x
2

+ z′2
x
2

)
(32)

In equation (32), we select the positive sign:

cdt =
(
1+ (σ + k)e2mxy′2

x
2

+ z′2
x
2

)
dx+ √

σ emxdy (33)

The first term in (33) corresponds to the standard geomet-
ric VLBI delay. Thus, variations in the Earth’s scale factor (mean
radius) could be detectable, provided that y′

x and z′
x �= 0. This

implies that the possible global rotation of the Universe could,
in principle, be detected using standard VLBI techniques, were m
large enough. Even if y′

x and z′
x = 0 (i.e. all three spatial axes are

orthogonal), an additional term remains, which can be expressed
in the form of (19) with the parameter εy:

εy = √
σ emx (34)

If we setm= 0 and emx = 1, then

εy = √
σ , (35)

The additional effect is still non-zero in equation (35), even if
the global rotation (30) vanishes (ω=m= 0). A non-zero σ in
the metric (29) is sufficient to produce a constant annual effect
observable across the entire sky, independent of distance. If both
parameters σ and m are non-zero, the global rotation, if it exists,
would contribute to the basic effect.

5. Discussion and Conclusion

Recent optical and VLBI observations have detected a nega-
tive parallax, drawing widespread interest due to the contentious
nature of its origin. The classical parallactic delay, which includes
the astrometric annual parallax, was not considered in this case for
a straightforward reason: all extragalactic radio sources observed
by geodetic VLBI are far too distant for an Earth-based observer
to measure classical parallax, and the number of sufficiently strong
galactic radio stars is limited. However, the analytical expression
given in equation (17) remains useful, as it explicitly illustrates the
dependence on the elongation angle, θ .

Interestingly, we discovered that a similar analytical depen-
dence could arise from a more mundane cause, such as a violation
of the orthogonality of the fundamental axes. In this scenario, an
annual effect (though not strictly parallactic in the classical sense
but rather its ‘circular’ analogue) if detected would be indepen-
dent of the object’s distance. Therefore, this ‘quasi-parallax’ effect
is expected to manifest in extragalactic objects, given that the fun-
damental axes are determined by the coordinates of defining radio
sources. Currently, there is no reliable method for independently
verifying the orthogonality of these axes. Therefore, the proposed
technique could be used as a handy tool to control the direct
angle between the fundamental axes with sufficient accuracy. It
is known that the astrometric positional stability is compromised
by variations in the intrinsic structure of radio sources, with
amplitudes reaching several milliarcseconds due to high-energy
processes occurring in the cores of AGNs. As such, continuous
monitoring of this combined instability in the fundamental axes is
essential.

Furthermore, non-standard cosmological metrics, such as the
classical Gödel solution or a Bianchi-type III model (29), might
also produce an apparent annual effect. However, in these cases,
the amplitude would depend on different model parameters. If the
measured amplitude of the annual effect remains stable over an
extended period, it could provide a basis for speculating on the
estimation of specific parameters within thesemetrics (e.g. a global
rotation of the Universe). Nonetheless, such speculation remains
beyond the scope of this manuscript.
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