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Abstract Let f(z) and g(z) be polynomials in Fa[z] with deg f = n. It is shown that for n > 1, there is
an g1 (z) € Fao[z] with deg g1 < max{deg g,6.7logn} and g(x) — g1 (z) having < 6.7logn terms such that
ged(f(x),g1(z)) = 1. As an application, it is established using a result of Dubickas and Sha that given
f(x) € Fa[z] of degree n > 1, there is a separable g(z) € 2[z] with deg g = deg f and satisfying that
f(z) — g(z) has < 6.7logn terms. As a simple consequence, the latter result holds in Z[z] after replacing
‘number of terms’ by the Li-norm of a polynomial and 6.7logn by 6.8logn. This improves the bound
(log n)l°8 4t< obtained by Filaseta and Moy.
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1. Introduction

For f(x) € Zlx] of degree n, let Li(f) denote the sum of the absolute values of the
coefficients of f(z). This is the Lj-norm on the (n + 1)-dimensional real vector space
U, of real polynomials of degree < n. Let V,, = U,, N Z[z]. Further, let I,, C V;, be the
set of polynomials in V,, that are irreducible over the rationals. It is well-known that
asymptotically, a 100% polynomials in V,, are irreducible over the rationals in the sense
that

lim #{f(x) € I, : L. (f) < B} _

B=oo #{f(x) € V,, : Li(f) < B} !

Thus, given f(z) € Z[z] of degree n, one can naturally expect to be able to find a
polynomial g(z) € I,, such that Li(f — g) is ‘small’. Let C(n) denote the smallest
positive integer such that for every f(z) € Z[z] with deg f = n, there is an g(x) € I,
such that Ly (f —g) < C(n). It is easy to see that Eisenstein’s criterion with p =2 implies
that C(n) exists and that C(n) < n + 2. Pal Turdn proposed the problem of showing
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that C(n) is absolutely bounded. For each odd n > 1, the example f(z) = 2™ shows that
C(n) > 2. Similarly, for every even n > 2, the polynomial 2" ~2(2? — x — 1) suggests that
C(n) = 2. Filaseta [5] conjectured that C'(n) < 5 for all n. In the same paper, he alludes
to the possibility that C'(n) < 2 cannot be ruled out.

Turdn’s conjecture remains open for n > 40. Bérczes and Hajdu [1, 2] have verified
Turdn’s conjecture with C(n) < 4, for all polynomials f(x) € Z[z] with deg f < 24.
Filaseta and Mossinghof! [6] have extended their results to all f(z) € Z[x] with deg f < 40
and with C(n) < 5.

Turan’s conjecture is believed to be difficult. For instance, whether it is possible to do
better than C'(n) < n+ 2 is unknown. The present paper is a byproduct of our attempts
to improve this bound. Although we fell short in this pursuit, our approach considerably
improved the corresponding bound in the squarefree analogue of Turan’s conjecture. We
discuss them next.

We begin with our initial idea to improve the bound on C(n). For f(z) € 2[x], let
L(f) denote the number of terms of f(z). Now, consider Turdn’s problem in 2[x], where
the distance between f(z) and g(z) is now taken to be L(f — g). Let C2(n) denote
the counterpart for C(n) in this case. We claim that C(n) < Ca(n) + 1 provided that
deg g = deg f = n. To see this, for an f(x) € Z[z] with deg f = n, let § € {0,1}
be such that fs(z) = 62" + f(z) has an odd leading coefficient. Let fs(z) € Falz]
denote the polynomial obtained by reducing the coefficients of f5(z) modulo 2. Observe
that deg fs = n. Now, suppose that there is an g(x) € Fy[z], irreducible in Fo[z] with
deg g = n, such that L(f;5 — g) < Ca(n). Consider the polynomial

g5(x) = fs(x) — fs(x) + g(2) = f(z) — f(2) + g(o) € Z[z]

where, by abuse of notation, we now consider f5(x), f(z) and g(z) as polynomials in
Z[z]. If a denotes the leading coefficient of f(z), then the leading coefficient of gs(z) is

a—a+1=1 (mod 2).

In particular, gs(x) has degree n. Additionally, gs(z) = g(z) (mod 2) implies that gs(z)
is irreducible over the rationals. Furthermore,

Li(f—gs) <1+ Li(fs —9) =1+ L(fs — g) <1+ Ca(n).

The assertion follows.

In view of the last observation above, it suffices to bound Cs(n). For n > 1, let C(n)
denote the smallest positive integer such that given f(z) and g(z) in 2[z] with deg f = n,
there is a polynomial g1(z) € 2[z] with

deg g1 < max{deg g,C5(n)}, L(g —g1) < Cy(n)
such that ged(f(z),g1(z)) = 1. The better part of the paper is devoted to developing a
method to establishing that C4(n) < logn.

Now, suppose for the moment that we have achieved C4%(n) < 6logn for some 6 > 0.
Let deg g = m > 1, and set £ = |m/2]. Take f(x) to be the product of all irreducible
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polynomials of degree < ¢ in 2[z]. By Lemma 3.2, [7], we have deg f < 2f!. The
hypothesis on C4(n) would then imply that there is a polynomial ¢1(z) € 2[z] with
deg g1 < deg g and satisfies

O(m + 2)log2

L{g — g1) < Ch(deg f) < 6(¢+1)log2 < ="

such that ged(f(x),g1(x)) = 1. The last condition implies that g;(x) has no irreducible
factor of degree < deg g/2. Since deg g1 < deg g, it would then follow that g;(x) is
irreducible in 2[z]. A suitably small 6 would then give a better bound on C(m) than
m+ 2. In fact, any 6 < 2/log2 = 2.885... would give the first non-trivial improvement
on C(m). Our main result establishes that C%(n) < logn.

Theorem 1. Let f(z) and g(z) be polynomials in 2[x] with deg f = n. For n > 1,
there is a polynomial g1(x) € Falz] with deg g1 < max{deg g,6.7logn} and L(g — ¢1) <
6.7logn such that ged(f(x), g1(x)) = 1.

Next, we discuss the squarefree analogue of Turan’s conjecture. We refer to a polyno-
mial f(z) € Z[z] as squarefree if it has no multiple roots. For a positive integer n, let
Sy, denote the set of squarefree polynomials in V,,. Since I,, C S, it follows that the
asymptotic density of squarefree polynomials in V,, is 1. Naturally, one is prompted to
investigate the squarefree analogue Turdn’s problem. Dubickas and Sha [4] were the first
to study this problem. For a positive integer n, let D(n) denote the smallest positive
integer such that given any f(x) € Z[x] with deg f = n, there is an g(z) € S, with
Li(f — g) < D(n). It is easily seen that D(n) < C(n). Dubickas and Sha [4] conjecture
that D(n) < 2. They further showed that D(n) > 2 for every n > 15 (in fact, their result
is much more explicit). Thus, the conjectured value is D(n) = 2. In some contrast to
C(n) < n+ 2, Filaseta and Moy [7] have obtained the bound

D(n) < (logn)210g2+e
for n >, 1. As a simple application of Theorem 1, we will establish that D(n) < logn.

Theorem 2. For every f(z) € Fa[x] of degree n >> 1, there is a squarefree g(z) € 2[x]
satisfying deg g =n and L(f — g) < 6.7logn.

Arguing as we did to establish that C'(n) < C3(n)+1 above (in the case that deg g = n),
we obtain the following.

Corollary 1. For every f(x) € Z[x] of degree n > 1, there is a squarefree g(z) € Z[x]
satisfying deg g =n and L1(f —g) <14 6.7logn < 6.8logn.

The proof of Theorem 1 is based on a function field analogue of Brun—Hooley sieve
(see Theorem 3, §2). Although this is identical to the usual Brun—Hooley sieve in almost
every aspect needing only minor adjustments, there is no evidence of a suitable reference
in the existing literature. This prompted the authors to establish a function field analogue
of the Brun—Hooley sieve in its full rigour. This is presented in §2. For an exhaustive
account of the usual Brun—Hooley sieve, the reader may refer to Halberstam—Richert [9]
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or Bateman-Diamond [3]. Apart from these references, the authors have found the nice
exposition by Kevin Ford [8] particularly useful. For general arithmetic in function fields,
we refer the reader to Rosen [10].

We clarify some of the basic notation to be followed in the remainder of the paper.
Throughout, A denotes the ring 2[z]. The set of non-zero elements of A will be denoted
by A*. Typically, in our proofs, we will use uppercase letters A, D, F' and G to denote
the elements of A where D € A*, generally, will denote a divisor of some element in A.

The letter P is reserved for a non-zero prime (irreducible) in A. Following [10], we define
the norm |A| of A € A™ as

|A] = 2008 4,

As it turns out, |A] is the correct analogue for the size of an integer in Z. Sometimes, for
A and A’ in A, we will use (A, A’) to denote ged(A, A"). The function v(A) will denote
the number of distinct prime factors of A € A* with v(1) = 0. For a squarefree A € A™,
the Mabius function u(A) = (—1)¥4). Otherwise, u(A) = 0. For a real number z > 0, we
will denote by log, « the base-2 logarithm of x, and logz denotes the natural logarithm
of z.

The paper is organized as follows. We develop the necessary technical details, namely
the Brun—Hooley sieve for A, in §2. Theorem 1 and Theorem 2 are respectively proved
in §3 and §4.

2. Brun—Hooley sieve for Fy[z]

Let A C A with #A4 = X. Let z be a real number satisfying 2 < z < X. Let
P =P(z):={P € A" is prime : |P| < z}, (2.1)
and define

M=1(z):= [[ P. (2.2)

Pez

We fix a total order < on A. For instance, for F' and G in A, we say that F < G if

F(2) < G(2) when F(z) and G(z) are considered as polynomials in R[z]. Observe that

F and G, when considered as polynomials in R[z], have coefficients in {0,1}, so that
F2)#£G2) < F()+G)

as polynomials in R[z]. Hence, if F'# G in A, then exactly one of F' < G and G < F

holds. It is easy to see that < thus defined is a total order in A. In particular, every

squarefree A #1 can be uniquely expressed as the product

A=PPy-- P,

where Pq, Po, ..., P, are primes in A" satisfying
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P<Py,<---<P,.
Additionally, for A as above, define p~(A4) = P; and p*(A) = P.. We also set p~ (1) =
1=pT(1).
For each D € A*, let
Ap:={Ae A:D| A},

with the understanding that 4; = .A. We suppose that there is a real-valued function w
satisfying

wl)=1, 0<w(P)<1 Q)

for every prime P € A*. Next, extend w multiplicatively to all of A* by defining

w(D) = [J w(P).

P|D

For a D € A*, we denote by rp the quantity

w(D)
rp:=#Ap — —X.
|D|
We assume that
lrp| <w(D), DeA*. ()

Further, define

W=w() =[] ( - “Sfl)) (2.3)

and let
S(A;z) =#{Aec A: (AT =1}.

Our main result in this section is the following.

Theorem 3. (Brun—Hooley sieve for 2[x]) Let A, X, z, W and S(A; z) be as defined
above. Let w be a multiplicative function on A* satisfying () and (r). Then for z > 1,
one has

(i) S(A;z) = 0.0001XW — 246385 gpq
(i) S(A;2) < eXW + 236385,
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The proof of the next lemma is identical to its integer counterpart.

Lemma 1. For every A € A*, one has

S u(D) - 1 if A=1

DA 0 otherwise.

Lemma 2. Letf be a real-valued multiplicative function defined on A*, and let A € A*
be squarefree. Then for every integer k > 0, one has

> wDFD) =Y wDFD)+(-1)F Y §p) J[ a-fP)).

D|A D|A D|A Pe
v(D)<k v(D)=k+1 P=<p~ (D)

where an empty product is equal to 1.

Proof. Consider the terms in the sum on the right corresponding to D with v(D) >
k + 1. Every such D can be uniquely expressed as

D = DD,

where (D) = k + 1, and Dy is either 1 or p*(Ds) < p~(D1). It follows that

Y uDD) = Y wDfD)= Y wD)(D)

D|A D|A D|A

v(D)<k v(D)>2k+1
= > D)D) > 1(D2)f(D2)
Dy|A DalA
v(Dy)=k+1 pT(Dy)<p~(Dy)
== N 5o [ a-§py.
D|A P
WD)=k+1  P<p— (D)
The lemma follows. U

Corollary 2. Let f be a multiplicative function defined on A satisfying 0 < f(P) < 1
for every prime P, and let A € A* be squarefree. Then for every even integer k > 0, one
has
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S D)D) < Y D)D) <D uDFD)+ > HD).

D|A D|A D|A D|A
v(D)<k v(D)=k+1

Let z > 2 be as defined earlier, and let 2 = 2347 < 2z < --- < 21 = z. Partition
P = P1UPyU---U P, such that if P € &), then 241 < |P| < z; if j<t and
Zt4+1 g |P| SZ,: lfj:t Set

= I P

Pegzj

so that

t
H I; =11
j=1

In proving Theorem 1, we will need both upper and lower bounds on S(A4;z). As
is usually the case, achieving a lower bound is relatively more difficult. We next
embark on this pursuit. To this end, we begin with Hooley’s lemma (for proof, see
Lemma 12.6, [3]), which is the key step in the usual Brun-Hooley lower bound
sieve.

Lemma 3. Suppose that 0 < x; < y; for 1 < j <t. Then one has

t

t
wixy - m =y v — (e — o) [ [ vs-

(=1 j=1
J#L
Let k1, ko, ..., k be a sequence of even non-negative integers. For each j € {1,2,...,t}
and A € A, set
zp= Y wD), yi= > D).
DI(A,ILy) DI(A,ILy)
v(D)<k;
Setting f = 1 and A = (A,II;) in Corollary 2, we find that z; < y; for
every j. Furthermore, since k; is even, setting f = 1 in Corollary 2 again, we
get

Yo — Ty < Z 1.

D[(A,y)
v(D)=kp+1

Thus, by Lemma 3, we have
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t t t
ITCES | A SIS DD SRl b1 | B ST
DI|(A,TI) 7=1D|(A,I1;) (=1 D|(A11y) |4=1| Dl(A)
v(D)<k; v(D)=kyp+1 \J#¢ v(D)<k;

= Z p(D1Dz -+ Dy) — Z Z p (
Dq,Dgy,...,D¢ =1 D1,D9y,...,D¢
D;|(A.I1}) D;|(A.I1;)
v(Dj)<k; v(Dj)<ky,i#L
V(DZ):kZJrl

Now, using Lemma 1 and the last lower bound above, we obtain

S =3 3 wD)

DyDy--- Dy

a

A€A D|(A,IT)
t
oY Y wnnen)-Y Y| X
A€ADq,Do,..., Dy AcA =1 D1q,Dg,..., Dy
D;[(A,Iy) D;|(AIL;)
v(Dj)<k; v(Dj)<ky,j7#L
V(Dz):k£+1
= p(D1D2 - Dy)#Ap, Dy,
Dy,Dy,....Dy¢
v(D;)<k;
t
DiDo---D
S 3 D SR ) P T
=1 | Dy.Dy,....D; ¢
V(D <ky L
v(Dp)=kp+1
Setting above
W(DlDQ"'Dt)
A Dy =X + Dy
#AD, Dy, D1Ds - Dyl TDyDg---Dy

we get

S(A;z) > XY — R,
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where

D1,Dg,...,D¢ j=1 =1 Dq,Dgy,...,D¢ jZl

D1 DI ‘ J#L
v(Dj)<k; v(Dj)<ky,j#L
v(Dp)=hp+1

and

t
R= Z 7Dy Dy---D | +Z Z 7Dy Dy---Dy

D1q,Dg,...,Dy =1 D1,Dog,...,Dy
Dj; Djl;
v(Dj)<k; v(Dj)<ky,j#L

V(De):szrl

By assumptions (Q2) and (r), we have |rp| < w(D) < 1. Therefore,

t
R < 1+>° oo
=1

Dq,Dy,....Dy Dq,Dsy,...,Dy
DI Dj I )
v(Dj)<k; v(Dj)<kj,i#L

U(De):szrl

The above sum is over all D1, D», ..., D, satisfying D; | II;, and either v(D;) < k; for
all j, or v(D;) < k;j for all but one j for which v(Dj;) = kj + 1. This is bounded by

Z p2(D) < 241 k2 ke

|D|<zkl+1 ko ~zft

Thus,
R< Z:=2411102 0 ok (2.5)
Next, for each j € {1,2,...,t}, define

w(D w(D wib
Uj = Z M(D)|(D|)v W= Z”<D)|(D|): H (1_|(P|))-

D11
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Then
i w(D;)
> TIwwy D = Uil Ui (2.6)
Dq,Dg,...,Dy 5=1 J
U(Dj)gkj
and

: w(Dy) T wDy) | 1 w(Dy)
2|2y eeTpE =t U g 3 T

¢=1| Dy,Dy,....Dy j=1 Dyt
;I 7t v(Dg)=ky+1
V(D) <k i
(D) =ky+1
(2.7)
From Equations (2.4), (2.6) and (2.7), we have
¢
1 w(De)
YX=U,U0y---U; | 1 - — . 2.8
1Y2 t ; Ug DZ |D[| ( )
= eI
V(De):ke—‘rl

By Corollary 2,
U, >w;, j=12,--- 1,
so that
U Uy U 2 WiWy-o - Wy i=W.

Next, in order to estimate the expression following the negative sign in Equation (2.8),
we will make use of the following lemma.

Lemma 4. We have

kp+1
Z OJ(D) < Iez
S 1
PN RS
U(D):ké‘i’l

where

Ig:logMZ:—Zlog< _w|§3P|))
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Proof. Let &y ={P, P,,..., Pr} with
P <P, <--- < Pr.

For D | IIy, set f(D) = w(D)/|D|. Thus, 0 < f(D) < 1. By the multinomial theorem, we

have
ke—‘rl T
(k@ + 1)! "
> iP) = > — e L[ FP)™
Pe®, my+moetmp=kp1 L2 T° 351
> (ke +1)! > F(Pey Ji(Peg) - F(Pey 1)
Peq <Peq <~~<Pe,%+1
=(ke+1)! Y HD).
DII,
v(D)=kp+1
On the other hand, since 0 < f(P) < 1, we have
1
Y fP)< Y —(log(1—§(P))) =log 7 = L.
Pez, Pe, ¢
This finishes the proof of the lemma. 0

Now, by the estimate of Lemma 4, we have

1 4kp+1 kp+1

Z W(De) <W£ WZ 1I€€ :We elffel .

P |Dg| = (kg + 1)' (k;g + 1)'
¢

V(D):kZJrl

Recalling that U, > W), we get

kp+1
1o wlbg
Uy | Dy (ke +1)!
dp|TIy
v(dg)=kp+1

Observe that if k; = 0 for some ¢, then Uy, = 1. Accordingly, in this case, the expression
on the left side of the last display is then bounded by

61€Ike+1
Wg ((I@e—f—l)l :Wgelelgzlg.
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From these estimates, we deduce from Equation (2.8) that

1/)( ) kg-‘rl
Y>(1-E)W, E= ;;kﬁ_) (2.9)
where
I .
b(O) = et if kg #0 (2.10)
1 if k=0
As such,
S(A;2) 2 X(1- E)W - Z, (2.11)

where Z is as defined in Equation (2.5). Next, we obtain an upper bound on S(A4;z). In
this case, from Corollary 2, we have

Accordingly, we have, using Lemma 1, that

=2 D

A€A D|(A,IT)

<Y Y. wDiDyDy

A€ADq,Dy,....Dy

D;I(AIT))
= Z w(D1Dz -+ Dy)#.Ap, Dy Dy
Dy.Dy..... Dy
DT
v(Dj)<k;
— XY +R,

where

Dl D2,.4.7Dt] 1 j 1 D|H]
D; 1, v(D)<k;
v(Dj)<k;
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and

R = Z N(DlDZ"'Dt)TDlDQ---Dt'
Dq,Dg,...,Dy
Dj\l'[‘
V(Dj)gkj

Working as before,

|R| < Z 1< 2201252 0 =

D1,Dg;...,Dy

Appealing again to Corollary 2, we have

G 31 31
v(Dj)<k; v(Dj)=k;+1

w(D;

=W;+ (Dj) (Dj)

. 1D
D; |1

v(D)=kj+1
Proceeding as in the proof of Lemma 4, we get
k‘j-‘rl

J
v(D,)=k;+1
Therefore,
I: kj+1
w(D;) eJIJ
>, HD)THE <Wi 1+ g
P D] GRS
v(D;)<k;

13

However, if k; = 0 for some j, then the left side of the last display is equal to 1, and

consequently, it is bounded by W;(1 + I;) since W, > 1. Thus,
kil kil
¢(])Ij] : j

t
Y < 1+
[Tw; {1+ & + 1)1

j=1
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where E and v(j) are as defined by Equations (2.9) and (2.10), respectively. In
conclusion,

S(A;2) < XWexp(E) + %, (2.12)

where Z is as defined in Equation (2.5).

Next, we choose the parameters 2o, z3, ..., 2: and k1, ko, ..., k optimally to obtain
explicit upper and lower bounds on S(A;z) suitable for our purposes. Set ¢=10.26249.
For each j € {1,2,...,t}, set

a; = exp (e(j = 1?).

/95 Let t be the maximal positive integer such that

and z; = z
et 5 9

That is,

/1
t= ’V loglogzz-‘ ,
c

where, for a real number z, we denote by [x], the integer m satisfying m — 1 < = < m.
Next, set k; = 2(j — 1). In order to make the bounds (2.11) and (2.12) explicit, we need
to find suitable upper bounds on E and Z. To this end, we begin by estimating I,.

Lemma 5. We have

Zlogg Zp4q <deg P<logy zy

1 1 :
T|+W if €<t
1

I,

IN

1 ; —
Zlgdeg P<logg zy [P] + |P|2 Zf L=t.

Proof. Since |P| > 2 for every P € &, we have

w(P)\ | 1 1
log<l> = w(P) —— < = s
Pl Z]IPIJ Pl |P]?

j=1
The lemma follows after recalling the definition of I,. O
For an integer d > 1, recall that My, the number of irreducible polynomials in A of

degree d, satisfies M, < 2¢ /d. Since zp41 = 2, it follows from Lemma 5 that for every
(<t
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1 1
IgS Z <d+d2d)

logo Zp41 <d<logg zy
1/2

< log et + Z 2% 1dy
Qe logo 2041 <d<logo zy 0
1/2
<c(20-1)+ Z %1 dx.
0

logo Zgi1 <d<logg zp
We estimate the second sum above as follows. For z € (0,1/2], one has

§ .’Ed_l < 2x10g2 ZZ+1_1.

logo Zp41 <d<logg zy
Thus,

1/2 1/2
Z / xd_ldx:/ Z 41 dz
0 0

logo 2041 <d<logy zZp logo Ze+1<d§10g2 zy

1/2
< 2/ 208220417t dg
0

_ 2
ze+1108s 2p41
2
< )
2041

since zg11 = 2. It follows that

2
Ip<e(20—-1)+ —.
2e+1
Working similarly, for £ = ¢, we obtain from Lemma 5 that

1 1
I < =+ ==
f 2 <|P| * |P|2>

1<deg P<logg 2
1 1
< — -
> (i)
1<d<10g722
o

< 2+ (loglogy z — log o)
=2+ (loglogy z — c(t — 1)?).
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Next, recall that

1 1
t= {\/ log log, z—‘ > \/ log log, 2,
c c

so that
ct? > log log, .
Using the last estimate, we deduce that
I <24c¢(2t—1) <0.27(2t — 1),

for ¢t > 1. Thus, for z > 1 (so that ¢ > 1), the contribution of ¢ = ¢ in the sum for £
in Equation (2.9) is bounded by

60.27(27571) (027(2t o 1))2t71

G 1 < (0.27¢"27)* 71 < (0.97)% 1, (2.14)

where, we have used that (2t — 1)%71/(2t — 1)! < 271,

We will next estimate E by separately considering the contributions from terms cor-
responding to ¢ < t for which ayy1 < v/logz and ay41 > /log z. First, consider the case
that a1 < +/log z. In this case,

Zo41 = Zl/aé-i-l > Zl/\/logz — ex/logz.

Thus, from Equation (2.13) and the above, we get that

2
eViogs

Ig <C(2€—1)+

Additionally, ayy1 < v/log z implies that c/? < (loglog z)/2. That is,

¢ < 1.54y/loglog z.

Let ¢ be as defined in Equation (2.10). Note that ¢(1) = 1. For 1 < ¢ < 1.5y/loglog =
and for z > 1, using the estimates for I, from Equation (2.13), we have
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0—1
_ _ 2
1#(6)[[26 ' < e2/ exp(+/log z)ec(QZfl) (C(2€ 1) + eV 10g2>

(20 —1) ° (20 —1)!
< o2t (1 + O (logz))> ((c(ze — 1))t +((22££11))!2“e@32“)
< o0 (14 V) (LU o)
ec(26-1) (1 +0(e™ “"gz))) ((C(Qég_l)l);“ +0( \/@/20

where, to obtain the bound in the second line above, we have used the binomial theorem
as follows:

20—1

<c(2€ -1)+ eﬁ@fu < (e(20— 1)) + z_; ( > (20 — 1))2~1-i9i

< (c(20—1))* "t 4+ (20— 1) 7124 ¢)* !
< (e(20 = 1))% 71 4 (20 — 1) 13201,

Thus, the contribution to the sum E from the terms corresponding to ayy; < /logz is
bounded above by

ec(2£—1)(c(2€ _ 1))25—1
L +Z + O(y/log log ze~V1oe=/3) (2.15)
= (20 —1)!
c(20-1) —1))2¢-1
<c+ ¢ (c(2¢— 1)) + 0(6_@/4)
= (20 —1)!

< 0.9997 4 O (e Vs =/4),

Next, consider the case that ayy1 > +/log z. In this case, £ > /loglog z. Since zp41 > 2,
or v/loglog z < ¢ < t, we have from Equation (2.13) that

2
Ii<e(20—1)+ —<e(20-1)+ 1,
2041

https://doi.org/10.1017/50013091524000464 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091524000464

18 P. Banerjee and A. Kundu

since zp4+1 = 2. Thus, for £ as above and z sufficiently large, we have

l[’(()le%il < pe(20-1)+1 (c(26=1) +1)* !

Q-1 ¢ (20 — 1)
< (0-27(26-1) (0.27(2¢ — 1))*!
(20— 1)!

< (0.27e!27)2671 < 0,972,

Thus, the contribution to the sum E from the terms corresponding to the ¢ under
consideration is less than

> (0,977 = 0(0.97VI 82,
¢>+/loglog z

From the last estimate above and Equation (2.15), we deduce that
E < 0.9999

for z > 1.
It remains to estimate

1 2 2(t -1
Z =211 02k gexp <Ing<o¢1+ag+.“+ (Ott >>>

The exponent of z above is bounded by

1 oo < 463833,
’ nZ::l exp (0.26249n2) < 4.63833

We now obtain (i) and (ii) of Theorem 3 by putting the estimates F <0.9999 and Z <
246385 (for 2 > 1) in Equations (2.11) and (2.12), respectively.

3. A proof of Theorem 1
Let f(z) and g(z) be as stated in Theorem 1 with deg f = n. Let t := |4.641log, n|, and
set X := 2'. Observe that t < 4.64log, n < 6.7logn. For future reference, we make a
note of the fact that
t+1 1
n <2464 <2X464.

Let

A:={g+u:uec A degu <t}
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Thus, #A4 = X. We will establish that for n > 1, there is some ¢ € A satisfying
ged(f,g1) = 1. If g1 = g + u, then

deg g1 < max{deg g,deg u} < max{deg g,6.7logn},
and
L(g—¢1) = L(u) <degu+1<t<6.7logn,
as is required to be shown.

Let P € A" be irreducible. If P | f, and deg P > t, then P divides at most one
polynomial in A. Thus, at most n polynomials in A have a common prime factor of
degree greater than ¢t with f.

For every irreducible P € A* with deg P < ¢, we define w(P) = 1 if P divides some

element of A, and w(P) = 0, otherwise. We extend w multiplicatively to all of A* by
defining

w(D) = [Jw(P), DeA*,
P|D

For D € A*, let
Ap:={Ac A:D| A}
Observe that if deg D < ¢, then w(D) = 1 implies that

w(D)

—X.
Dl

#AD _ 2t7deg D _

If deg D >t and w(D) = 1, then #Ap = 1; while, w(D) = 0 implies #Ap = 0. Define

D
rp ‘= |.AD‘ - w|‘(D)X

Then rp = 0 if either deg D <t or w(D) = 0. If deg D >t and w(D) = 1, then
rp=1-—2t"des D 1,
Thus, in any case, 0 < rp < w(D). In particular, w(D) and rp satisfy (©2) and (r). Let
Py = {Pis irreducible : P | f,w(P) =1},

and

m,= ] P

PE'Pf
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Note that deg IT; < deg f, and if A € A, then (f, A) =1 if and only if (A,II;) = 1. So,
without loss of any generality, we may and do assume that f = II. Specifically, w(P) =1
for every P | f.

Next, set z = X 61 in Theorem 3. We have

|4.641ogo n |
27 4w <

t
Z:2m: \n.

Let &2, 11 and W have the same meaning as implied in Equations (2.1), (2.2) and (2.3),
respectively. Then the conclusion (i) of Theorem 3 implies that

S(A; XT6T) > 0.000LXW — X 161, (3.1)

for n > 1. Let A’ denote the set {A € A : (A,II) = 1}. Thus, the norm of each irreducible
factor of every polynomial in A’ is > Xﬁ, and #A" = S(A4; Xﬁ).
If A € A’ has a common prime factor P with f, then

1 logy X
deg P > log, X161 — 822
& 082 164

Let S; denote the number of elements in A’ that have a common prime factor of degree

> 2logg X logg X 2logg X
= 4.64 4.64 >  4.64

If ng denotes the number of distinct irreducible factors of f of degree d, then

with f, and S5 the same for prime factors having degrees in [

S1 < Z #Ap (3.2)

2logy X
deg P>=722=

PIf

= > #Ap+ > #Ap

2logg X deg P>t
161 Sdeg P<t P|f

PIf

<X Z i-I—n

2logo X ‘P‘
1.6 Sdeg P<t

PIf

Z ng
2logg X
4.64

=
< X
= 2logg X Z ng+n
27 4.64 2logo X
d>=761

\X% 4.64n
2logy X
3.64

464X T61 L sx Tk
2R L oxTer < :
log, X log, X

>

+n

for n > 1.
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We now turn to estimating So. We begin by observing that

2logy X 2t
298 _ 2y
4.64 4.64 <h
. 2logy X
so that if deg P < =7%2= then
w(P)
#Ap = —>X.
|P|

We will apply Theorem 3, (ii) to the sets Ap where P is a prime factor of f with deg P in

logg X 2logg X . logg X 2logg X
Tl 16 ) In what follows, we assume that P | f with deg P € [ e 1 )

Observe that for every P under consideration, we have w(P) = 1 so that

X 2.64
#AP:W > X464 > z.

Let w(D) be as defined earlier in this section. For D € A", define

0 Aoy — 2Py — sy, - 2D) X
rp = #App D] #Ap = #App D] 1P|

If P | D, then w(DP) = w(D) whence, r, = r(DP). Next, consider that P { D. If
w(D) =1, then since w(P) = 1, we have

w(DP) =w(D)w(P) =1=w(D).

Conversely, if w(DP) = 1, then obviously w(D) = 1. Tt follows that w(DP) = w(D), and
as such,

T/D =Tpp.
Thus,
rpl = Irpp| < w(DP) = w(D).

Thus, Ap and w satisfy all the assumptions of Theorem 3. By Theorem 3 (ii), we now
have for n > 1 that

S(Ap; XT67) < e)];w 4 xR
logo X
Since |P| > 274.64 | hence
S(Ap; XT61) < eX THIW + X 81 (3.3)
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Thus,
1
So = E S(Ap; X%67)
P|f
3.64 3.6385
< (eXmW+X 1.64 ) E 1

1 X i 21 X
og2 0g2
Tt <Ldeg P< —Z.d1

< (exHitw 4 x i) 104

logy X
4.6385
XW 4.64
< 10e + 10 ,
log, X log, X

since n < 2X 761, Now, from Equations (3.2) and (3.4), we have

XW 4.6385
S1+ 82 <10 15—
1o elog2 X + logy X

If every polynomial in A’ has a non-trivial ged with f, then

S1+ 852 > #A =S(A; XT61).

Substituting from Equations (3.1) and (3.5) in the last estimate above, we get

4.6385
XWwW X 464 4
15 > 0.0001XW — X

6log2 X * logy X

5

.638
10 1.64

Rearranging terms, we have

XwW (0.0001 - 106X> < 16X He.

089

Observe that
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Now, if My denotes the number of irreducible polynomials in A of degree d, then

1
—logV = Z —log(1—|P|>

P—a prime
|Pl<z

> S

P—a prime j=1

|P|<z
[eS)
1
= M, E —
Z d j2d]
d<logo z j=1

Using an earlier estimate that My < 2¢/d, we get

20 1
“lgV< }, T oF
d<logg z j=1
- 3 g+E
d )
d<logg z
where
20 1
/ —_— —_— [
B = Z d .Zj2dj
d<logg z Jj=2
20 1
< Z 2d 2d]
d<logg z Jj=2
SID D=
- 97 9d(9d _
i<1omy - 2d 24(2 1)
1
< > <l
d<logg z
Therefore,

1
—logV < Z p +1 < log(log, ) + 2.
d<logg z

Upon exponentiating, we get

oL 4et 06
e2logyz  e2logy X ~ log, X
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Now, using the above estimate in Equation (3.6), we obtain

6X 1 .
0-6X (00001 — 19° ) « 16x %555
logy X log, X

The last inequality is impossible for n > 1 (whence X > 1). Therefore, for n > 1, there
is an g1 = g+ w in A such that ged(f,g1) = 1, as asserted. This concludes the proof of
Theorem 1.

4. A proof of Theorem 2

Let f(x) € Fo[z] with deg f = n. There are unique polynomials f.(z) and f,(z) in 2[x]
such that f(z) can be expressed as

f(@) = fe(@®) + afo(?).

Let m := max{deg f.,deg f,} = [n/2]. The proof of Theorem 2 rests upon the following
result (Lemma 5.1) from [4] (also see Lemma 3.1, [7]).

Lemma 6. Let h(z) € Fa[z] be of degree at least 2. Then h(x) is squarefree if and only
if ged(he(x), ho(x)) = 1.

Let u(z) € {fe(z), fo(z)} be defined as

fe(z) if deg f=0 (mod 2)

u(z) =
folz) if deg f=1 (mod 2).

Thus, deg u = m. Let v(z) € {fe(x), fo(z)} denote the other polynomial. By Theorem 1,
for n > 1, there is an vy (z) € Fa[z] with deg v1 < max{deg v,6.7logn} and L(v —v;) <
6.7log m such that ged(u(z),v1(x)) = 1. In particular, deg v1 < deg v < deg u = m. Set

o) = 1) Favi(a?) i u(e) = fela)
v1(2?) + 2u(2?) if u(z) = fo(x).
Then g¢(z) is squarefree by Lemma 6. Furthermore,

L(f —g) = L(v—v1) < 6.Tlogm < 6.7logn,

as required. We conclude by clarifying that deg g = deg f. Assuming deg f = 2m is
even, we have u(z) = f.(z) with deg f. = m. Furthermore, deg v < m in this case.
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Consequently deg v1 < m (for n > 1). It follows that
deg g = max{2deg u, 1+ 2deg v;} = max{2m, 1+ 2deg v} = 2m.

Similarly, if deg f is odd, say, deg f = 2m + 1, then u(z) = f,(x) with deg f, = m.
Then,

deg g = max{2deg v1,1 + 2deg u} =2m + 1 = deg f.

Acknowledgements. The authors express their sincere gratitude to the referee for
identifying several critical errors. The referee’s suggestions have greatly contributed to
enhancing the quality of our presentation.

The first author’s research was partially supported by MATRICS grant no. MTR /2021/
000015 of SERB, India.

Competing interests. The authors declare none.

References

(1)  A. Bérczes and L. Hajdu, Computational experiences on the distances of polynomials to
irreducible polynomials, Math. Comp. 66(217): (1997), 391-398.

(2) A. Bérczes and L. Hajdu, On a Problem of Pdl Turdn Concerning Irreducible
Polynomials, pp. 95-100 (de Gruyter, Berlin, 1998) In: Number Theory (Eger, 1996).

(3) P.T. Batemann and H. G. Diamond, Analytic number theory, an introductory course.
Monographs in Number Theory, Volume 1 (World Scientific Publishing Co. Pte. Ltd,
Hackensack NJ, 2004).

(4)  A. Dubickas and M. Sha, The distance to square-free polynomials, Acta Arith. 186(3):
(2018), 243-256.

(5) M. Filaseta, Is every polynomial with integer coefficients near an irreducible polynomial?
Elem. Math 69(3): (2014), 130-143.

(6) M. Filaseta and M. J. Mossinghoff, Distance to an irreducible polynomial II, Math.
Comp. 81(279): (2012), 1571-1585.

(7) M. Filaseta and R. Moy, The distance to a squarefree polynomial over Fa[x], Acta Arith
193(4): (2020), 419-427.

(8) K. Ford, Sieve methods lecture notes, spring 2023, https://ford126.web.illinois.edu/
sieve2023.pdf.

(9) H. Halberstam and H. E. Richert, Sieve methods. London Mathematical Society
Monographs (Academic Press, London-New York, 1974) 4.

(10) M. Rosen, Number theory in function fields. Graduate Text in Mathematics, 210

(Springer-Verlag, New York, 2002).

https://doi.org/10.1017/50013091524000464 Published online by Cambridge University Press


https://ford126.web.illinois.edu/sieve2023.pdf
https://ford126.web.illinois.edu/sieve2023.pdf
https://doi.org/10.1017/S0013091524000464

	The Brun–Hooley sieve for  F2[X] and squarefree shifts of integer polynomials
	1. Introduction
	2. Brun–Hooley sieve for  F2[x]
	3. A proof of Theorem 1
	4. A proof of Theorem 2
	Acknowledgements
	References


